
Fast and Low-cost Search for Efficient Cloud Configurations
for HPC Workloads

Vanderson M. do Rosario1, Thais A. Silva Camacho1,
Otávio O. Napoli1, Edson Borin1

1Institute of Computing (IC) – University of Campinas (UNICAMP)
Campinas – SP – Brazil

Abstract. The wide variety of virtual machine types, network configurations,
number of instances, among others configuration tweaks, in cloud computing,
makes the finding of the best configuration a hard problem. Trying to reduce
costs and resource underutilization while achieving acceptable performance can
be a hard task even for specialists. Thus, many approaches to find these optimal
or almost optimal configurations for a given program were proposed in the liter-
ature. Observing the performance of an application in the cloud takes time and
money. Therefore, most of the approaches aim not only to find good solutions but
also to reduce the search cost. One of those approaches relies on Bayesian Op-
timization, which analyzes fewer configurations, reducing the search cost while
still finding good solutions. Another approach found in the literature is the use
of a technique named Paramount Iteration, which enables users to reason about
cloud configurations’ cost and performance without executing the application
to its completion (early-stopping) - this approach reduces the cost of each ob-
servation. In this work, we show that both techniques can be used together to do
fewer and lower-cost observations. We demonstrate that such an approach can
recommend solutions that are 1.68× better on average than Random Searching
and with a 6× cheaper search.

1. Introduction
The increasing availability of computing resources on public cloud service providers in
the last years is allowing companies and researchers to migrate their infrastructure from
on-site to on-demand external cloud off-site infrastructures. Among other benefits, the
ease of accessing powerful resources on-demand and at any time has empowered many
academics that did not have easy access to accelerators, clusters, and other HPC infras-
tructures.

Under the cloud computing model, users pay only for what they use; hence, users
want to wisely use cloud resources, reducing their costs without compromising perfor-
mance. For academics running HPC workloads, the difference between choosing one
computing resource over another can mean more than a 20-fold difference in total com-
putation cost. Not surprisingly, solving the problem of selecting the most efficient cloud
configuration for any given application became a relevant research topic in the last few
years [Alipourfard et al. 2017, Hsu et al. 2018b, Brunetta and Borin 2019].

Most of the first approaches to this problem consisted of creating or training per-
formance models that describe the applications and the cloud resource performances.
Thus, offline, beforehand, deciding which cloud configuration to use. However, this

showed to be poor as it did not consider the dynamic performance of the cloud that is
affected by the concurrent use and allocation of the physical resources, such as Virtual
Machines, or VMs. Another possible solution is to dynamically try all possibilities and
choose the best configuration; however, this approach can be expensive and hard to pay
off. To reduce the cost of the dynamic search, tools such CherryPick [Alipourfard et al.
2017] and Arrow [Hsu et al. 2018b] treat this problem as a black-box function optimiza-
tion problem and employ Bayesian optimization (BO) strategies to reduce the number of
observations and find an efficient solution.

Orthogonal to the approach of reducing the number of observations, Brunetta and
Borin [Brunetta and Borin 2019] proposed the use of Paramount Iterations (PI) to reduce
the cost of each observation itself. PI early-stops the execution of HPC programs but still
collecting sufficient information to estimate the relative performance of different cloud
configurations.

In this work, we propose an approach that combines BO and PI to reduce the
cost of searching for efficient cloud configurations even further. Combining both we
can reduce the number of observations and the cost of each observation. We evaluated
our approach searching for cost-efficient cloud configurations for 15 HPC workloads (5
kernels and 3 different input sizes) and showed a six-fold reduction in average search cost
when compared to not using PI. The main contributions of this work are:

• We proposed a novel approach to reduce the cost of searching for efficient cloud
configurations for HPC workloads by combining Bayesian optimizations (BO) and
Paramount Iterations (PI) together;

• We evaluate our approach with different BO techniques and show that the best
technique may depend on the workload, defined by the application and its input
data set. Nonetheless, the results indicate that the BO techniques perform consis-
tently better than random and grid search.

• We discuss how to organize the search space to reduce the number of dimensions
and improve the performance of BO techniques.
The remaining text is organized as follows: Section 2 discusses the state-of-the-

art and maps our approach position in the literature; Section 3 defines the problem and
the BO details, mainly focusing on reducing the number of observations in the cloud
VM instance configuration space; Section 4 further describes PI and shows how it can
be used to reduce BO search cost even further; Sections 5 and 6 present the setup of our
experiments and the experimental results; Finally, Section 7 lists our conclusions.

