
Predicting Runtime in HPC Environments for an Efficient Use
of Computational Resources

Mariza Ferro1, Vinicius P. Klôh1, Matheus Gritz1, Vitor de Sá1, Bruno Schulze1

1Grupo de Computação Cientı́fica Distribuı́da (ComCiDis),
Laboratório Nacional de Computação Cientı́fica (LNCC)

Av. Getúlio Vargas, 333 – 25651-075
Petrópolis – RJ – Brazil

Abstract. Understanding the computational impact of scientific applications on
computational architectures through runtime should guide the use of compu-
tational resources in high-performance computing systems. In this work, we
propose an analysis of Machine Learning (ML) algorithms to gather knowl-
edge about the performance of these applications through hardware events and
derived performance metrics. Nine NAS benchmarks were executed and the
hardware events were collected. These experimental results were used to train
a Neural Network, a Decision Tree Regressor and a Linear Regression focusing
on predicting the runtime of scientific applications according to the performance
metrics.

1. Introduction
High-Performance Computing (HPC) has become fundamental to discover new knowl-
edge, and therefore its use has become crucial to scientific research across many research
domains. Despite the impressive advances, several areas of science are still too com-
plex for the available resources and should benefit from the HPC growth, as expected
for the next generation of exascale supercomputing. On the other hand, the increase of
computational capability increases the need for efficient use of computational resources,
which will be even more representative of the upcoming exascale. Thus, studies search
for approaches to increase scientific applications’ performance and the better use of com-
putational resources. One proposal is the use of autonomic techniques that allow the best
resource allocation for applications [Klôh et al. 2020]. The scientific problem’s require-
ments should guide the orchestration of different techniques and mechanisms, improving
the performance, and using the computational resources efficiently.

To reach this, predicting the applications’ runtime is one of the first steps, en-
abling, for example, the best job scheduling. Moreover, the runtime prediction is very
useful for HPC users when submitting a job. Despite the complexity of scientific appli-
cations and the HPC systems, these users usually are requested to estimate their jobs’
runtime for system scheduling. When jobs are under or overestimated could figure in a
costly situation for users, systems, and the environment since they waste time and con-
sumed energy [Guo et al. 2018].

Therefore, this work aims to predict the runtime of scientific applications to de-
velop an application-aware autonomous framework capable of allocating resources and
jobs in different HPC architectures to use computational resources efficiently. Also, spe-
cific contributions are identifying parameters that impact performance, shared in different



architectures, and understanding how they impact runtime. For this, we propose an ap-
proach using performance counters and derived performance metrics as features in Ma-
chine Learning (ML) models. Three supervised ML algorithms are evaluated to these
objectives using a Neural Network (NN), a Decision Tree Regressor (DTR), and a tra-
ditional Linear Regression (LR) for comparison with the others. The results show that
the use of performance counters and derived metrics proved to be effective in predicting
the performance of applications and allowed to identify relationships of features and how
they influence the runtime in four different architectures.

This work is organized as follows: in Section 2 are presented the background
and the related works. In Section 3 are presented the methodology for the experiments,
details about the applications and collected parameters. The experiments and results are
in Section 4 and, the final considerations in Section 5.

2. Related Work

As mentioned in Section 1, the use of autonomic techniques will be significant to allow a
better understanding of how an application’s requirements affect the runtime and how to
effectively use this data to model a scheduling framework in future works. Several works
make use of predictive models to improve specific applications such as [Souza et al. 2019,
Siegmund et al. 2015, Balladini et al. 2014, Wu et al. 2016] and are classified according
to their approaches (analytical or empirical) [Kaltenecker 2016].

Many researchers explore the possibility of using Machine Learning techniques to
obtain this kind of knowledge. Considering the different applications performed in HPC
environments and the complexity of these media, the amount of resources that need to be
analyzed grows exponentially, making analytical approaches unfeasible. Thus, with the
advancement of ML techniques, the use of empirical approach has increased considerably
and has been used in several different works to predict the performance of different HPC
systems.

