
Swirls: A Platform for Enabling Multicluster and Multicloud
Execution of Parallel Programs

Francisco Heron de Carvalho Junior1, Allberson Bruno de Oliveira Dantas2,
Claro Henrique Silva Sales1

1Pós-Graduação em Ciência da Computação (MDCC)
Universidade Federal do Ceará (UFC)

Campus Universitário do Pici, Bloco 912 – Fortaleza – CE – Brazil

2Instituto de Engenharias e Desenvolvimento Sustentável
Universidade da Integração Internacional da Lusofonia Afro-Brasileira (Unilab)

Redenção – CE – Brazil

hpcshelf@dc.ufc.br

Abstract. Swirls is a general purpose application for interactive building, de-
ploying, and execution of message-passing parallel programs that address mul-
ticluster and multicloud requirements. It is implemented on HPC Shelf, a
cloud-based platform for providing HPC services. Swirls enables the communi-
cation between MPI programs written in C#, C, C++, and Python across one or
more clusters, either on-premise or cloud-based ones. At the current implemen-
tation status, The users of Swirls may use clusters formed by virtual machines
over Amazon Elastic Compute Cloud (EC2) and Google Cloud Platform (GCP).

1. Introduction
Cloud computing is now an alternative to the acquisition of large servers by organiza-
tions. The pay-as-you-go model facilitates continuous provisioned access to virtualized
software and hardware, making it a viable alternative to a range of applications, notably
those with an intermittent workload. Given the high demand for large-scale processing
stemming from emerging applications (e.g., Big Data and Deep Learning), High Perfor-
mance Computing (HPC) techniques and technologies have spread at a rapid pace [1].

The seasonality of the use of dedicated computing resources in a datacenter or pri-
vate cluster severely impacts HPC applications. However, traditional HPC developers are
still reluctant to move their services to the cloud, based on the assumption of maintaining
full control over the resources offered by on-premises clusters and because they believe
processor virtualization and interconnects by IaaS providers degrade performance. How-
ever, the second justification is not observed in practice today. By consequence, many new
HPC developers have increasingly invested in cloud-based HPC, leveraging self-scaling
strategies and geographical proximity between data and applications.

A recurring difficulty in HPC development consists in mastering parallelism tech-
niques and the heterogeneous features of parallel architectures. This difficulty was in-
creased by the advent of accelerators (GPUs, FPGAs, TPUs, etc.) and multicore/many-
core processors, inaugurating the years of heterogeneous computing as a way to achieve
exascale parallel computing systems [2]. In this sense, several research initiatives have led
computer scientists to propose abstractions that reduce the programming burden and the



need for intrinsic knowledge of parallel architectures. This abstraction power has proven
to be greater when it comes to cloud HPC since the complexity of abstracting certain par-
allel programming artifacts and the programmability over HPC architectures can be built
into the virtualization layers of the IaaS infrastructure.

HPC Shelf1 [3, 4] is an open platform proposal for providing services for the
creation, deployment, and execution of component-oriented parallel computing systems
aimed at large-scale parallel processing, i.e., employing several parallel computing plat-
forms across different computational infrastructures, such as IaaS providers, HPC/super-
computing centers, on-premise clusters, etc. Through component-orientation features,
especially a contextual contract system for component selection [4], applications that use
HPC Shelf services may deal with heterogeneous computing requirements.

This paper introduces Swirls, an HPC Shelf application for interactive build-
ing, deployment, and execution of parallel computing systems comprising a set of MPI
(Message Passing Interface) [5] programs running in distinct clusters possibly deployed at
distinct computational infrastructure, by means of a command-line interface implemented
for Jupyter notebooks and Linux shell. Through Swirls, these MPI programs may interact
by means of message-passing connectors, enabling inter-cluster parallelism.

