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Abstract. Meshless methods are increasingly gaining space in the study of elec-
tromagnetic phenomena as an alternative to traditional mesh-based methods.
One of their biggest advantages is the absence of a mesh to describe the sim-
ulation domain. Instead, the domain discretization is done by spreading nodes
along the domain and its boundaries. Thus, meshless methods are based on the
interactions of each node with all its neighbors, and determining the neighbor-
hood of the nodes becomes a fundamental task. The k-nearest neighbors (kNN)
is a well-known algorithm used for this purpose, but it becomes a bottleneck
for these methods due to its high computational cost. One of the alternatives
to reduce the kNN high computational cost is to use spatial partitioning data
structures (e.g., planar grid) that allow pruning when performing the k-nearest
neighbors search. Furthermore, many of these strategies employed for kNN
search have been adapted for graphics processing units (GPUs) and can take
advantage of its high potential for parallelism. Thus, this paper proposes a
multi-GPU version of the grid method for solving the kNN problem. It was pos-
sible to achieve a speedup of up to 1.99x and up to 3.94x using two and four
GPUs, respectively, when compared against the single-GPU version of the grid
method.

1. Introduction

Meshless methods are increasingly gaining space in the study of electromagnetic phe-
nomena as an alternative to traditional mesh-based methods such as the finite ele-
ment method (FEM) [Amorim et al. 2019, Kamranian et al. 2017, Liu 2016, Jin 2015,
Garg et al. 2015, Liu 2002]. The presence of a mesh in the FEM simplifies the com-
putation of the linear equations system, since node connectivity can be obtained directly
from it. However, the quality of the mesh affects not only the approximation error of
the finite element solution but also the spectral characteristics of the corresponding linear
system [Du et al. 2009]. In 2D problems discretized using triangular meshes, ensuring



satisfactory mesh quality is attainable, and many open-source packages are available,
such as GMSH [Geuzaine and Remacle 2009]. However, achieving good quality meshes
with moderate computational resources for arbitrary three-dimensional problems is still
an open problem. This problem gets even more complicated if we consider moving do-
mains, requiring re-meshing at each step, which can even make the adoption of mesh-
based methods unfeasible [Chen et al. 2017].

In the meshless methods these problems no longer exist. The domain discretiza-
tion is done by spreading nodes along its domain and boundaries, and a system of alge-
braic equations is established without the use of a mesh. Due to the lack of connectivity
information, additional computational steps are required for computing neighborhood in-
formation (node-node interactions), which can lead to an additional computational cost in
contrast to mesh-based methods.

Meshless methods, such as the Meshless Time-Domain Method (MTDM)
[Ikuno et al. 2013] and Meshless local Petrov-Galerkin method (MLPG)
[Amorim et al. 2019], have been used to solve wave propagation and static prob-
lems, respectively. In these methods, different shape functions are used, such as the
Radial Point Interpolation Method (RPIM), Radial Point Interpolation Method with
polinomial reproduction (RPIMp) and Moving Least Squares Method (MLS) [Liu 2009].

In MLS, each node is associated with a a small region, called influence domain,
where its shape function is not equal to zero. The support domain is a set of nodes whose
influence domain overlaps the region where the problem weak form is being integrated,
which is called integration subdomain. In Figure 1a, for example, the nodes P, and P, are
in the support domain, but the P; node is not. On the other hand, in RPIMp the support
domain is formed by an arbitrary number of nodes chosen in the integration subdomain
neighborhoods (Figure 1b). At first, a box (called level 1, with radius R;) is taken around
the central node, and the nodes within this box are considered to represent the support
domain. If there are not enough nodes within this level 1 box, the box is increased (level
2, with radius R») to include more nodes. This increment happens until the predetermined
number of nodes is reached. The number of nodes within the support domain is a method
parameter.

Integration Influence
points nodes

Integration | Central

: Central
domain or node Level 1 Level 2
subdomain

(o] (o] o

o) o) o

*

o o, o
0N 0 o
// \\

P \
ﬁ o’ o o O o o o o o
\\ \\‘//1

.00 o o o o O o O o o o

Figure 1. Support domain of MLS (a) and RPIMp (b) [Amorim et al. 2019].