In [Martı́nez et al. 2017], the authors propose a specific ML approach, adapted to
stencil computing using Support Vector Machines models. They conclude that its per-
formance can be predicted with high accuracy due to appropriate hardware counters.
In [Malakar et al. 2018] the authors present a benchmark study evaluating eleven ML
techniques for modeling the performance of four representative scientific applications.
They assess the impact of feature engineering, the size of the training set, and the extrap-
olation on the prediction accuracy on four different architectures. In [Guo et al. 2018] and
[Tanash et al. 2019], authors use system reports that include details such as the percent-
age of resource usage and number of CPUs in use as the basis for a relatively accurate
runtime prediction model with a small number of parameters for model training. The
study in [Amaris et al. 2016] compares three different ML techniques with an analytical
model to predict the performance of nine applications executed over nine distinct GPUs.
All these studies trained the models individually for each architecture but did not have a
generic model for different systems like in this work. In [Wu et al. 2020] authors used
MuMMI and 10 ML methods to model, predict and compare the performance and power
of two algorithm-based fault-tolerant (FTLA and HDC) on three different architectures.
With MuMMI they instrument the codes to collect performance data, power data, and per-
formance counters. Based on what-if prediction system, they identify the most significant



performance counters for potential optimization efforts associated with the application
characteristics and the target architectures, and they predict theoretical outcomes of the
potential optimizations. Comparing the prediction accuracy using MuMMI with that us-
ing 10 ML methods, they observe that MuMMI resulted in more accurate prediction in
both performance and power. In [Masouros et al. 2019] is proposed Rusty, a monitor-
ing framework that leverages Long Short-Term Memory (LSTM) networks that provide
fast and accurate interference aware predictability. They evaluate Rusty’s efficiency on
workloads derived from the scikit-learn library and the Cloudsuite benchmarking suite.
Experiments focused on predicting the IPC and the LLC misses of the core executing the
target workload and the energy consumption of the respective socket. They analyzed and
explored several schemes of LSTMs, concluding to a generic efficient LSTM architecture
in terms of accuracy, responsiveness to runtime constraints, and computational cost. In ad-
dition, they demonstrated the advantage of LSTM networks over two simpler approaches,
LR and MLP. [Lewis et al. 2020] demonstrates a method for predicting application run-
times using logs collected from jobs run on Argonne’s Mira supercomputer. The authors
evaluated the effectiveness of runtime prediction using information available only before
a queued job is run to predict how long the application will run. To accomplish this task,
they used 12 hardware performance counters as features and trained an XGBoost regres-
sion model. Also, this work investigated how effective hardware performance counters
are in classifying application runs based on different resource consumption patterns. Ap-
plications are defined as either file I/O-, computation-, or MPI communication-intensive
by looking at the ratio of time spent by an application on each category relative to that ap-
plication’s total runtime. This investigation used the same hardware performance counters
as the training features for an XGBoost classification model.

The work of [Johnston 2019] proposes that it is necessary to make accurate per-
formance predictions for workloads on different computing devices to support efficient
scheduling on HPC. They collect a set of 28 architecture-independent features in 4 cate-
gories (parallelism, diversity of instructions, memory, and control), measured by counting
targets collect while the application was executing. These features were used to create the
prediction model using Random Forest and identify the applications’ requirements.

In previous work [Klôh et al. 2019], the authors of this work presented the pro-
posal of the autonomic framework where this work is inserted, explored the use of hard-
ware counters as the initial steps on using DTR models to predict runtime, and gather
knowledge on hardware counters relevant to it. This work expands on these concepts
by introducing a MLP, different architectures, and evaluating the derived performance
metrics as part of a new dataset using feature construction.