2. Related Work
Many public cloud providers exist such as Google Cloud Platform, Amazon AWS, and
Microsoft Azure, each one delivering tons of possible Virtual Machines (VM) and cluster
configurations to be instantiated. Each of these instantiations and providers result on
different costs and system performances. Prior works report that there is not a one-size-
fits-all VM type that is best for all workloads [Yadwadkar et al. 2017, Alipourfard et al.
2017, Herodotou et al. 2011, Hsu et al. 2018b]. Thus, finding and matching the best
cloud provider and best VM configuration to cost-efficiently run a program became an
important problem that has been approached by many authors [Hsu et al. 2018c, Hsu
et al. 2018a, Hsu et al. 2018b, Wu et al. 2019, Brunetta and Borin 2019, Herodotou et al.
2011].

Moreover, the cloud infrastructure is dynamic [Li et al. 2010] and can have a high
variation in performance [Ferguson et al. 2012], mostly because of the concurrent use of
the physical resources from different VMs and users. Thus, the profiling collected from
one run may not reflect a later one. Having that in mind, some authors proposed to dynam-
ically explore the search space of instance’s configurations. Techniques such as random-
search or grid-search that extensively search the space of configurations could be used,
but to decrease the number of configurations to be dynamically observed some works pro-
posed the use of statistical methods such as Bayesian optimization using Random Forrest
(RF) [Hsu et al. 2018b] or Gaussian Process (GP) [Alipourfard et al. 2017, Hsu et al.
2018a, Wu et al. 2019]. These approaches reduce the search cost by observing fewer
configurations.

On the other hand, orthogonal to the approaches of reducing the number of obser-
vations to reduce the search cost, Brunetta and Borin [Brunetta and Borin 2019] proposed
an approach to reduce the cost of each observation itself. They run a grid-search (test all
possible configurations), but using a technique called Paramount Iteration to reason about
the performance of HPC workloads with only a very small portion of their total execution.
This early-stop technique showed to significantly reduce the number of resources needs
to find the best configuration.

As far as we know, no work on the literature explore both early-stop and Bayesian
optimization combined.

3. Cloud Configuration Search Problem
The problem of searching for a cloud configuration that minimizes the cost to run the
experiments can be described as

min cost(cfg) (1)

where cfg is a cloud configuration and cost is a function that describes the resources used
to run a program p under the cloud configuration cfg. For our experimental purposes, we
define cfg as:

cfg = (vm, n) ∈ VM × {1, 2, 4, 8, 16, 32} (2)

where vm ∈ VM, VM is the set of all possible VM configurations in a specific
cloud provider and n is the number of vm instances used to compose a computing cluster.
The ordered pair (vm, n) is referred to in this paper as cloud configuration. So, for a
given HPC workload p, we want to find the cloud configuration that minimizes the cost
of executing it.

This cost is calculated from the time (T (p)) to execute a program p, the price
(price(vm)) of each vm, n, and a random noise (ε) that comes from cloud provider con-
text and the measurement mechanism.

p => cost(cfg) = T (p)× price(vm)× n+ ε (3)

The random noise ε occurs because of virtualization technologies, as explained
in previous work [Alipourfard et al. 2017, Brunetta and Borin 2019]. Finally, the search

itself has a cost: the accumulated cost of all observations. Given a set of observations
O ⊆ VM×{1, 2, 4, 8, 16, 32}, the search cost is

∑|O|
i=1 cost(Oi). A good search algorithm,

therefore, solves (1) with the lowest possible search cost.

3.1. Approaches to the Cloud Configuration Search Problem
The optimization problem characterized before in Equation 1 can be classified as a Black-
Box Function Optimization Problem (BBFOP). A BBFOP is such that it has an interior
function that can only be understood through exterior observation and experimentation,
being those observations expensive in some resources and the function is not possible to
be derivative no matter the number of observations. Two straightforward ways to solve
this optimization problem are the grid-search (test sequentially all possible inputs) and
the random-search (randomly test possible inputs until some predefined stop criteria). A
more sophisticated common way to approach this problem is to use a Sequential Model-
Based Optimization (SMBO) that tends to do need fewer observations to find optimal or
almost optimal solutions.