Determining the support domain based on some distance metric is one of the main
bottlenecks of meshless methods [Amorim et al. 2019, Ikuno et al. 2013]. One alternative
to reduce the computational cost is to explore the parallel nature of the neighborhood lo-
cation problem, which can be cast to the well-known k-nearest neighbors (kNN) problem,
which consists of searching the & closest points to a given point [Garcia et al. 2010]. Inso-
much, this work presents a multi-GPU version of the method of locating neighbors based
on the space-partitioning data structure, even grid [Amorim et al. 2019, Mei et al. 2016].
The method is adapted so the workload is balanced across multiple GPUs and the integrity
of the original method is maintained.

The remainder of this paper is organized as follows. Section 2 formalizes the k-
nearest neighbors problem and presents some related works. Section 3 presents the grid
method for the kNN problem. Section 4 presents the proposed multi-GPU grid method.
Section 5 presents the an overview of CUDA and some implementations details. Section
6 presents the experimental results obtained. Finally, Section 7 presents the conclusions
of the present work.

2. K-nearest Neighbors and Related Works

The use of brute force (BF) is one of the most basic approaches for solving kNN prob-
lems. In BF methods, the distance between the query point g and every other point in
a set of reference points is calculated. Then, the points are sorted by distance and the
first k points make up the solution to the problem. Despite the simplicity, BF meth-
ods have high computational costs and can become intractable as the number of points
increases [Garcia et al. 2010]. Some approaches seek to optimize the BF method by re-
ducing the number of potential neighbors points using spatial partitioning structures, such
as R-tree [Kuan and Lewis 1997] and octree [Behley et al. 2015], with good results for
low-dimensional spaces.

Recently, General-Purpose Graphic Processing Units (GPGPU) have enabled the
use of the graphics processor units to perform previously CPU-only tasks. Due to its
high potential for parallelism, it is possible to achieve higher performance than CPUs
for many algorithms. Thus, several papers [Garcia et al. 2010, Liang et al. 2009] present
parallelized versions of the BF method using single-GPU with satisfactory results. In
[Amorim et al. 2019, Mei et al. 2016, Ikuno et al. 2013, Amorim et al. 2020] a single-
GPU grid solution is presented. In [Masek et al. 2015], a multi-GPU version of the BF
method is presented with good results for low values of k. However, by performing an
exhaustive search, the solution becomes impractical for high values of k or for a large
number of points.

3. Grid Method

The grid method for the kNN problem consists of partitioning the point space into squares
(in two dimensions) or cubes (in three dimensions). Partitioning is implemented to per-
form only local searches, comparing only points that are real candidates to be neighbors
and substantially reducing the number of computed distances. The method consists of
three distinct phases: grid creation, point distribution, and local search. For the sake of
clarity, we describe the method using a two-dimensional domain. However, a generaliza-
tion to three-dimensional domains is straightforward.



3.1. Grid creation

The grid is a simple spatial partitioning structure, composed of square cells. For its con-
struction, first the cell width is specified and then the minimum and maximum values of
the = and y coordinates of all points are used to determine the planar rectangular region
covered by the grid. The number of rows and columns of the grid are easily determined
by dividing the rectangle by the width of the cells (Figure 2).
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Figure 2. The creation of a planar grid. The white points are part of the set
of reference points and the black point is a query point. Three levels of
expansion from the query point cell are shown.

3.2. Points distribution

This phase consists of determining the index of the cell to which a given point belongs.
For a given point 7, the index is given by Equation 1.

index; = ({cellW@'dth-‘ X nCol) + [cellWidth—‘ (1)

To improve data locality, the points are sorted by their cell index so that all points
from the same cell are stored contiguously in the memory. Thus, it is only necessary to
store the number of points in each cell and the index of the first point of each cell to find
all points that belong to a given cell in constant time.

For the subsequent implementation of the local search, an expansion factor for
each cell is pre-calculated. This factor is responsible for delimiting a local search region
to all points associated with the same cell and for ensuring that all the closest neighbors
of the points in this cell are present in this region. The process for determining it consists
of expanding one level from a given cell until the number of points in the formed region is
greater than or equal to k. When no further expansions are needed, Equation 2 is applied
to the value found to ensure that the search for neighbors is always exact.

expansion = [\/5 X (expansion + 1)-‘ 2)

Figure 2 shows three levels of expansion of a cell. In this way, it is guaranteed
that all k-nearest neighbors of the points of a given cell are in the region delimited by its
expansion factor.



Figure 3 illustrates the organization of all information needed to represent the grid
and to perform local searches.
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Figure 3. Organization of the necessary information to represent the grid and to
carry out local searches.