3. Methodology of Experiments

The methodology for the execution of the experiments consisted of the following steps: a
set of nine OpenMP applications were prepared; each application was executed 30 times
across predefined architectures, workloads, and thread interval; for each execution, a set
of performance counters were monitored and collected. Section 3.1 details these archi-
tectures, applications and counters.

In sequence, the data obtained from this first monitoring and data collection phase
were parsed, cleaned, and stored for use in the ML experiments. The objectives are: i)



identify which parameters are most relevant to represent the performance of applications
and find a set of relevant parameters common to different HPC architectures; ii) contribute
models for runtime prediction for the different architectures used (individuals and multi-
architecture), which are relevant tasks in research for an autonomous framework; iii) still,
it is objective to understand which parameters impact the runtime during the execution of
scientific applications. Section 3.2 provides an outline of the ML models and how they
were trained and tested.

3.1. Experimental Setup: Dataset Collection
The first experimental setup consists of a series of OpenMP applications from the NAS
Parallel Benchmark suite [Bailey et al. 1991], which derived from Computational Fluid
Dynamics (CFD). They were designed to help evaluate the performance of parallel su-
percomputers, including a range of problem sizes 1. Table 1 presents the applications,
problem sizes and the number of elements for each size.

Table 1. Applications, problem sizes and number of elements for each applica-
tion.

Problem Sizes
Applications W A B C

Number of elements
BT - Block Tri-diagonal solver
SP - Scalar Penta-diagonal solver
LU - Lower-Upper Gauss-Seidel solver

243 643 1023 1623

CG - Conjugate Gradient 7000 14000 75000 150000
EP - Embarrassingly Parallel 225 228 230 232

FT - discrete 3D fast Fourier Transform - 1282 × 32 2562 × 128 512× 2562

IS - Integer Sort 220 223 225 -
MG - Multi-Grid 1283 2563 2563 5123

UA - Unstructured Adaptive mesh 700 2400 8800 33500

The experiments were performed using the four architectures presented in Table 2.
Each application was executed 30 times, to ensure the consistency of the results2, across a
predefined thread interval defined by the number of processing cores (1, 2, 4, 6, 8, 10, 12
for Turing, SimCluster and Beholder and this same interval plus 16, 32 and 64 for AMD).
The different number of threads were used to understand how this affect the performance
of applications and to observe the difference in the runtime and how it impacts on the
performance counters. These counters were collected using perf tool, available in the
Linux Kernel since version 2.6.31. It performs counts of events accessing the model-
specific registers directly, with zero (0.00) overhead on running applications.

From the measured performance counters, some derived performance metrics
were built, and used to feature construction (presented in Table 3 with ∗). These de-
rived metrics were defined based on the work of [Klôh et al. 2020], because they allow
observing the performance behavior of the applications on the use of computational re-
sources, which was not possible with the use of performance counters purely. The in-
structions per cycle (IPC) is the ratio of Instructions to total Cycles. The metrics L1 load

1The sizes of NAS applications vary from S, W, A to F, as problem sizes increase. A complete descrip-
tion of all sizes is available at https://www.nas.nasa.gov/publications/npb.html

2We found that the variation of the application runtime are very small (less than 1%).

https://www.nas.nasa.gov/publications/npb.html


Table 2. Architectures used in this work.

AMD Beholder SimCluster Turing
Processor Opteron 6376 Xeon CPU X5650 Xeon CPU X5650 Core i7-8700 CPU

cpu freq (GHz) 1.4 2.66 2.66 3.2
Sockets 4 2 2 1

cores per socket 8 6 6 6
threads per core 2 1 1 2
available threads 64 12 12 12

cache size L1 (MB) 16 32 32 32
cache size L2 (MB) 2048 256 256 256
cache size L3 (MB) 6144 12288 12288 12288

RAM size (GB) 128 24 24 64
RAM freq (GHz) 1.6 1.3 1.3 2.66

Total width 72 72 72 64
Data width 64 64 64 64

ratio and branch miss predict ratio provide the ratio between hits and misses. The PTI
(Per Thousand Instructions rate metric) provides the performance relative to the compu-
tational resource per thousand of completed instructions. These ratios and rates make it
possible to measure the performance of applications in different computational resources,
in addition to being easy to measure metrics, since they use performance counters.