SMBO consists of a model for the function being optimized that is updated after
every observation using a prior-posterior Bayesian approach. The Bayesian approach pro-
vides a posterior distribution of the black-box function and estimates the uncertainty that
helps decides where to observe next, to find a maximum (or minimum). Frequent mod-
els used are Gaussian Process (GP) and Random Forrest (RF). An increasingly popular
direction has been to use Gaussian Process (GP) to make smoothness assumptions on the
function.

The observations used to update the model in SMBO are cherry-picking using
information contained in the prior model. There are different strategies to pick the next
point: to select the point that maximizes the probability of improvement (MPI) [Kushner
1964]; to select the point that maximizes the expected improvement (EI) [Močkus 1975];
or to select the point that has the upper confidence bound (UCB) [Srinivas et al. 2009] on
the maximum function value. Each algorithm reduces the black-box function optimization
problem to a series of optimization problems of known acquisition functions.

To illustrate how SMBOs model and acquire functions results and how they ob-
serve different points in the space, we model a fictional cloud space search using AWS
VMs information and price. We created an application performance model inspired by
Amdahl’s Law and we ran 32 observations of random-search, Random-Forrest, GP-EI,
and GP-MPI. Figure 1 shows the search space and the observations made by each strategy.
Note that different from random-search RF and GP tend to focus on good configurations
(it is able to learn through observations). Moreover, GP-MPI tends to more spatially ex-
plore the space while EI tends to maximize the best-found point by looking for nearby
solutions. This is known as the “exploitation vs exploration” trade-off.

4. Reducing the Search Cost with Early-Stop
Sophisticated techniques, such as SMBO, reduces the search’s cost by reducing the num-
ber of observations on the search space. In addition to this approach, one may want to
reduce the cost of the observations themselves.

Brunetta and Borin [Brunetta and Borin 2019] showed that, in the context of HPC
workloads on the cloud, it is possible to estimate the relative performance of different

(a) Random-search. (b) Random Forest. (c) GP-EI. (d) GP-MPI.

Figure 1. Distribution of 32 observations in a model-generated space for 4 SMBO
strategies.

virtual machine types with very little execution time by only collecting information about
few iterations of the main execution cycle of the application, or Paramount Iteration (PI),
as suggested by the authors.

In experiments, the authors found that measuring the execution time of a few
initial paramount iterations is enough to fully understand the performance of the whole
application. They used it to accelerate a grid-search of configurations in the Microsoft
Azure Cloud. Executing only the first iteration of an HPC application and stopping it,
reduces drastically the cost of the observations.

In this work, we present a coupling between the two approaches to reduce the
search cost (at least for HPC workloads). In other words, we reduce the number of ob-
servations using Bayesian Optimization, and use the Paramount Iteration to perform an
early-stop and make each observation faster and cheaper.

5. Experimental Setup
5.1. Benchmark Suite
To evaluate our proposed approach, we execute the Numerical Aerodynamic Simulation
Parallel Benchmarks (NPB) [Bailey 2011] on AWS virtual machines. NPB is a suite
of parallel computer performance benchmarks that has five kernels and three simulated
computational fluid dynamics (CFD) applications. Each benchmark comes with a set of
inputs that are divided into the following classes: S, W, A, B, C, D, E, and F. Class S
consists of small workloads for quick tests; class W is designed to be executed on work-
stations; classes A, B, and C contains standard workloads; and the classes D, E, and F are
composed of large workloads.

In this work, we used NPB 3.4 with MPI support. As previous results [Brunetta
and Borin 2019] showed that the best cloud configuration depends on application input
and proved that 4 paramount iterations are a good estimate of application performance.
We used the five kernels available with the input classes C, D, and E, a total of 15 work-
loads. Table 1 list the kernels used in our experiments.

We instrumented the kernels’ code to report the execution time of each Paramount
Iteration (PI) and to stop the execution after executing 4 paramount iterations. The modi-
fied benchmarks can be found in our lab repository1.

