
A Nonlinear UAV Control Tuning Under Communication
Delay using HPC Strategies in Parameters Space

Leonardo Fagundes-Junior1, Michael Canesche2, Ricardo Ferreira1, Alexandre Brandão1

1Universidade Federal de Viçosa (UFV)
Avenida Peter Henry Rolfs – 36570-900 – Viçosa – MG – Brazil

2Dept. de Ciência da Computação – Universidade Federal de Minas Gerais (UFMG)
Av. Antônio Carlos – 6627 – 31270-901 – Belo Horizonte – MG – Brazil

{leonardo.fagundes,ricardo,alexandre.brandao}@ufv.br, mcanesche@ufmg.br

Abstract. In practical applications, the presence of delays can deteriorate the
performance of the control system or even cause plant instability. However, by
properly controlling these delays, it is possible to improve the performance of
the mechanism. The present work is based on a proposal to analyze the asympto-
tic stability and convergence of a quadrotor robot, an unmanned aerial vehicle
(UAV), on the performance of a given task, under time delay in the data flow.
The effects of the communication delay problem, as well as the response-signal
behavior of the quadrotors in the accomplishment of positioning mission are
presented and analyzed from the insertion of fixed time delay intervals in the
UAVs’ data collected by its sensors system. Due to the large search space in
the set of parameter combinations and the high computational cost required to
perform such an analysis by sequentially executing thousands of simulations,
this work proposes an open source GPU-based implementation to simulate the
robot behavior. Experimental results show a speedup up to 4900× in compari-
son to MATLAB® implementation. The implement is available in Colab Google
platform.

1. Introduction

System modeling is a crucial step in solving engineering problems, such as system analy-
sis and control. Seeking to reproduce patterns of behavior observed in practice, a mathe-
matical model consists of a set of differential (continuous time) or difference equations
(discrete time) that describe the temporal and/or spatial variation of the variables of in-
terest. The survey and mathematical formulation of all the phenomena that affect the
behavior of a robot is an extremely complex task. In this sense, a model never exactly
reproduces the behavior of the practical system, however, it can be estimated and appro-
ximated using techniques as parameters estimation for transfer functions and state space
systems [Ji and Kang 2020]. In fact, the simplifications are valid and relevant in most
cases. Despite such uncertainties, controller design techniques are able to approximate,
with a certain accuracy, the model output to a reference value, restricting its operation to
a set of constraints.

The problem of robot control is associated with stability and performance in ac-
complishing the task for which the robot was developed. With the discretization of con-
trollers and the need for communication, either between robots or between robot and a

ground control station (GCS), there is some delay in sending and receiving information.
In particular, in aerial robotics, the presence of delay can cause deterioration in perfor-
mance or even stability loss of the control system. The main difficult is the complex dyna-
mics of unmanned aerial vehicles (UAVs) due to the inherent nonlinearities, uncertainties,
time-varying parameters, high dynamic coupling, and potentially uncertain time delays in
processing and/or communication. These undesired nonlinearities affect the flight sta-
bility and performance of the controlled systems. Some strategies take into account the
robot’s dynamics, reducing the control problem to a model analysis and stabilization of
its posture over time [Han et al. 2017]. Due to the ability to generate high performance
tracking in the presence of uncertainties, Adaptive (AC) and Robust Controls techniques
(RC) are candidates to resolve this issues [Koksal et al. 2020].