Table 3. Performance counters and derived performance metrics used as features
of ML tasks.

Feature Description
instructions # of instructions sent to the CPU
cycles # of CPU cycles completed
cpu migrations # of times that the processes moved to another CPU
branches # of conditional instructions that alter the flow of a process
branch misses # of times the CPU failed to predict the outcome of a branch
context switches # of times a process was halted so another could be run
cache misses # of times something was not found in the cache
L1 dcache stores # of times data was stored in the Level 1 dcache
L1 dcache loads # of times data was loaded from the Level 1 dcache
L1 dcache load misses # of times data was not found in the Level 1 dcache
LLC stores # of times that data was stored in the Last Level cache
LLC loads # of times data was loaded from the Last Level cache
LLC load misses # of times data was not found in the Last Level cache
instructions per cycle∗ instructions / cycles
loads PTI∗ LLC-loads / (instructions×10−3)
stores PTI∗ LLC-stores / (instructions×10−3)
L1 load ratio∗ L1-dcache-loads / L1-dcache-load-misses
L1 load rate PTI∗ L1-dcache-load-misses / (instructions×10−3)
branch miss predicted ratio∗ branch-misses / branch
branch miss predicted rate PTI∗ branch-misses / (instructions×10−3)
cache misses PTI∗ cache-misses / (instructions×10−3 )
Seconds the application’s runtime and the target of this work

3.2. Experimental Setup: Machine Learning

All this information is then used to compose five datasets, one for each architecture and
another one with data from all the architectures named Multi-Archit (Table 4). Thus, it



was possible to create prediction models for each architecture individually, besides inves-
tigating which parameters have more impact on the runtime for each architecture. Table 4
presents the summary of each dataset, with the total number of examples (# Examples),
the number of examples for train and test (train/test) and the number and types of features
(# Features: numeric or continuous - num. / nom.). Each subset of data was divided into
80% for training and 20% for testing.

Table 4. Summary of each dataset for runtime prediction. The 23 features are
each row of Feature column in the Table 3.

Architecture Examples (train / test) Features (num. / nom.)
Turing 7305 (5844 / 1461) 23 (23 / 0)
AMD 10800 (8640 / 2160) 23 (23 / 0)

Beholder 7440 (5952 / 1488) 23 (23 / 0)
Simcluster 7517 (6013 / 1504) 23 (23 / 0)

Multi-Archit 33062 (26449 / 6613) 23 (23 / 0)

The experiments were performed according to the learning tasks, that is, the objec-
tive to be reached with ML. For this, three supervised ML algorithms were used: Decision
Tree for regression learning task in order to reach the objective (i) and (iii); LR and NN
model with MLP architecture to objectives (ii) and (iii).

Before the training and test, we did the data preprocessing. Considering that some
features have values that can vary in scale among single-digit numbers and trillions, nor-
malizing the data was necessary to keep the training performance viable and avoid issues
like overfitting and underfitting. Using MinMaxScaler3 method, the data was then nor-
malized between 0 and 1 while still keeping a proportional distance between each value.
Tree-based models, like DTR, are usually not dependent on scaling, but non-tree models
models such as MLP and LR, are often hugely dependent on it. This can be useful and
necessary for some ML models like the MLP, where the back-propagation can be more
stable and even faster when input features are min-max scaled. However, one important
thing to keep in mind when using the MinMaxScaler is that it is highly influenced by the
maximum and minimum values in our data so if our data contains outliers it is going to
be biased. It was found that the examples for the largest workload size (D) were adding
this problem with outliers. Therefore, the regression models presented so far are limited
only to the other workloads (W-C) - Table 1.