1Modified ES-NPB benchmarks: to be available on publication

Table 1. Details of NPB’s kernels used in this work.
Benchmark Description Language
EP Embarrassingly Parallel Fortran
FT Discrete 3D fast Fourier Transform Fortran
MG Block Tri-diagonal solver Fortran
IS Integer Sort, random memory access C
CG Conjugate Gradient Fortran

Table 2. VM Parameters and Price.
VM type vCPU MEM

(GiB)
Network
(Gbps)

Price
(USD)

m5n.large 2 8 25 0.119
m5n.xlarge 4 16 25 0.238
m5n.2xlarge 8 32 25 0.476
m5n.4xlarge 16 64 25 0.952
m5n.8xlarge 32 128 25 1.904
m5n.12xlarge 48 192 50 2.856
m5n.24xlarge 96 384 100 5.712
m5dn.large 2 8 25 0.136
m5dn.xlarge 4 16 25 0.272
m5dn.2xlarge 8 32 25 0.544
m5dn.24xlarge 96 384 100 6.528
c5.large 2 4 10 0.085
c5.xlarge 4 8 10 0.17
c5.2xlarge 8 16 10 0.34
c5.4xlarge 16 32 10 0.68
c5.9xlarge 36 72 10 1.53

VM type vCPU MEM
(GiB)

Network
(Gbps)

Price
(USD)

c5.12xlarge 48 96 12 2.04
c5.18xlarge 72 144 25 3.06
c5.24xlarge 96 192 25 4.08
c5n.large 2 5.25 25 0.108
c5n.xlarge 4 10.5 25 0.216
c5n.2xlarge 8 21 25 0.432
c5n.4xlarge 16 42 25 0.864
c5n.9xlarge 36 96 50 1.944
c5n.18xlarge 72 192 100 3.888
r5.large 2 16 10 0.126
r5.xlarge 4 32 10 0.252
r5.2xlarge 8 64 10 0.504
r5.4xlarge 16 128 10 1.008
r5.8xlarge 32 256 10 2.016
r5.12xlarge 48 384 10 3.024
r5.24xlarge 96 768 25 6.048

5.2. Cloud Provider and Configurations’ Space

We chose the AWS cloud provider to execute our experiments. Nonetheless, it is worth
mentioning that the techniques discussed here are not dependent on the cloud provider;
hence, they can be easily used with other cloud providers.

AWS provides a wide variety of virtual machine (VM) types that one can instan-
tiate. The list is organized into categories based on the characteristics of the physical ma-
chines that execute each VM type. Given the HPC context, we chose VM types from the
compute-optimized (C5*), the general-purpose (m5*), and the memory-optimized (r5*)
categories. Table 2 shows the characteristics of the 32 VM types selected for our experi-
ments2.

The cloud configurations search-space we explore in our experiments is com-
posed of all pairs (vm, n) where vm indicates one of the 32 VM types in Table 2, and
n ∈ {1, 2, 4, 8, 16, 32}, indicates the number of instances used on the configuration, also
referred as the cluster size. Hence, there are a total of 192 possible configurations per pro-
gram. In real-life scenarios, this number can become much larger if we consider different
providers and more VM-type categories. Nonetheless, the search space selected for our
experiments is already challenging, since executing all NPB kernels to their completion
on all configurations would cost more than 600 USD.

2Information about the currently available AWS VM types can be found on https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/instance-types.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

5.2.1. Using Fewer Dimensions

Other works [Alipourfard et al. 2017, Hsu et al. 2018b] use VM’s characteristics such as
the number of vCPUs, memory size, among others, to create the dimensions of the search
space. However, as mentioned before, there is evidence that BO has a poor performance
in high-dimensional spaces. Thus, we decide to use a 2-dimensional space to represent
our problem. In contrast to using parameters of the VM types as dimensions, we use
the VM type itself and the size of the cluster (i.e., the number of VM instances on the
configuration). BO also tends to work better when the search space is smooth. Therefore,
to achieve that, we sorted the VMs’ dimensions by their cost and amount of memory.

In most cases, this significantly improves the smoothness of the space by putting
inexpensive machines that do not have the necessary amount of memory on one side and
machines that are excessively expensive on the other side. The most cost-effective so-
lutions are usually located between both, in a valley. In some configurations, for many
reasons (lack of memory, vCPU number different than power of two, etc.), some work-
loads do not work. When the search observes these configurations we consider the cost of
the observations but we neither use the configuration in the solution nor use it to update
the Bayesian model. Despite this has never been mentioned in the literature about cloud
configuration search, we discovered from our experiments that without these transforma-
tions BO may perform similar to random-search with low or no advantage over it.