Swirls is an alternative to introduce multicloud and multicluster parallel comput-
ing for MPI programmers, using the same message-passing programming model in which
they are specialized, by leaving all concerns about multicloud/multicluster deployment
at the level of a command-line interface (CLI), currently supported by Jupyter notebooks
and Linux shell. At present, it includes multicloud support for two popular IaaS providers:
Amazon Elastic Compute Cloud (EC2) and Google Cloud Platform (GCP). Also, it sup-
ports the following programming languages: C, C++, Python, and C#. However, it can be
extended to support other IaaS providers and programming languages that support MPI.

This paper comprises more five sections. Related works are presented in Section
2. Section 3 presents HPC Shelf, the HPC services platform on which Swirls has been
implemented. Section 4 introduces Swirls, and two case studies to demonstrate its main
features. Finally, Section 5 presents the final considerations about this research work.

2. Related Works
To find works related to Swirls, we carried out a bibliographic search of articles that
propose platforms or frameworks for parallel programming aimed at multicluster or mul-
ticloud environments. For that, we have applied the search string “(platform OR frame-
work) AND parallel AND (multicluster OR multicloud)” to ACM, ScienceDirect and IEEE
databases for the last 5 years. From a total of 138 articles, we eliminated those whose title
did not refer to the proposal of a platform or framework. The second round consisted
of reading the abstracts of the remaining 32 articles and eliminating those that did not
propose platforms or frameworks for multicluster/multicloud parallel programming. The
remaining 9 works are divided into two groups, described in the following sections.

2.1. Management of multicluster and multicloud executions
The first group reports platforms or frameworks that propose strategies for managing ex-
ecutions on multicluster and multicloud, as well as other concerns, such as execution

1http://www.hpcshelf.org



plans, provisioning, deployment and fault tolerance. Flouris et al introduce FERARI, a
prototype for complex events processing (CEP) over large volumes of data on distributed
platforms [6]. It also brings an optimizer in the execution plan for minimizing inter-cloud
communication latency, as well as query and visualization tools. Ferry et al propose the
Cloud Modeling Framework (CLOUDMF), a model-oriented platform focused on De-
vOps issues [7]. It provides a domain-specific language for provisioning and deploying
multicloud applications and an execution engine aimed at provisioning, deploying and
adaptation. Wu et al proposes HDM-MC, a framework for big data processing capable of
performing large-scale data analysis on multiclusters [8]. The authors argue for the mini-
mal overhead incurred by the platform’s scaling requirements. Maheshwari et al propose
a multicloud scheduling workflow technique based on an execution performance model
that takes into account the available resources and dynamic probes to assess throughput
between clouds in execution [9]. Fakih and El Baz present a Peer-To-Peer HPC decen-
tralized environment for the engagement of heterogeneous multiclusters in loosely syn-
chronous applications[10]. Finally, Mosa et al introduce a scalable multicluster platform
based on Hadoop [11]. The multicloud orchestration is provided through the MiCADO
framework, aiming at the deployment and horizontal scaling of cloud resources.

2.2. PaaS for multicluster and multicloud

The two works found in this group report platforms for MapReduce over multiple clouds.
Costa et al introduce Chrysaor, an execution system capable of scaling out MapReduce
computations over multiclouds[12]. It allows detection of arbitrary failures, malicious
failures and cloud outages. They also propose Medusa, a platform aimed at running
MapReduce applications over multiclouds, capable of detecting different types of fail-
ures, in addition to not requiring modification of the original MapReduce code [13].

Swirls is innovative in two aspects. Firstly, it supports both multicluster and mul-
ticloud requirements. Secondly, it is general-purpose and not restricted to some parallel
programming models, such as Bag-of-Tasks, MapReduce, or stream processing patterns.

3. HPC Shelf

HPC Shelf is an open platform proposal for providing services for the creation, deploy-
ment, and execution of component-oriented parallel computing systems [3, 4]. It uses
the Hash component model as a basis [14]. The services are consumed by applications,
each serving a community of domain specialists. In fact, parallel computing systems im-
plement computationally demanding solutions to problems described by domain experts,
requiring large-scale parallel processing, i.e. involving multiple parallel computing plat-
forms, such as clusters and MPPs. These platforms can be deployed on the infrastructure
of IaaS providers or HPC/Supercomputing centers serving academia and industry.