Communication delay can arise from different reasons due to the characteristics
of the different system components such as sensors, actuators, acquisition systems, phy-
sical components, and others. This work proposes to study the effects of delay in sending
and receiving information from a quadrotor without paying attention to its sources. In
summary, the objective is to observe the robot behavior under the condition of communi-
cation delay and to propose a method for evaluation and parameter tuning of conventional
controllers in consideration of the presence of time delay while executing positioning
missions. Due to the difficult and long time spent in analytical control tuning in parame-
ters space (a few hours in MATLAB simulation), this paper proposes a high-performance
computing (HPC) strategy for evaluating large parameter combination sets. In the ap-
proach, each GPU kernel runs a complete simulation using the controller with a possible
parameter combination and analyze the robot behavior in terms of performance metrics.
Furthermore, all experiments could be easily reproducible using others robot models and
controllers, are distributed as an open-source, and it was implemented in C++ using the
GPU made available in Google Colab1. In addition, other functionalities of the Jupyter
notebook and Python are used to visually exhibit the simulation results and important
graphics, such as UAVs’ path, position and control signals evolution during the simulati-
ons.

The paper is organized as follows. Section 2 provides a brief description of the
UAV modeling and control. In Section 3, the control tuning evaluation in parameters
space, under time-delayed communication, is presented. Section 4 presents the propo-
sed HPC control tuning and analysis method highlighting the adopted task parallelism.
Section 5 shows our results and provide a few examples and comparing the performance
analysis using MATLAB, C/C++ and GPU simulator versions. Finally, in section 6, we
discuss our findings, concluding the paper, and addressing directions for future work.

2. UAV Dynamic and Kinematic Modeling

As for the UAV adopted, it is an ArDrone 2.0 quadrotor, from Parrot Drones SAS, wich
consists of a set of four engines positioned in the shape of a cross, which are indepen-
dently driven. This is a quadrotor manufactured with a ARM Cortex A8 processor, with
1 GHz, and Linux operating system, in addition to on-board sensors that make it possi-
ble to know the robot’s posture, according to ArDrone Parrot Software Development Kit
(SDK) [Piskorski and Brulez 2012]. The collective variation in propulsion forces, resul-

1https://colab.research.com/UAV_DelayedControl

https://colab.research.google.com/drive/1lJTk5dZf_F48jerep_kRha3atZjANDQb?usp=sharing

Figura 1. ArDrone 2.0 description and pose variables.

ting from the angular velocity of the engines, governs the three-dimensional navigation
of the aircraft. Two opposite engines rotate clockwise, while the other two rotate counter-
clockwise, a configuration that eliminates the anti-torque effect on the fuselage caused by
the rotation of the blades by the motors. There is also an internal controller responsible
for takeoff, hovering and landing [Santana et al. 2015, Piskorski and Brulez 2012].

The quadrotor has six degrees of freedom (DOF) as shown in Figure 1, where the
robots’ gravitational center position is described by robot reference (x, y, z), and the
yaw (φ), roll (θ) and pitch (ψ) angles are related to the drone’s rotations around its axes
x, y and z, respectively. Its control is performed in an underactuated way, since it has
a fewer number of actuators than the number of DOF [Brandao et al. 2013], using four
control signals which are responsible for guiding the robot according to its current state
and the mission definition.

The command signals sent to the robot, according to ArDrone Parrot Software
Development Kit (SDK) [Piskorski and Brulez 2012], are

u =
[
uφ uθ u̇z u̇ψ

]ᵀ ∈ [−1, 1] (1)

where:

• uφ controls the roll angle, responsible for the left-right movement;
• uθ controls the pitch angle, which results in forward and backward movement;
• u̇z controls the vertical velocity;
• u̇ψ is responsible for the yaw rate, which rotates the robot about the z-axis.

The study of control techniques applied to UAVs has been a widely explo-
red topic in academia, with significant results already published. Some controller
strategies (linear and nonlinear) can be found in [Brandao et al. 2013, Lv et al. 2020,
Allahverdy et al. 2019]. In these works, the robot’s kinematic and dynamic models are
described for controller design. Since the robot has 6DOF and is controlled from the
propulsion forces generated in the four engines coupled in the UAV, we need a under-
actuated model to describe the drones’ dynamics. From the kinematic model of the aerial
robot, already described in the literature by [Santana et al. 2016, Rabelo et al. 2018], it
is possible to identify the UAV behavior and propose appropriate control strategies. A
simple model, assuming that the pitch and roll angles are sufficiently small, i.e., with the
UAV near-hovering, can be found in the aforementioned works. This models were used
to perform simulations and validate the proposed approach.