5.3. Experimental Methodology
Having our search space and our benchmarks defined, we ran each of 5 NPB’s kernels
with each of the three input classes (C, D, and E) in each of the 192 cloud cluster config-
urations aforementioned. For each one of the 2880 executions (15 workloads times 192
configurations), we collect the execution time of the first four paramount iterations.

The kernels’ performance on each of the 192 configurations is then used to com-
pute the configurations cost using Equation 3. Finally, once we have all cloud-cost-space
calculated, we use the Python library GPyOpt 3 to simulate an online search in this search
space.

As the searches are stochastic, we executed them 50 times and collected their ge-
ometric mean. We tested the following search approaches: random-search and Bayesian
optimization (GP and RF) with MPI, EI, and UCB. We executed all searches with 32 ob-
servations (one per search iteration). All Bayesian optimization strategies have their first
eight observations randomly picked to initiate the model.

The source code and all data collected from our experiments will be available in
our lab repository4.

6. Experimental Results
6.1. Validation of Paramount Iteration for NPB Kernels
Before executing the cloud experiments, we first used our local cluster to validate the
Paramount Iteration (PI) concept, making sure that the first paramount iterations’ per-
formance could be used to estimate the performance of the whole execution on a given

3https://sheffieldml.github.io/GPyOpt/
4to be available upon publication

configuration. We used our modified version of the NPB with support to monitor the PIs
to collect the first four iterations’ execution times. We did this for every kernel using the
input class E and varying the number of MPI processes from 1 to 24 in a local machine
with an Intel Xeon processor. We also collected the total execution time of these kernels
using the original code, without the PI. Figure 2 shows the speedup foreseen by the PIs
and the real speedup of the kernels.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

 1
 2

 4

 8

16

24

 1 2 4 8 16 24
MPI Processes

Sp
ee

du
p

NPB Kernel: ● ● ● ● ●cg ep ft is mg Measurement: paramount real

Figure 2. NPB Kernel’s speedup measured with the average of 1 paramount iter-
ation execution and with the real runtime for the whole execution. It shows less
than 7.7% difference between the two measurements. IS and CG only executes
with power-of-two threads.

Notice in the plot that the speedups estimated by the PIs follow the trend of the
real ones. Moreover, the absolute value of the speedup is also close, less than 10% distant
from the average. EP result highlights as being the one with a larger distance between
both measurements. We discovered that this comes from the fact that EP only has com-
munication in the initialization and the finalization, not in the PI. Thus, in the point of
view of the PI measurement EP has an almost linear speedup, while in reality values have
the communication overhead reducing its efficiency. However, despite that, both lines
have the same behavior, thus PI could still be used to compare performance for EP in
different configurations.

Thus, we have evidence that we can use the performance of the first PIs to compare
the performance of different cloud configurations for the NPB kernels.

6.2. Grid-search in AWS’s configurations

As discussed in the previous section, we ran the NPB kernels with three input classes
for each one of the selected cloud configurations to create our search space. Figure 3
shows a heat map that indicates the cost of running each kernel with each input data set in
each cloud configuration. It is possible to notice that when we increase the input data set
size (C→E), increasing the demand for computation and memory, many configurations
become unfeasible or too expensive (represented in black). Thus, the larger the input,
the fewer configurations provide good cost-benefit, and the higher the average cost of the
configurations. This difference can also be noticed when we go from one benchmark to
another (e.g., from MG-D to FT-D). Therefore, both the application and its input data set

have a significant impact on the search space and, thus, implications on the search cost
and results.

CG EP FT IS MGC

CG EP FT IS MGD

CG EP FT IS MG

Number of Instances

E

Normalized
Execution
Cost (USD)

V
M

 T
y
p
e
 (

so
rt

e
d
)

M
o
re

 e
xp

e
n

s iv
e

Figure 3. Real AWS cost space collected in our experiments for NPB kernels.
The darker the color, the more expensive the configuration. AWS VM types and
number of instances are sorted as in Figure 1.