HPC Shelf offers SAFe (Shelf Application Framework) [3] to assist applications
in building parallel computing systems, currently implemented as a C# API, but it does
not prescribe the kind of interface that applications should offer to interact with domain
specialists. Thus, applications may use different kinds of high-level interfaces, such as
web portals, problem solving environments (PSEs), application programming interfaces
(APIs), command-line interfaces (CLIs), Jupyter notebooks, and so on. In addition, the
application interface may abstract away from the concrete nature of parallel computing



systems, by providing high-level abstractions to facilitate the description of problems by
domain specialists, as well as possibly providing ways for domain specialists to help find
the best computational solutions implemented by parallel computing systems.

3.1. Parallel Computing Systems

The components that comprise a parallel computing system are: a single workflow compo-
nent, a single application component, and a set of solution components. Solution compo-
nents may belong to one of the following component kinds: virtual platforms , represent-
ing distributed-memory parallel computing platforms; data sources , representing data
repositories, possibly distributed, from which data that interest to applications may be re-
trieved; computations , representing implementations of parallel algorithms that exploits
the features of a class of virtual platforms; connectors , which couple computations and
data sources placed in distinct virtual platforms; service bindings , which connect pairs
of a user and a provider port belonging to components of any kind, so that a user com-
ponent may consume a service offered by a provider one; action bindings , which bind
action ports that may belong to computations, connectors and the workflow component;
and qualifiers , used in contextual contracts to represent functional and non-functional
assumptions, as well as assumptions in the implementation of components.

The application component is an abstraction to the application frontend. It in-
termediates the communication between the solution components and the application
through service bindings, for providing inputs, receiving outputs, managing intermedi-
ary data, monitoring solution components, etc.

The workflow component drives the execution of computations and connectors
through action bindings that bind their action ports to the action ports of the workflow
component. Action ports binded through the same action binding carry a common set of
action names. Components activate actions by referring to action names. An activation of
an action name n in a given port p remains blocked until a pending activation of n exists
in each port binded to p through an action binding.

Connectors may orchestrate computations and other connectors through action
bindings, just as the workflow component, or they may support choreographs among
computations, data sources, and other connectors through service bindings. For that, they
comprise a set of facets, each one placed in a virtual platform, allowing direct communi-
cation through service bindings with other components.

3.2. Contextual Contracts

In parallel computing systems, solution components are associated to contextual con-
tracts, which guide the selection of appropriate component implementations according to
a set of contextual assumptions, including the features of the target parallel computing
platform and application requirements, as well as Quality-of-service (QoS) and cost con-
straints [4]. A contextual contract is the application of the context signature of an abstract
component to a set of contextual contracts. An abstract component represents a collection
of components that implement a given concern under a set contextual assumptions rep-
resented by contextual parameters (this is contextual signature). A contextual parameter
has a name and a bound, which is a contextual contract that constraints the contextual
contracts that may be applied to the contextual parameter. For that, there is a compati-



bility relation between contextual contracts, specified by means of subtyping rules. For a
detailed description of Alite, the contextual contract system of HPC Shelf, read [4].

3.3. Stakeholders

There are four stakeholder in HPC Shelf. Domain specialists are the end-users. Using
applications, they do not need to be aware of the component nature of resources, neither
that computational solution will execute over a parallel computing infrastructure. Ap-
plication providers have expertise on the best computational solutions for the problems
specified by specialists. So, they know which components provide the necessary soft-
ware and hardware resources to assemble the appropriate parallel computing system to
solve each problem. However, they are not experts in parallel computing, contrariwise to
component developers, which have parallel programming skills and know how to exploit
the performance of virtual platforms efficiently. Platform maintainers offer parallel com-
puting infrastructures for deploying virtual platforms. Finally, data managers offer large
data repositories that interest applications.