At this point, it is important to mention that this vehicle is one of the most com-
plex stabilization and control test platforms [Tang and Li 2015, Tang et al. 2017]. For this

reason, when proposing the navigation model of a vehicle, if only its kinematic model is
considered, one must ensure that it performs linear displacements at low speeds subject
to the minimum action of external disturbances, in such a way that the dynamic effects
can be neglected. Otherwise, since quadcopters have an inherently unstable and highly
coupled nonlinear dynamic model, their dynamics must be considered when designing
controllers [Brandao et al. 2013].

A possible way to represent the dynamic model of a UAV is through the Euler-
Lagrange formulation. The dynamic model and controller for the quadcopter considered
in this work will be the similar one developed by the authors in [Brandao et al. 2013].

3. Robot Control Under Time Delay
Since the focus of this research is not to propose a specialized robotic mechanism control
technique to mitigate the effects of delayed communication, one of the controllers already
developed by one of the authors will be implemented. In [Brandao et al. 2013] a nonlinear
controller, based on the ArDrone high-level dynamic model, is described, given by

ud = ẍd + K1 tanh (K2
˙̃x) + K3 tanh (K4x̃) (2)

in which, Ki ∈ R3×3, i = 1, 2, 3, 4, are positive diagonal gain matrices and x̃ = xd − x
represents position error given by the difference between the desired and the current posi-
tion. Analogously, we define the instantaneous velocity error as ˙̃x = ẋd − ẋ, considering
x as the variables referring to the robot position [x, y, z]ᵀ.

From Lyapunov Stability Theory, it is possible to show that the strategy guarantees
stability and convergence of the reference calculated by the robot with respect to the
position (or trajectory) specified for performing the task. In other words, for t −→ ∞ the
state errors tend to zero [Brandao et al. 2013].

3.1. Control Evaluation in Parameters Space
The quadrotor controls the rotation velocity of the blades. If the front two are accelerated,
the frontal part of the drone rises and it will move backwards. If the back two are accelera-
ted, the back goes up and the quadrotor moves forward. Therefore, it can be inferred from
this analysis that the control of the propulsion motors (low level) is performed by the qua-
drotor in its internal mesh. The drone’s momentum is conserved due to the characteristic
that two propellers are turning clockwise and the other two are turning counterclockwise.

The interest here is to guide the movement relative to the global referential x−y−z
(high-level). This can be achieved in a few ways, the one adopted in this work is to control
from a conversion model by sending control signals at accelerations in x, y, z, represented
by ẍ = [ẍ ÿ z̈]ᵀ. In this concept, the controller will be given by

u1, 2, 3 = ud = ẍd + Kd tanh (˙̃x) + Kp tanh (x̃) (3)

as shown in Figure 2. The intern gains (K2 and K4) are equal to 1. Kd and Kp will be
exploit by the simulation scenarios to tune the parameters space as details in Section 3.2.
We set the u̇ψ control signal to zero (u4 = 0).

In this scenario, the robot communicate with a GCS using a wireless link, to send
and receive information (see Figure 2). The control signal output is a reference accele-
ration, which will be executed by the robot in simulation (ẍ = ud). From the control

Figura 2. Controller Model send/receive data to/from the Drone after delay tk.

commands, the drone’s velocity and position data will be calculated from numerical in-
tegration, considering ts = 1/30 [s] as the robot sample time, and tk the observed time
delay. To ensure generalizability of the results, delay intervals proportional to the sam-
pling period of the simulated air vehicle (ArDrone 2.0 Parrot) were selected. According
to the system discretization, this delay in receiving and sending information will be repre-
sented by n (or “idDelay” in the Algorithm 1), a fixed integer number of samples stored
in a data table, tk = nts. The quadrotor delay is internal with a delayed input in the
controller equation, and can be induced by the data table containing the UAV’s states over
time.