3.3. Local search

The local search consists of calculating the distance between a query point and all refer-
ence points in the region delimited by the expansion factor of the cell to which the query
point belongs and selecting the & shortest distances. This process is repeated for all query
points and can be summarized in the three following steps:

1. Find the cell where the query point is located (Equation 1);

2. Find the region delimited by the expansion factor of that cell (Figure 2);

3. Calculate the distance between the query point and all points in this region and
select the k shortest distances.

4. Multi-GPU Grid Method

This section presents our proposed grid method adaptation for multi-GPU. The key idea is
to distribute and organize the reference points between the GPUs so that each query needs
to be executed in only one GPU and that the amount of duplicate reference points between
the GPUs is minimal. For the sake of clarity, the multi-GPU grid method is described for
two GPUs and also with a two-dimensional domain.

4.1. Indexing phase

We consider that the set of reference points is initially stored in the CPU memory and
does not have any kind of sorting. The indexing phase begins by splitting equally and
randomly the reference points between the GPUs. Each GPU creates its own grid, as
presented in Section 3.1. However, all grids are created with the same dimensions, that is,
the minimum and maximum coordinates of all points are considered and not only of the
points assigned to each GPU. Then, each GPU distributes the points assigned to it on its
grid (as shown in Section 3.2).

To ensure that each query needs to be run on only one GPU, the reference points
are rearranged between the GPUs. A grid row (row,,) that splits the grid into two halves
is determined in such way that the amount of points in each half is approximately equal.
Then each GPU will store one half of the grid and be responsible for running its queries.

To determine the row,,, a reduction operation is performed on the points per cell
vector of both GPUs. In this way, it is possible to determine, globally, the number of



points on each grid row and then find the best row of division. Then, the reference points
previously assigned to G PU; that are below the row,, are transferred to G PU, and the

reference points previously assigned to G PU, that are above the row,, are transferred to
GPU,.

The split presented above does not take into account that query points located
near the row,, may have neighbors that have been assigned to another GPU. Thus, it is
necessary that the reference points of a small region near row,, be duplicated in both
GPUs. For G PUy, this region is determined by finding the furthest row (rowy) from the
area assigned to G'PU, that the expansion factor of any of its cells has reached. Therefore,
all GPU, points between the row,, and the row; must also be present in the GPU,.
Similarly, the process is carried out for G PU,.

Figure 4 illustrates the steps of the indexing phase as well as the search phase.
Note that the operations presented in Section 3.2 are performed in a different order to
avoid unnecessary transfer of information among GPUs.

4.2. Search phase

As shown above, the reference points indexing guarantees that all the neighbors of a query
point will be present on the same GPU. Thus, the search phase consists of determining
the cell in which each query point is located and transferring it to the GPU responsible for
that cell. Once in the correct GPU, the local search is performed as shown in Section 3.3.

5. CUDA Implementation Details

CUDA is a general-purpose parallel computing platform and computing model developed
by NVIDIA in 2006 [NVIDIA 2020], and it is the programming model used in this work.

In this programming model, the functions executed in parallel are called kernels.
When called by the host CPU, a kernel is executed /V times in parallel by )V threads on the
GPU. The threads are organized in a hierarchy of blocks and grid of blocks. Blocks are
sets of threads that run on the same processor core and share a private memory reserved
for the block. The grid, in turn, is a set of blocks and defines the total set of threads
created and managed by the GPU at the kernel launch [NVIDIA 2020].

The critical parts of the grid creation and of the points distribution were carried
out with the help of the Thrust library, which is a well-known library of parallel algo-
rithms and data structures. For instance, the function thrust: :sort_by_key was
used to sort the points by the cell index and the functions thrust : : reduce by key
and thrust : :unique_ by _key were used to determine the number of points per cell
and the index of the first point of each cell, respectively. To perform the search, a kernel
was created and each thread was responsible for processing a query point. As the query
points are sorted by the index of the cells, each thread warp will execute queries that are
spatially close and, therefore, it is possible to perform coalesced memory access and min-
imize the divergence of the execution path of each thread. Data transfers and operations
between GPUs were handled by the NCCL library, which provides optimized collective
communication primitives tailored for NVIDIA GPUs.
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Figure 4. Overview of the indexing and search phases using two GPUs (De-
vice 1 and Device 2). The sets of reference and query points start in the
CPU (host) memory and the final result is also given in the CPU memory.
The thick gray arrows represent data transfer between host/device or de-
vice/device and the black arrows represent the flow of the algorithm.