3.4. Architecture

The architecture of HPC Shelf has three elements: Frontend, Core, and Backend. The
Frontend is SAFe (Shelf Application Framework) [3], offered to application providers
as a C# API for building, deploying, and running parallel computing systems. In turn,
the Core implements the component catalog, where developers and maintainers register
components. Also, it implements Alite, the contextual contract system. Through SAFe,
applications may access the Core services for taking the components of parallel comput-
ing systems, by resolving their contextual contracts and controlling their lifecycle. Once
instantiated, applications directly orchestrate components. Finally, a Backend is a ser-
vice that a maintainer offers to the Core for instantiating virtual platforms over a parallel
computing infrastructure. Virtual platforms may communicate directly with Core for in-
stantiating components. Backend services for providing access to large data repositories
may also be possible. In fact, data source components are implemented as virtual plat-
forms from which data may be accessed through service ports.

4. Swirls

Swirls is a general-purpose application of HPC Shelf aimed at interactive building, de-
ployment, and execution of parallel computing systems comprising MPI programs in
cloud-based computational infrastructures, by means of a command-line interface (CLI)
currently implemented in Jupyter notebooks and Linux shell. So, each MPI program
may run in its own cluster (virtual platform) with a set of characteristics specified in a
contextual contract, including a IaaS provider. Currently, EC2 and GCP are supported.
Also, the MPI programs may interact through message-passing connectors offered by the
Swirls framework for enabling inter-cluster parallelism, which aggregates the computa-
tional power of an heterogeneous set of virtual platforms.

For supporting EC2 and GCP, Swirls offers two component frameworks to build
virtual platforms from any instance/machine type supported by these IaaS providers until
the end of 2020. Using the same approach, one can introduce other IaaS providers with
some API support with a relatively low effort.



single_computation

mnist_keras.py

single_platform

comprising four p3.2xlarge 
instances at EC2

browser
sends 

single_computation 
messages to application

application

shows the 
single_computation 

messages

platformSAFe

the local computer, where 
Swirls is running

workflow

controls the orchestration of 
solution components

browser_binding_application browser_binding_compute

br
ow

se
r_

po
rt

se
nd

_d
at

a_
po

rt

br
ow

se
_p

or
t

placement

placement

placement

Solution 
Components

Figure 1. A Simple MPI Launcher Parallel Computing System

The main contribution of Swirls is to simplify the access to multicluster and mul-
ticloud parallel computation capabilities to MPI programmers, without being limited to
specific parallel computing patterns, such as Bag-of-Tasks, MapReduce, and their exten-
sions. In addition, it inherits the component-oriented features of HPC Shelf, which are
useful for the architecture of large-scale parallel computing systems.

We use two examples for demonstrating the features of Swirls. First, Horovod/M-
NIST shows how to launch a simple MPI program in a single cluster by choosing the
target IaaS cloud provider among the ones supported by Swirls. In turn, GEMM demon-
strates the launching of a multicluster parallel program comprising a set of MPI pro-
grams deployed at different clusters across distinct cloud providers. Horovod/MNIST
and GEMM are described in the next two sections.

The source codes of these case studies may be found are accessible from
a supplementary material folder, at https://gitlab.com/carvalho.heron/
supplementary-material/-/tree/master/WSCAD2021-Swirls.

4.1. Horovod/MNIST: Distributed Deep Learning using Horovod

Figure 1 depicts a parallel computing system for Horovod/MNIST, comprising three
solution components: single computation, of kind computation, encapsulating an MPI
program; single platform, of kind virtual platform, where single computation will run;
and browser, of kind connector, that allows the MPI program to send messages to the
Swirls frontend (i.e., the Jupyter notebook).

Any MPI program could be encapsulated in single computation. In this case
study, it is a Python/MPI program, called keras mnist.py, that performs a well-known
deep learning computation: recognition of digits from the MNIST database[15]. For that,
it employs Horovod [16], a distributed deep learning framework, which has been installed
in the virtual machine images used by EC2 and GCP backend services.

keras mnist.py is one of the examples offered by Horovod. Minor modifications
in the original code were necessary, including calls to the browse subroutine for sending
progress messages to the Swirls frontend through the browser connector.