The Figure 2 illustrates the control loop used, with the reference position xd (cons-
tant for the positioning task, and time-varying for the trajectory tracking task), ẋ and ẍ
representing the drone’s velocity and acceleration. The insertion of time delay is done
from the knowledge of previous data from the robot. These will be used in the error cal-
culation (controller input). Resulting then in a delayed controller. Note that the controller
structure is obtained to maintain a critically damped response [Brandao et al. 2013].

Algorithm 1: Time Delay Insertion in Data Acquisition
Data: idDelay ∈ N, Hist ; /* data matrix */

k ; /* Initialize Counter */
Result: Returns the delayed data from the Quadrotor as controller input
while t < tmax do

if k > idDelay then
x← Hist.Position(k − idDelay);
ẋ← Hist.Velocity(k − idDelay);

end
x̃← xd − x, ˙̃x← ẋd − ẋ;
Inserts the delayed input into the controller (ud);
ẍ← Control Signal;
Numerical Integration to obtain the Reference State;
UAV Dynamic Model;
Calculation of the Performance Indices;
Hist ∪ Current Drone Data;
k ← k + 1;

end

The Algorithm 1 has been implemented to get the delayed data from the qua-
drotor. Note that given a idDelay, representing an index of the data history matrix, the
quadrotor controller will receive delayed information only when the elapsed time is gre-
ater than the delay, otherwise the robot will receive updated information. Initially, the
gains of the controllers were adjusted to maintain a statistical difference of less than 5%.
Next, the controllers were compared through the ITAE, whose objective was to analyze
the convergence time to the desired position and the energy expenditure for mission ac-
complishment.

It is important to note that the control selection did not aim at mitigating or over-
lapping the effects caused by time delay. The choice of the control structure was due to
its wide application and ease of manipulation, as well as the fast response in practical
application and simple understanding.

3.2. Controller Tuning in Parameters Space
Control design from parameter space is a widely used approach in robust control applica-
tions. The technique consists in designing a control system to meet some stability and/or
performance specifications, performing a study on how the controlled plant will behave
with respect to controller parameter variations [Zhu and et al 2018, Ma et al. 2020]. The
goal is to find a controller that behaves satisfactorily even if anomalous system variations
occur. In robust control applications, both control and plant parameters are taken into ac-
count, which typically includes controller and model variations, quantization effects, and
sensor faults.

The objective here differs slightly from the objectives of robust control design;
however, a similar procedure is applied. The goal is to analyze the nonlinear control
parameter space used for a set of predefined convergence and performance requirements
and to verify that the currently used control gains are within or near the intersection of the
specifications when applied to the studied quadrotor model.

In order to perform this analysis, a grid search was performed in a region around
the currently used gains. Multiple combinations of proportional and derivative gains were
tested to see if the resulting closed loop system would meet the specifications for given
time delays. The requirements chosen are:

1. The performance indices IAE and ITAE must be up to 30 and 50 times lower, than
those obtained in the case without delay;

2. The maximum obtained overshoot must be smaller than the initial error.

Such choices were made to prevent selecting gains that generate initial errors large
enough to make the task unfeasible, so that this is limited. Also, ignore cases where the
robot does not reach the point, or has very slow motion, or reaches the desired point and
oscillates with undesirable amplitudes. The gain variation intervals were chosen based
on the behavior of the analyzed system and, mainly, the controller responses in order to
avoid saturation of the control signals.

3.3. Analytical Convergence and Stability Check
Stability will be verified by observing the convergence of the quadrotor’s state when per-
forming the task, graphically. The situations in which the drone presents oscillatory beha-
vior of constant and divergent amplitude will be considered unstable. On the other hand,

the responses with underdamped and overdamped behavior will be considered stable, re-
gardless of the time it takes for the drone to reach the permanent regime.