6.3. SMBO Techniques Comparison: no one rules them all

We applied the SMBO techniques to search the space depicted in Figure 3 to try to find
the less expensive configurations in each space. The results in Figure 4 show that no
SMBO technique dominates in our experiments. However, although it is visible that
Bayesian optimization approaches (BO) achieve better results than random-search, no
SMBO model or acquisition function seems to be better for most cases. Moreover, the
results indicate that the best technique may depend on the search space and, therefore, the
program and input data set under evaluation. Nevertheless, when considering the average
of all acquisition functions, RF has a slight advantage over GP. Also, apart from the CG/C
case, RF does not perform worse than the Random Search. These conclusions about RF
being better than GP as a model for this problem are also pointed out by Hsu et al. [Hsu
et al. 2018b].

The Black dashed line in the plots from Figure 4 shows the best possible solution
for each case. Notice that SMBO techniques can find solutions close to the space-best
while only iterating 16% of the search space (32/192). In other words, all SMBO ap-
proaches tested find solutions that are, on average, less than 13% worse than the best
solution that could be possibly found.

6.4. Search Cost

Figure 5-a shows the average normalized cost of the best configuration found by each
search strategy after each observation. We initiated the prior model space for all SMBO

CG EP FT IS MG

EI LCB MPI EI LCB MPI EI LCB MPI EI LCB MPI EI LCB MPI

0.0

0.5

1.0

1.5

2.0
GP RF

C

CG EP FT IS MG

EI LCB MPI EI LCB MPI EI LCB MPI EI LCB MPI EI LCB MPI

0.0

0.5

1.0

1.5

2.0

C
os

t R
ed

uc
tio

n
O

ve
r R

an
do

m
 S

ea
rc

h

D

CG EP FT IS MG

EI LCB MPI EI LCB MPI EI LCB MPI EI LCB MPI EI LCB MPI

0.0

0.5

1.0

1.5

2.0

Acquisition Method

E

Figure 4. Average cost reduction achieved on 50 executions of each SMBO tech-
nique in the space from Figure 3. Higher is better. The cost is normalized by
the cost achieved by the Random Search approach, which is depicted by a red-
straight line. Black-dashed lines shows the cost of the best possible solution.

approaches with 8 random observations; hence, until the 8th observation, all SMBO ap-
proaches perform similar to the random-search approach. However, it is possible to see
a performance improvement just after the 9th observation between SMBO and random-
search. After the 15th observation, SMBO become significantly better than random-
search. Moreover, after convergence, the best solution found by the SMBO techniques is
1.68× cheaper than when using random-search.

Figure 5-b shows the average accumulated search cost after each observation for
each search approach (the cost is normalized by the cheaper instance per kernel/class
without PI). Notice that, after the 8th observation, the accumulated cost for the SMBO
approaches increases on a slower ratio. This happens because as SMBO learns it tends to
explore points in the space with more confidence to be cheaper, as illustrated in Figure 1.
Their search cost was 36% cheaper than random-search after 32 observations.

When we apply the Paramount Iteration (PI), we only need to execute four of
the first paramount iterations of each application. This means a significant reduction in
execution time (and cost) when estimating the configuration performance. On average,
for the NAS kernels, we executed only 14% of the total execution time of the applications
to predict the relative performance of each configuration (4.43% for CG, 17.33% for FT,
12% for MG, 40% for IS, and less than 1% for EP). The larger the total execution time

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

0 5 10 15 20 25 30
Iteration

N
or

m
al

iz
ed

 C
os

t

GP rand RF

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0 5 10 15 20 25 30
Iteration

N
or

m
al

iz
ed

 C
os

t

GP rand RF

6x
cheaper

1.68x
cheaper

a) Best Cost Found

b) Accumulated Cost

Figure 5. Average Best Cost and Average Accumulated Cost until each observa-
tion. Average values for all Kernels, Class and Acquisition. The dashed lines in
Accumulated Cost represents the cost reduction when using PI.

and the total amount of PIs, the larger will be the difference between measuring only a
first set of PIs and executing the whole program. In Figure 5-b, we have the accumulated
search cost after each observation with PI represented by dashed lines. As indicated in
the figure, by combining PI with SMBO, we can reduce search-cost by a factor of 6.