The command “new system horovod example” creates the initial system. Then,



the following command creates single platform as a cluster of four EC2 instances with
Tesla V100 GPUs and at least 32GB of memory, located at us-east-1 (Virginia) locale:
new platform single_platform

--contract=name=org.hpcshelf.platform.Platform;
maintainer=org.hpcshelf.my.EC2_backend;
node-locale=org.hpcshelf.platform.locale.northamerica.Virginia;
node-accelerator-model=

org.hpcshelf.platform.node.accelerator.model.Tesla_V100;
node-memory-size=32
node-count=4

In EC2, p3.2xlarge are the accelerated computing instances that supports the
required kind of GPU (up to 8 per instance). Also, it has 61GB of memory, satisfy-
ing the required 32GB. So, the contextual contract system will find a component called
EC2 P3 Large2x, among the subtypes of org.hpcshelf.platform.Platform, for sin-
gle platform. Alternatively, the user could refer to EC2 P3 Large2x directly in the name

parameter. However, using the indirect approach, if the user decides to move the computa-
tion from EC2 to GCP subject to same platform constraints, it may only change the value
of maintainer to org.hpcshelf.my.GCP backend. In this case, for example, the con-
textual contractual resolution system will select a cluster of GCP instances of machine
type a2-highgpu-1g located at us-east4 region, each one with 85GB of memory.

The following command will encapsulate keras mnist.py into a component
named org.hpcshelf.Horovod MNIST, becoming available in the Core’s catalog:
create computation org.hpcshelf.Horovod_MNIST --source=keras_mnist --language=Python

The ---language flag specifies that Python is the language in which the wrapped
MPI program is written, so that the name of the MPI source code pointed by the
---source flag is keras mnist.py. An instance of org.hpcshelf.Horovod MNIST,
the so-called single computation, may be created using the following command:
new computation single_computation --contract=name=org.hpcshelf.Horovod_MNIST

--platform=single_platform

It specifies that single computation will run in single platform by means of the
---platform flag. The contract specified through ---contract is the simplest possible,
only specifying the component type of single computation through the name context pa-
rameter. It could also include platform context parameters to constraint the required fea-
tures of the target virtual platform, such as the use of accelerators, processor architectures,
interconnection type, etc. However, this is not so useful in a single Swirls configuration,
where platform constraints are all specified in the contract of virtual platforms.

The following commands instantiate the connector browser and the service bind-
ings browser binding application and browser binding compute, respectively:
new connector browser --contract=name=org.hpcshelf.mpi.wrapper.WBrowserConnector

--platform=local:0 --platform=single_platform:1

new service-binding browser_binding_application
--contract=name=org.hpcshelf.common.BrowserBinding;

browser_port_type=org.hpcshelf.common.browser.RecvDataPortType
--user-port=application --provider-port=browser.browse_port

new service-binding browser_binding_computation
--contract=name=org.hpcshelf.common.BrowserBinding;

browser_port_type=org.hpcshelf.common.browser.wrapper.WSendDataPortType
--user-port=single_computation.browser_port --provider-port=browser.send_data_port



Once the parallel computing system is configured, the lifecycle operation for re-
solving, deploying and instantiating the solution components may be executed:
resolve single_platform single_computation browser

browser_binding_application browser_binding_computation

deploy single_platform single_computation browser
browser_binding_application browser_binding_computation

instiantiate single_platform single_computation browser
browser_binding_application browser_binding_computation

Figure 2 shows the screenshot of a notebook fragment including the browse
and run commands for this case study. The browse command waits for mes-
sages sent by single computation through the browser connector. For that, the name
of the binding that connects the application to the browse port of browser, i.e.,
browse binding application, follows the browse keyword.

The browse messages appear as outputs of the browse command as they are
received by the application. Since browse and run must execute concurrently, one of
them must be executed asynchronously (--async flag).