In sequence, a Decision Tree Regressor (DTR) model using an optimized version
of the CART algorithm available in the Scikit-learn [Pedregosa et al. 2011] library. The
DTR models were trained with hyperparameter max depth = 5, based on results obtained
in previous works [Gritz et al. 2019, Klôh et al. 2020]. As noted in these works, the error
metrics of the DTR models decreased according to depth, but the generalization capacity
worsens. The main interest in this DTR model is to gather further knowledge of the data
from the perspective of a non-black-box ML technique.

Linear Regression model checks for the existence of a relationship between, at
least, two variables. That is, given x and y, how much does x explain y. The model
performs a forecast by calculating a weighted sum of the input characteristics plus a con-

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html



stant known as the linear coefficient. Although it is considered a simple algorithm, LR is
trained to compare against other ML results.

The Neural Network (NN) used in this work is a Multilayer Perceptron (MLP),
trained using Tensorflow4 and Keras5. The final topology contains an Input Signal that
refers to the number of features from Table 3 minus the target, an Output Layer with a
single neuron as there is only one target feature (runtime) and two Hidden Layers with 26
and 18 neurons, respectively. We also performed experiments including more than two
hidden layers. However, increasing the number of layers did not improve the results, and it
raised the time to train the model while also risking overfitting it. Also, Sigmoid activation
function was used for both the Input Signals and Hidden layer. However, due to the
number of neurons and features in the dataset, the vanishing gradient problem became a
concern [Nwankpa et al. 2018]. Predictions of longer runtime were severely impacted by
it, resulting in very high values for all error metrics. So the Rectified Linear Unit (ReLU)
activation function was evaluated as it is known to prevent this issue and is slightly more
accurate than Sigmoid [Hara et al. 2015]. The Linear activation function was used for the
Output Layer. Also, the MLP models were compiled using the tf.keras.optimizers.Adam
optimization function. The number of epochs was defined as 1000 with a batch size of
50, meaning a total of 117 batches required to complete a single epoch in the Turing
architecture, for example.

Two error metrics were used in this work in order to evaluate how effective the
regression models are and how close the real values are to the predictions: the average of
the difference between the original values and the predicted values (Mean Absolute Error
- MAE); the Root Mean Squared Error (RMSE) that measures the average magnitude of
the error. It’s the square root of the average of squared differences between prediction and
actual observation.

4. Experiments and Results
This section presents the experiments and discusses the results using ML techniques de-
veloped with the objectives of: predicting the applications’ runtime and to understand
which parameters have more impact on it during the execution of this set of scientific
applications. Also, to define a set of features (performance counter and derived metrics),
common in different architectures, which are significant to predict the runtime of the
applications. Finally, the development of predictive models that could contribute to the
future autonomic system.

Firstly, DTR and MLP models were trained and tested for each architecture to
learn about each architecture individually and provide runtime prediction models. Af-
ter, multi-architecture models were built. We present the results for all architectures,
individually and together (multi-architecture). Then, a traditional regression model was
constructed with the Linear Regression technique for comparison with the other two.

Decision Tree Regressor:

We used the DTR model as an explainable ML technique to verify the importance
of each feature in each of the architectures and if there is any common relation of these

4https://www.tensorflow.org/
5https://keras.io/



features in the different architectures. For decision tree models, each node in the tree
represents a test on an attribute, and the branches of that node represent a test with the
features’ values. The algorithm uses a divide-and-conquer approach to build the model,
and the feature that “best” discriminates the examples according to the label is used at the
tree’s root. The DTR model for each architecture selected different roots for the tree as:

• Turing: L1 dcache loads;
• AMD: LLC stores;
• Beholder: L1 dcache stores;
• SimCluster: cycles;
• Multi-architecture: instructions;

As can be seen, the most important feature (performance counter) changes ac-
cording to the architecture, showing that different performance parameters influence the
runtime when the applications are running on different architectures. It is worth men-
tioning that this does not imply re-training the model for each architecture when the
model will be in use. However, this set of parameters must be collected for all ar-
chitectures. Although we are searching for a small set of features, this is not a prob-
lem since they are present in all architectures (limited for these four evaluated in this
work). All the architectures’ models selected some features coming from performance
counters: cycles, L1 dcache loads, LLC stores. From derived metrics was selected by
all: instructions per cycle. However, some features were not selected in any model:
branch misses (used only on the derived metric branch miss rate PTI), LLC load misses,
L1 load rate PTI, branch miss predicted ratio.