6. Experimental Results

All tests were performed in a development environment containing 2 x Intel Xeon CPU
E5-2620 v2 2.10 GHz with 64 GB RAM DDR3 1600 MHz and 4 x GPU NVIDIA Tesla
K40m with 12GB GDDR5 SDRAM.

First, the execution time of the single-GPU grid method was compared with both
the CPU and single-GPU version of the brute-force method as a baseline performance
comparison (Section 6.1). Next, we compared the execution time of the single-GPU grid
method with the proposed multi-GPU grid method using two and four GPUs (Section
6.2).

The sets of points used in all tests are two-dimensional and were generated ran-
domly. The coordinates of each point are of the float type and range from 0 to 10°. In each
test case, the set of query points is equal to the set of reference points, i.e., the number of
query points increases proportionally with the number of reference points.

6.1. Single-GPU Grid vs. CPU BF vs. Single-GPU BF

Despite its well-known poor performance for large datasets, the brute-force method for
kNN search is still widely used in many applications that needs to perform search on small
datasets.

The FAISS library [Johnson et al. 2019], developed and maintained by the Face-
book AI Research group, provides an optimized implementation of the brute-force
method, for both CPU and GPU, and is therefore used as a base line performance com-
parison for our grid method implementation.

The Figure 5 shows the processing time of the CPU brute-force method (from
FAISS), single-GPU brute-force method (from FAISS) and single-GPU grid method (our
implementation) with a fixed value of £ (100) and varying the number of points (from
10% to 10°%). It is possible to notice, as expected, that the GPUs methods are orders of
magnitude faster than the CPU one.
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Figure 5. kNN execution time using CPU brute-force method, single-GPU brute-
force method and single-GPU grid method with fixed value of k (100) and
varying the number of points.



The Figure 6, in turn, shows the speedup achieved using the single-GPU grid

method against the CPU and single-GPU brute-force method. The single-GPU grid
method proved to be more than 1600x faster than the CPU brute-force method with a
number of points equal to 10° and k equal to 100. Against the single-GPU brute-force
method, it was possible to achieve a speedup of more than 36 x with that same amount of
points and k value.

6.2.

103 g 1

o 2| )
2 10% ¢ -
Q - ]
O [ -
) 8 i
10! g 5

g — 4+ GPU Grid vs. CPU BF ||

10° B —m— GPU Grid vs. GPU BF | |

E | | T T T —

0 02 04 06 08 1
Number of points  .1(6

Figure 6. Speedup achieved using single-GPU grid method against CPU brute-

force method and single-GPU brute-force method with fixed value of k (100)
and varying the number of points.

Single-GPU Grid vs. Multi-GPU Grid

Finally, the proposed multi-GPU grid method was compared with the single-GPU grid
method. Figure 7 shows the processing time of the grid method using one, two and

four

GPUs with a fixed value of k£ and varying the number of points (Figure 7a) and the

processing time with a fixed number of points and varying the value of £ (Figure 7b). It
is possible to infer that for low values of & or for low amounts of points, the multi-GPUs
approach is not recommended due communication and synchronization overheads.
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Figure 7. kNN execution time using the single and multi-GPU grid method: fixed
value of k (100) and varying the number of points (Figure 7a); fixed number
of points (107) and varying the value of k (Figure 7b).



However, as shown in Figure 8, it is possible to achieve an almost linear speedup
when k or the number of points is sufficiently high. For instance, with 2.5 x 108 points
and £ equal to 100, it was possible to achieve the speedup of 1.99x and 3.92x with two
and four GPUs, respectively, against single-GPU. With the number of points equal to 107
and k equal to 256, it was possible to reach the speedups 1.99x and 3.94 x using two and
four GPUs, respectively, against a single-GPU.
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Figure 8. Speedup achieved using multi-GPU against single-GPU: fixed value of k
(100) and varying the number of points (Figure 8a); fixed number of points
(107) and varying the value of k (Figure 8b).

7. Conclusions

One of the main bottlenecks in the processing of meshless methods is determining the
neighborhood information between the nodes, task which can be cast to the kKNN problem.
Thus, this work proposed a multi-GPU version of the grid method for solving the kNN
problem. Compared to the single-GPU version, it was possible to achieve a speedup of up
to 1.99x using two GPUs and up to 3.94 x using four GPUs, when the number of nodes
or the value of k£ were sufficiently high to fully employ the GPUs resources.
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