3.4. Performance Analysis

The performance of the proposed controllers is measured according to some performance
indices widely known in the literature. This section presents the analysis as a function
of the indices IAE (Integral Absolute Error) and ITAE (Integral Time-weighted Absolute
Error), defined by

IAE =

∫ tf

0

||x̃|| dt (4)

and

ITAE =

∫ tf

0

t||x̃|| dt, (5)

these indices indicate how the error has accumulated over time. The first provides in-
formation about how fast the robot reached the desired point. The second, evaluates the
response on a permanent regime. If the robot oscillates when it reaches the point, a higher
rate will be observed, compared to robots that converge with higher damping. This er-
ror multiplied by the time t will be computed and ITAE will get higher and higher for
larger oscillations (permanent regime errors). Both are calculated considering the vector
containing the robot’s position errors for positioning tasks [Neto et al. 2019].

To conclude on the performance of the controllers, the IAE and ITAE metrics for
the non-delayed drone performing the same task were taken as a basis.

4. High-performance GPU Implementation

We first implement the robot model and the controller in MATLAB©. Although the
high-level MATLAB programming model simplifies the tasks, the long computing time
and a proprietary tool are the main drawbacks of this approach. Generic GPU toolbo-
xes [Zhang et al. 2011] have shown performance improvements. A MATLAB© GPU
toolbox for CBCT image reconstruction was presented in [Biguri et al. 2016], where
there is a performance slowdown due the GPU encapsulation inside MATLAB©, and the
authors suggest to write in C++/CUDA directly to improve the computation time. We
have adopted this strategy to maximize the performance gains. In addition, our imple-
mentation is available in Google Colab format. Therefore, we provide documentation, an
open source approach, graphical output (to visually exhibit the simulation results and im-
portant graphics), and it makes running much easier and faster while sharing reproducible
results.

In proposed notebook, we implement the well know AuRoRA simulator2 using
C/C++ and CUDA languages. AuRoRa framework is able to simulate aerial and ground
robots based on its dynamic and kinematic models, whose movements occur according
an appropriate control law. All attributes of the robots can be easily modified if desired or
even if another type of mobile robot with specific characteristics is used. The simulator
allows to implement and evaluate strategies of the most different natures, including he-
terogeneous and homogeneous robot cooperation, computer vision, obstacle avoidance,

2https://github.com/NERO-UFV/AuRoRA

https://github.com/NERO-UFV/AuRoRA

(a) (b) (c)

Figura 3. (a) Task parallelism, one task per thread; (b) Parameters space visuali-
zation; (c) Route performing by the ArDrone.

and load transportation. It can be done in the simulation platform and also run in real
environments with the physical robots in the laboratory.

To implement the time-delayed control in parameters space, our approach consider
that each GPU thread executes an entire simulation scenario as shown in Figure 3(a),
where we explore the task parallelism since each thread has a different parameter Kd, Kp,
and tdelay, as details in Section 3.2, that makes up the kernel code on the GPU. The gains
that are currently being adopted and the range where the grid search was performed are:
Kp ∈ (0.05, 0.75) [s−2], Kd ∈ (0.05, 1) [s−1], and tdelay(≡ tk) ∈ [0, 1920] [ms]. The
GPU kernel requires 158 registers per thread (which includes the number of variables
and constants, per simulation) and the code size has around 40 thousand instructions
(or 640KiB), and it should be read for L2 cache which slowdown the execution time.
However, the current implementation reports impressive speedups. Figure 3(b) shows
the simulation result visualization generated inside the proposed Google Colab notebook.
All Kd and Kp values in the solid surface are valid parameters as a function of tdelay,
which can provide a safe and smooth navigation to complete the given mission. Finally,
Figure 3(c) depicts the 3-D displacement performing by the ArDrone for a given value of
Kd, Kp, and tdelay. In this sense, the robot is required to perform a positioning task with
four points, named as 1, 2, 3 and 4, where the robot needs to complete the entire mission
in 60 [s]. The continuous blue curve represents the path performed by the robot during
the simulation time and the red points are the waypoints that the UAV must to reach.