For the following experiments, the dataset in Table 3 was maintained, and no
features were removed for the construction of the models.

Multilayer Perceptron Neural Network:

Figure 1 details the error progression of the training (red line) and validation pro-
cess (blue line) on Turing architecture. For each epoch, the test dataset is validated using
the current state of the model in order to evaluate if the NN is improving its prediction ca-
pabilities. It is possible to see that along the epochs, the MAE is closer to zero (the same
for RMSE errors). Through the process, MAE improves the most before epoch 150, and
then it halts before epoch 300 due to the early stopping rule implemented in the model to
prevent overfitting.

Figure 1. MAE progression on Turing.



These results are also observed for the other architectures, and for space limita-
tions’ reason, we are showing only the graph for Turing. However, all MAE and RMSE
results for DTR and MLP are showed in Table 6 and could be compared with LR.

Table 5 presents a comparison among the real values and the values predicted by
the NN model , DTR model and LR in the Turing architecture. Table shows only the
first and last three examples of the test set and the values predicted by the ML models for
Turing. Despite having a slightly elevated RMSE (Table 6), the NN models are capable
of predicting the runtime of the scientific applications with reasonable accuracy as most
of the predicted values are very close to the real values in the original datasets (the same
is observed for other architectures). That shows that NN could be a well-suited algorithm
to predict the runtime of scientific applications based on performance counters. The DTR
models are also capable of accurate predictions but score significantly higher in the error
metrics, and the LR model was the one that presented the worst runtime prediction, as
detailed in Table 6. This is easily explained by the complexity of the dataset and the
simplest model that LR can create.

Table 5. Real vs predicted values on Turing.

Test Examples Real NN DTR LR
1 2.73 3.49 3.50 -6.19
2 209.2 199.81 211.60 302.92
3 31.3 33.11 32.46 33.03
... ... ... ... ...

1459 1.96 3.11 3.50 -8.50
1460 7.33 9.03 8.21 -10.35
1461 3.18 4.46 3.50 11.67

In Table 6 are presented the metrics for each constructed models for all regression
models and architectures. The closer they are to zero, the more accurate the models
are. The NN predicted values are considerably closer to the real runtime values, while
the metrics for the DTR model other than the MAE are generally higher. Thus, the NN
models presented the best results, followed by the DTR models.

Table 6. Error metrics for runtime prediction.

ML Techniques
Architecture Metrics NN DTR LR

Turing MAE 1.89 3.2 15.54
RMSE 3.98 9.54 26.79

AMD MAE 4.55 8.13 35.95
RMSE 7.64 15.44 71.14

Beholder MAE 3.26 9.30 30.02
RMSE 5.74 16.52 52.08

SimCluster MAE 3.29 5.76 30.80
RMSE 4.86 9.59 54.74

Multi-Archit. MAE 5.36 9.68 33.52
RMSE 9.69 18.24 63.69

The NN models were more accurate than DTR in all the experiments, with lower
error for all metrics evaluated. However, the DTR models provided necessary knowledge
regarding the ranges of values of features, how these values impact the runtime and the



feature importance. These ranges of values add knowledge about the computational re-
quirements of scientific applications and their performance in using hardware resources.

Therefore, the results of these experiments contribute to selecting the relevant
parameters to be collected when the objective is to predict the runtime in different com-
putational architectures. In addition, regression models were constructed and compared
using different ML techniques, which proved effective for runtime prediction and could
be used in developing the autonomic system.