7. Conclusions
In this work, we propose a strategy that combines Sequential Model-Based Optimization
(SMBO) techniques and the Paramount Iteration technique [Brunetta and Borin 2019]
to search for efficient cloud configurations for HPC applications. We evaluate our ap-
proach using 192 different cloud configurations composed of AWS computing resources
and 15 workloads defined by 5 kernels from the NPB benchmark and 3 different input
datasets, and concluded that SMBO approaches are far more efficient than Random Search
in finding the good configurations after 32 observations (1.68x better results). Further, we
demonstrated that sorting the space for BO may be essential for its good performance. We
also verified that different acquisition functions and models for SMBO have a small or no
impact on its performance. Furthermore, we showed that the existing Paramount Iteration
(PI) technique used to compare HPC workloads performance while early-stopping the
application can be used to reduce search-cost without affecting its results. When using
SMBO with PI, we achieved a 6-fold search-cost reduction.

References
[Alipourfard et al. 2017] Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S., Yu, M.,

and Zhang, M. (2017). Cherrypick: Adaptively unearthing the best cloud configura-
tions for big data analytics. In 14th USENIX NSDI 17), pages 469–482.

[Bailey 2011] Bailey, D. H. (2011). NAS Parallel Benchmarks, pages 1254–1259. Springer
US, Boston, MA.

[Brunetta and Borin 2019] Brunetta, J. R. and Borin, E. (2019). Selecting efficient cloud
resources for hpc workloads. In 12th IEEE/ACM ICUCC, UCC’19, page 155–164,
New York, NY, USA. Association for Computing Machinery.

[Ferguson et al. 2012] Ferguson, A. D., Bodik, P., Kandula, S., Boutin, E., and Fonseca,
R. (2012). Jockey: Guaranteed job latency in data parallel clusters. In 7th ACM
ECCS, EuroSys ’12, page 99–112, New York, NY, USA. Association for Computing
Machinery.

[Herodotou et al. 2011] Herodotou, H., Dong, F., and Babu, S. (2011). No one (cluster) size
fits all: Automatic cluster sizing for data-intensive analytics. In 2nd ACM SCC, SOCC
’11, New York, NY, USA. ACM.

[Hsu et al. 2018a] Hsu, C., Nair, V., Menzies, T., and Freeh, V. W. (2018a). Scout: An
experienced guide to find the best cloud configuration. CoRR, abs/1803.01296.

[Hsu et al. 2018b] Hsu, C.-J., Nair, V., Freeh, V. W., and Menzies, T. (2018b). Arrow: Low-
level augmented bayesian optimization for finding the best cloud vm. In 2018 IEEE
38th ICDCS, pages 660–670. IEEE.

[Hsu et al. 2018c] Hsu, C.-J., Nair, V., Menzies, T., and Freeh, V. (2018c). Micky: A
cheaper alternative for selecting cloud instances. In 2018 IEEE 11th CLOUD, pages
409–416. IEEE.

[Kushner 1964] Kushner, H. J. (1964). A new method of locating the maximum point of
an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering,
86(1):97–106.

[Li et al. 2010] Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloudcmp: comparing
public cloud providers. In 10th ACM SIGCOMM, pages 1–14.

[Močkus 1975] Močkus, J. (1975). On bayesian methods for seeking the extremum. In
Optimization techniques IFIP technical conference, pages 400–404. Springer.

[Srinivas et al. 2009] Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaus-
sian process optimization in the bandit setting: No regret and experimental design.
arXiv preprint arXiv:0912.3995.

[Wu et al. 2019] Wu, C., Summer, T., Li, Z., Woodard, A., Chard, R., Baughman, M.,
Babuji, Y., Chard, K., Pitt, J., and Foster, I. (2019). Paraopt: Automated applica-
tion parameterization and optimization for the cloud. In 2019 IEEE CloudCom, pages
255–262. IEEE.

[Yadwadkar et al. 2017] Yadwadkar, N. J., Hariharan, B., Gonzalez, J. E., Smith, B., and
Katz, R. H. (2017). Selecting the best vm across multiple public clouds: A data-driven
performance modeling approach. In 2017 SCC, pages 452–465.

	Introduction
	Related Work
	Cloud Configuration Search Problem
	Approaches to the Cloud Configuration Search Problem

	Reducing the Search Cost with Early-Stop
	Experimental Setup
	Benchmark Suite
	Cloud Provider and Configurations' Space
	Using Fewer Dimensions

	Experimental Methodology

	Experimental Results
	Validation of Paramount Iteration for NPB Kernels
	Grid-search in AWS's configurations
	SMBO Techniques Comparison: no one rules them all
	Search Cost

	Conclusions