For more details of our CPU and GPU implementation and their visualization,
please refer to public available Colab notebook3.

5. Experiments and Simulated Results

In order to display the tool’s functionality, the drone’s first mission is to reach a sequence
of four points, defined in Figure 3(c) as xi, with i = 1, 2, 3, 4. In this figure is presented
the route performed by the UAV in the task accomplishment. It is possible to verify that
the robot reaches the desired points in the defined order, completing the mission. Other
features of the tool are shown in Figure 4(a), in which the temporal variation of the UAV
position in the three axis [x, y, z]ᵀ (in blue), relative to the references provided to the
control system [xd, yd, zd]

ᵀ (in red), is shown. We can observe that the robot reach

3https://colab.research.com/UAV_DelayedControl

https://colab.research.google.com/drive/1lJTk5dZf_F48jerep_kRha3atZjANDQb?usp=sharing

the desired point xdi rapidly and stay there waiting for the next task, the next reference
point xdi+1

. Similarly, the control signals sent by GCS to the robot (ud) show the smooth
stability of the system and asymptotic convergence of the commands that trends to zero
as the position error becomes small enough or close to null (see Figure 4(b)).

(a) (b)

Figura 4. Positioning task (a) temporal variation of the robots’ position, and (b)
control signals sent to the UAV.

5.1. Time-Delayed Control Analysis in Parameters Space
Firstly, the task given in the simulations requires the drone to reach the waypoint xd =
[2 −1 1]ᵀ [m]. The robot will start from its initial position (x = [0 0 0.75]ᵀ [m]).
The controller will at first receive a large error, and the control signal should be high.
As the robot gets closer to the desired point, the control signal will get smaller, tending
toward zero, where the quadrotor should stabilize until the position and velocity errors
are zero. Based on the insertion of fixed delay intervals in the mission accomplishment,
simulations were developed to estimate the acceptable delay time limit, for operation
considered stable. The analysis was performed from performance indices (IAE and ITAE)
of the delayed controller, as well as the position errors of the robot, comparing them to
the responses of a drone without time delay.

The results obtained in this analysis can be seen in Figure. 3(b), in which the black
balls represents the [Kp, Kd, tdelay]

ᵀ combination that satisfy the conditions proposed in
Section 3.2. In the generated volume we can guarantee the asymptotic and smooth robot
convergence for a positioning task.

5.2. Implementation Strategies Evaluation
Now, we are interested in analyze the proposed implement methods in comparison with
the basis implementation, which spend much computational time to execute the entire
analysis. We evaluate the performance of the proposed implementation in six platforms.
First, as baseline, we measure the execution time in MATLAB© for 65536 simulation
scenarios for different values of [Kp, Kd, tdelay]

ᵀ. This implementation executes on Win-
dows 10 in an AMD Ryzen 7 1700 Eight-Core Processor with a clock of 3.0 GHz, 64
GB of RAM (DDR4), and 16 MB L3 cache memory. The execution time is greater than
9 hours as shown in Table 1. Then, we evaluate a C++ implementation on the same ma-
chine under Ubuntu Linux LTS version 20.04, and compiled by using the optimization
flag -O3. The C++ implementation is 262× faster than MATLAB©. Next, we evaluate
the Google Colab processor, which is an Intel Xeon CPU @ 2.30GHz with a Two-Core
processor with 12.6 GB of RAM (DDR4), and 46 MB L3 cache memory. The execution

Figura 5. Speedup factor in Execution Time in Comparison to MATLAB©.

time is reduced to 1 minute and 20 seconds, which is 406× faster than MATLAB©. Fi-
nally, we evaluate our GPU implementation in three devices. First, we examine the two
GPUs from Google Colab: T4 and K80, which reaches a speedup factor of 4070× and
1907×. In comparison to the C++ CPU implementation, the GPU T4 implementation is
15.5× faster. In addition, we also run on a V100 GPU by using the instance P3 AWS
Amazon.