Figure 2. Browse and Run Horovod/MNIST

4.2. GEMM: Multicluster Matrix Multiplication of General Matrices

This case study demonstrates the parallel execution of MPI programs over multicloud
infrastructure in order to support multicluster parallel computing. For that, we have de-
veloped a MPI program called GEMM. Inspired in the GEMM subroutines of BLAS
(level 3) [17], it performs parallel multiplication of general matrices in three indepen-
dent parallelism levels: multicluster, across virtual platforms; cluster, across the nodes of
virtual platforms; and multicore, across processor cores of a single node. For enabling
multicluster parallelism, it is encapsulated in a computation component of HPC Shelf.

The GEMM component performs C = β ×C + α ×A ×B, where α and β are
scalars, and A, B, and C are matrices of dimensionsM×N ,N×P ,M×P , respectively.
A multicluster matrix multiplication will be performed by a cohort of GEMM instances
organized in a X × Y grid (gemm r c, for r ∈ {0 . . . X − 1} and c ∈ {0 . . . Y − 1} ),
each one deployed in a distinct virtual platform (platform r c), by assuming that input
matrices are block-cyclically distributed across them. The same parallelism strategy and
matrix distribution are applied to the cluster parallelism level. The dimensions of blocks
for each input matrix are, respectively: m × n, p × n, and m × p. For simplifying the



Figure 3. A 2× 3 GEMM System

implementation, we assume that m, n, and p are divisible by M , N , and P , respectively.
So, inside a process (MPI program), a matrix of blocks is stored for each input matrix.

The multicluster GEMM is useful in a context where the dimensions of the ma-
trices are so large to fit a single computer (or even a local cluster accessible by the user),
so that the user may decide to employ one or more clusters deployed at IaaS providers to
perform its computation. In addition, the user may overcome restrictions on the number
of nodes it is possible to instantiate in a cluster of a particular IaaS provider by employing
clusters deployed across different providers or locations within the same provider.

Figure 3 depicts a GEMM system (multicluster level), comprising 6 GEMM in-
stances organized in a 2× 3 grid of virtual platforms. In a X × Y grid of processes, each
gemm r c component, placed on platform r c, is connected to two intercommunica-
tor connectors: one for communication with processes in its row, through the user port
row port, and another one for communication with processes in its column, through the
user port col port. For that, X +Y connectors are necessary, named row connector r,
for r ∈ {0, . . . , X−1}, and col connector c, for c ∈ {0, . . . , Y−1}.

Let A, B, C be the matrices of blocks of matrices A, BT , and C, respectively,
stored in the virtual platform platform r c, having the following dimensions, respec-
tively: M/X × N/Y , P/X × N/Y , and M/X × P/Y . The block-cyclic algorithm
performs X steps. In step i, 0 ≤ i < X , it first performs a local matrix multiplication
C ′ = α× A× B, where C ′ intermediary matrix with dimensions M/X × P/X . In fact,
this is a GEMM computation at the cluster parallelism level, using the same algorithm.
Then, it performs two communication operations. The first is a sequence of Y reductions
involving gemm i c, for 0 ≤ c < Y , illustrated in Figure 4 for 2 × 3 grid, for accu-
mulating the partial C ′ matrix in the global matrix C. The second are Y simultaneous
1-shift rotations, for each column of the grid. Indeed, in rotation j, for 0 ≤ j < Y , each



Figure 4. Rowwise reduction stages of C’ matrix blocks

gemm k j, for 0 ≤ k < X , sends itsB block to gemm k′ j, where k′ = k+1modX .
The reduction steps are performed through the row connector ∗ connectors, whereas
the rotation steps are performed through the row connector ∗ ones. Currently, such
connectors offer basic message-passing primitives whose C signatures are:

int HPCShelf_Send(void *buf, int count, MPI_Datatype datatype, int target_facet,
int target_rank, int tag, HPCShelf_Connector conn);

int HPCShelf_Recv(void *buf, int count, MPI_Datatype datatype, int source_facet,
int source_rank, int tag, HPCShelf_Connector conn);

In the near future, we plan to implement collective message-passing operations
like that ones supported by MPI, for promoting structured parallel programming and in-
creasing the performance of complex communication patterns.