It is important to note that the proposed autonomic system is still under develop-
ment [Klôh et al. 2020]. However, in practice, all these contributions build a knowledge
base that allows its future development. The definition of the set of parameters will al-
low the monitoring of the performance behavior of applications in different architectures
and how different factors can change the performance. After, the developed regression
model will be used to orchestrate the use of computational resources efficiently and be
aware of scientific applications’ requirements. We aim to implement this integrated with
the OpenMP runtime library because this one could be dynamically linked to applications
and so, the framework could be entirely transparent to user applications. Afterward, the
regression models could be used to predict the runtime of these applications. Thus, find-
ing the best experiment configuration that allows the balance between runtime and energy
consumption, meeting the requirements of the applications.

5. Closing considerations
In this work, nine NAS applications of the CFD area were executed in four computational
architectures. This work’s main objective was to predict the runtime of these applications
using a NN and a DTR while also extracting knowledge of what features influence the
runtime of an application. Using the supervised ML technique with the DTR allowed
identifying relationships of features and how they influence the runtime. All developed
models were tested with data never seen during the training phase. In general, suitable
results were obtained. Overall, a high number of instructions performed and read and
write to Level 1 cache proved to impact the runtime significantly, closely followed by
Last Level Cache features. These can be observed by the features on the root of the trees
(Turing - L1 dcache loads, AMD - LLC stores and Beholder - L1 dcache stores) and
used by all the models (L1 dcache loads, LLC stores)

The use of performance counters and derived metrics proved to be effective in
predicting the performance of applications. It should contribute to the development of
autonomous systems, aware of the computational requirements of the applications, which
can predict the runtime of applications and guide the orchestration of different techniques
and mechanisms.

Although the models developed in this work are restricted to the four architectures
used and nine different applications in OpenMP, the most important is the methodology
presented here that can be extended to other HPC architectures and applications. This is
because performance counters available across different HPC architectures were evalu-
ated and shown to be effective for this prediction. This also allows, in future works, to
characterize the requirements of scientific applications when executed on different HPC
architectures, evaluate energy metrics on architectures that support them, and explore the
possibility of developing a job scheduler using the data and knowledge attained.



For reproducibility, the datasets and codes used are available at https://
github.com/ViniciusPrataKloh/Dissertation_Results_Models.

In future works, it will be investigated if the derived performance metrics are
enough to characterize the performance of the applications regarding the use of com-
putational resources. This could be useful to compose a small and more generic set of
attributes, which are sufficient for the modeling and prediction tasks of the runtime for
different architectures. Still, another group of experiments is also being executed with
data obtained in ARM-based and other x86 architectures to understand better the influ-
ence that the collected parameters have on the runtime in architectures different from
those used in this work. The possibility of using these results as part of a job and applica-
tion scheduler as part of an autonomous framework is also being currently explored and
evaluated, alongside a version of this model tuned for energy consumption.

Acknowledgments

Authors would like to thank the financial support from LNCC/MCTI, CNPq and Faperj.
This work is also part of the collaborative projects CLIMAT-AmSud GreenAI (21-
CLIMAT-07), and Towards a Sustainable Artificial Intelligence - SusAIn Associate Team
INRIA-LNCC.

References

Amaris, M., de Camargo, R. Y., Dyab, M., Goldman, A., and Trystram, D. (2016). A
comparison of gpu execution time prediction using machine learning and analytical
modeling. In 2016 IEEE 15th International Symposium on Network Computing and
Applications (NCA), pages 326–333. IEEE.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L.,
Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., et al. (1991). The
nas parallel benchmarks. The International Journal of Supercomputing Applications,
5(3):63–73.

Balladini, J., Morán, M., Rexachs del Rosario, D., et al. (2014). Metodologı́a para pre-
decir el consumo energético de checkpoints en sistemas de hpc. In XX Congreso Ar-
gentino de Ciencias de la Computación (Buenos Aires, 2014).