The signatures of HPCShelf Send and HPCShelf Recv are clearly inspired in
MPI, but requiring two parameters for making reference to communication partners:
target facet/target rank and source facet/source rank, respectively. The facet parameter
refers to one of the MPI programs, whereas rank refers to a process of the MPI program.
The conn parameter refer to an intercommunicator connector, making the role of MPI
communicators. The handle for making reference to the intercommunicator connector
may be obtained by calling HPCShelf Get Port, passing the name of the connector in the
parallel computing system as an argument to the parameter port:

int HPCShelf_Get_port(char* port_name, HPCShelf_Port* port);

There are operations for querying connector configurations, through which one
can get the local facet of the calling process, the number of facets of the connector, the
number of processes in each facet, and the global facets of connector partners. They are:

int HPCShelf_Get_facet(HPCShelf_Port port, int* facet);
int HPCShelf_Get_facet_count(HPCShelf_Port port, int* facet_count);
int HPCShelf_Get_facet_size(HPCShelf_Port port, int* facet_size);
int HPCShelf_Get_facet_instance(HPCShelf_Port port, int* facet_instance);

In HPC research community, matrix multiplication is commonly considered in
trivial case studies of parallel programming. However, in parallel processing beyond the
limits of a single cluster, where loosely coupled distributed memory parallel programming



patterns are common alternatives, such as Bag-of-Tasks, MapReduce, and stream-based
processing (see related works), the two-level (inter-cluster and intra-cluster) block-cyclic
algorithm of GEMM, where the process topology may differ in each cluster, is challenging
due to the relatively complex communication pattern and volume of data in communica-
tion. In fact, GEMM was chosen for this case study because it proves to be an appropriate
alternative for exercising Swirls’s multicluster and multicloud deployment capabilities
for general-purpose message-passing parallel programming.

In the supplementary material, we provide the configuration of a 2 × 2 GEMM
parallel computing system, where gemm 0 0 and gemm 1 1 components perform 2 × 2
intra-cluster GEMM computations over GCP cluster formed by n2-standard-2 vir-
tual machine instances, and gemm 0 1 and gemm 1 0 performs 2×3 intra-cluster GEMM
computations over EC2 clusters formed by t2.micro vm instances. So, the four clus-
ters instantiate 20 virtual machines at all (4 for each platform 0 0 and platform 1 1, and
6 for each platform 0 1 and platform 1 0). One may note that these are modest clus-
ter configurations. In fact, they are the cheaper ones for EC2 and GCP, chosen only for
testing and concept validation. The matrices are generated automatically at each cluster
node. Indeed, they have been scaled to fit the available memory in the virtual machines.

5. Conclusions
Swirls is a contribution to HPC users interested in moving their MPI code to take ad-
vantage of multicluster and multicloud capabilities through a programming interface
they already know (message-passing), without being restricted to particular parallel pro-
gramming models. Indeed, all the concerns about multicluster/multicloud deployment is
moved to the level of a command-line interface (CLI), supported by Jupyter notebooks
and Linux shell. Besides to run parallel programs such as the ones presented in the case
studies, we are successfully applying Swirls as an auxiliary tool in teaching parallel pro-
gramming for undergraduate and graduate students in a traditional HPC course, giving
the opportunity of introducing HPC in cloud computing platforms to students.

Swirls is a tool under continuous development, with the purpose of extending fea-
tures, such as the support for new IaaS providers and programming languages. Also, we
are working on implementing realistic use cases (e.g. deep learning and multiphysics sim-
ulation) with the purpose of attracting interested users, developers and research partners.

Swirls is freely available to users and developers interested in simply using it or
even modifying it to satisfy non-commercial needs. Information on how to install and
use Swirls is available from the HPC Shelf web site, especially by visiting https:
//www.hpcshelf.org/#h.8eglmidqf5uh.