Gritz, M., Silva, G., Klôh, V., Schulze, B., and Ferro, M. (2019). Towards an autonomous
framework for hpc optimization: A study of performance prediction using hardware
counters and machine learning. XIX Simpósio de Pesquisa Operacional e Logı́stica da
Marinha.

Guo, J., Nomura, A., Barton, R., Haoyu, Z., and Matsuoka, S. (2018). Machine Learning
Predictions for Underestimation of Job Runtime on HPC System, pages 179–198.

Hara, K., Saito, D., and Shouno, H. (2015). Analysis of function of rectified linear unit
used in deep learning. In 2015 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE.

Johnston, B. (2019). Characterizing and Predicting Scientific Workloads for Heteroge-
neous Computing Systems. PhD thesis.

https://github.com/ViniciusPrataKloh/Dissertation_Results_Models
https://github.com/ViniciusPrataKloh/Dissertation_Results_Models


Kaltenecker, C. (2016). Comparison of analytical and empirical performance models:
A case study on multigrid systems. Masterthesis, University of Passau, Germany,
page 10.

Klôh, V., Gritz, M., Schulze, B., and Ferro, M. (2019). Towards an autonomous frame-
work for hpc optimization: Using machine learning for energy and performance mod-
eling. In Anais Principais do XX Simpósio em Sistemas Computacionais de Alto De-
sempenho, pages 438–445. SBC.

Klôh, V., Schulze, B., and Ferro, M. (2020). Use of machine learning for improvements
in performance and energy consumption in hpc systems. Master’s thesis, National
Laboratory for Scientific Computing.

Lewis, R. D., Liu, Z., Kettimuthu, R., and Papka, M. E. (2020). Log-based identification,
classification, and behavor prediction of hpc applications. In In HPCSYSPROS20:
HPC System Professionals Workshop, Atlanta, GA.

Malakar, P., Balaprakash, P., Vishwanath, V., Morozov, V., and Kumaran, K. (2018).
Benchmarking machine learning methods for performance modeling of scientific ap-
plications. In 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), pages 33–44. IEEE.

Martı́nez, V., Dupros, F., Castro, M., and Navaux, P. (2017). Performance improvement of
stencil computations for multi-core architectures based on machine learning. Procedia
Computer Science, 108:305–314.

Masouros, D., Xydis, S., and Soudris, D. (2019). Rusty: Runtime system predictability
leveraging lstm neural networks. IEEE Computer Architecture Letters, PP:1–1.

Nwankpa, C., Ijomah, W., Gachagan, A., and Marshall, S. (2018). Activation func-
tions: Comparison of trends in practice and research for deep learning. arXiv preprint
arXiv:1811.03378.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

Siegmund, N., Grebhahn, A., Apel, S., and Kästner, C. (2015). Performance-influence
models for highly configurable systems. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pages 284–294. ACM.

Souza, A., Rezaei, M., Laure, E., and Tordsson, J. (2019). Hybrid resource management
for hpc and data intensive workloads. In 2019 19th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGRID), pages 399–409.

Tanash, M., Dunn, B., Andresen, D., Hsu, W., Yang, H., and Okanlawon, A. (2019).
Improving hpc system performance by predicting job resources via supervised machine
learning. pages 1–8.

Wu, X., Taylor, V., Cook, J., and Mucci, P. J. (2016). Using performance-power modeling
to improve energy efficiency of hpc applications. Computer, 49(10):20–29.

Wu, X., Taylor, V. E., and Lan, Z. (2020). Performance and power modeling and predic-
tion using mummi and ten machine learning methods. CoRR, abs/2011.06655.


	Introduction
	Related Work
	Methodology of Experiments
	Experimental Setup: Dataset Collection
	Experimental Setup: Machine Learning

	Experiments and Results
	Closing considerations