References
[1] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and R. Buyya, “HPC Cloud for Scientific

and Business Applications: Taxonomy, Vision, and Research Challenges,” ACM Computing Surveys,
vol. 51, no. 1, pp. 1–29, Jan. 2018. [Online]. Available: http://doi.acm.org/10.1145/3150224

[2] M. Zahran, “Heterogeneous Computing: Here to Stay,” Communications of the ACM, vol. 60, no. 3, pp.
42–45, Feb. 2017. [Online]. Available: http://doi.acm.org/10.1145/3024918

[3] F. H. de Carvalho Junior, J. C. Silva, and A. B. O. Dantas, “A Scientific Workflow Management System
for Orchestration of Parallel Components in a Cloud of Large-Scale Parallel Processing Services,”
Science of Computer Programming, vol. 173, pp. 95–127, Mar. 2019.



[4] F. H. de Carvalho Junior, W. G. Al Alam, and A. B. O. Dantas, “Contextual Contracts for
Component-Oriented Resource Abstraction in a Cloud of High Performance Computing Services,”
Concurrency and Computation: Practice and Experience, vol. 33, no. 18, p. e6225. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6225

[5] J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “A Message Passing Standard for MPP and Workstation,”
Communications of ACM, vol. 39, no. 7, pp. 84–90, 1996.

[6] I. Flouris, V. Manikaki, N. Giatrakos, A. Deligiannakis, M. Garofalakis, M. Mock, S. Bothe,
I. Skarbovsky, F. Fournier, M. Stajcer, T. Krizan, J. Yom-Tov, and T. Curin, “Ferari: A
prototype for complex event processing over streaming multi-cloud platforms,” in Proceedings
of the 2016 International Conference on Management of Data, ser. SIGMOD ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 2093–2096. [Online]. Available:
https://doi.org/10.1145/2882903.2899395

[7] N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lushpenko, and A. Solberg, “Cloudmf: Model-driven
management of multi-cloud applications,” ACM Trans. Internet Technol., vol. 18, no. 2, Jan. 2018.
[Online]. Available: https://doi.org/10.1145/3125621

[8] D. Wu, S. Sakr, L. Zhu, and H. Wu, “Towards big data analytics across multiple clusters,” in Proceedings
of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, ser. CCGrid
’17. IEEE Press, 2017, p. 218–227. [Online]. Available: https://doi.org/10.1109/CCGRID.2017.73

[9] K. Maheshwari, E.-S. Jung, J. Meng, V. Morozov, V. Vishwanath, and R. Kettimuthu, “Workflow
performance improvement using model-based scheduling over multiple clusters and clouds,”
Future Generation Computer Systems, vol. 54, pp. 206–218, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X15000795

[10] B. Fakih and D. El Baz, “Heterogeneous computing and multi-clustering support via peer-to-peer hpc,” in
2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Process-
ing (PDP), 2018, pp. 292–296.

[11] A. Mosa, T. Kiss, G. Pierantoni, J. DesLauriers, D. Kagialis, and G. Terstyanszky, “Towards a cloud native
big data platform using micado,” in 2020 19th International Symposium on Parallel and Distributed
Computing (ISPDC), 2020, pp. 118–125.

[12] P. A. R. S. Costa, F. M. V. Ramos, and M. Correia, “Chrysaor: Fine-grained, fault-tolerant cloud-of-clouds
mapreduce,” in Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, ser. CCGrid ’17. IEEE Press, 2017, p. 421–430. [Online]. Available:
https://doi.org/10.1109/CCGRID.2017.89

[13] P. A. R. S. Costa, X. Bai, F. M. V. Ramos, and M. Correia, “Medusa: An efficient cloud fault-tolerant
mapreduce,” in 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid), 2016, pp. 443–452.

[14] F. H. de Carvalho Junior and C. A. Rezende, “A Case Study on Expressiveness and Performance of
Component-Oriented Parallel Programming,” J. of Parallel and Distributed Computing, vol. 73,
no. 5, pp. 557–569, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0743731512002882

[15] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine Learning Research,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[16] A. Sergeev and M. Del Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow,” arXiv
preprint arXiv:1802.05799, 2018.

[17] J. Dongarra, “Basic Linear Algebra Subprograms Technical Forum Standard I,” International Journal of
High Performance Applications and Supercomputing, vol. 16, no. 2, pp. 115–199, feb 2002.