Tabela 1. Execution Time considering 65536 simulation scenarios for 6 imple-
mentations: GPUs T4, K80 and V100, CPU Xeon, CPU Ryzen, and MATLAB.

Google Colab AMD Ryzen 7 Amazon

T4 GPU K80 GPU Xeon CPU V100 GPU

Kern Total Kern Total C++ C++ MATLAB Kern Total

Time [s] 5.9 8.2 16.2 17.5 82.1 127.2 9h 16m 11s 5.2 6.8
Execution Time per Instance

Time [ms] 0.09 0.12 0.24 0.26 1.2 1.9 509.2 0.07 0.10

Table 1 summarizes the execution time results. Columns kern and total depicts
the execution time for the GPU Kernel, and the total execution time including the data
transfer beteween the CPU/GPU. The first line shows the total execution time in seconds
for 65536 simulation scenarios. The GPU implementations fires 512 blocks of 128 threads
each. The second line shows the execution time in milliseconds for one single scenario
for a given value of [Kp, Kd, tdelay]

ᵀ. Finally, Figure 5 depicts the reached speedup
in comparison to the baseline implementation on MATLAB© in log scale. The GPU
improves the execution time in more than three orders of magnitude.

6. Conclusion

This work introduces a unified, scalable and replicable approach to make implementation
of the autonomous system on a new vehicle faster while preserving its autonomous na-
vigation performance under time delayed communication effects. The simulations were
performed in order to verify the response of the delayed nonlinear controller, taking into
account the actual execution sequence of the closed-loop process, as well as other aspects
such as the data acquisition and actuation system (inertia, hardware and software limitati-
ons, sampling time). The estimation of the acceptable time-delay limit is performed from

the analysis of performance indices (IAE e ITAE).The data are compared in relation to
the actuated drone, without the presence of time delay.

From the analysis of the effects of inserting input time delay and varying two
of the control parameters, in a three-dimensional search space by analyzing the stable
convergence of the robot states, the interest here is to estimate the acceptable delay limit
for a quadrotor. In this sense, the UAV’s navigation system will be aware of delayed data.
This information will be sent to the controller and then take a delayed control action.
Finally, we present the calibration strategy for the control parameters given time delay
interval.

The exploration of the analyses presented in this paper is of utmost importance to
try to predict the behavior of the robot and the control system due to the time delay effects
inherent in practice. However, the analysis can be costly and slow if performed sequenti-
ally, especially for more complex models and with a larger number of parameters in the
control system. The proposal presented here is to transpose the code in MATLAB© to its
“handmade” version and then parallelize the code to run on GPU as a high performance
strategy.

The performance gain shown offers new possibilities and perspectives for the sci-
entific community. Despite not being a code optimized for GPU execution, it has the
advantage of being in Colab with documentation and free access, open source, without
proprietary software. The framework can also be used in remote classes in pandemic for
being a versatile, interactive and fast tool with the possibility of displaying examples in
real time, evaluating more than 60,000 simulations in a few seconds.

As suggestions for future works, it can be proposed an optimization of the codes
for the GPU, seeking the maximum use of the potential of the different architectures
presented here and the evaluation of changing the two others control parameters (K2 and
K4). Furthermore, the analysis can be extended to other tasks, such as, for example,
trajectory tracking and path following, besides being possible to study other types of
robots and controller models.

Acknowledgment

This work was carried out with the support of FAPEMIG, CNPq, and the Coordernação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Referências

Allahverdy, D., Fakharian, A., and Menhaj, M. B. (2019). Back-stepping integral sliding
mode control with iterative learning control algorithm for quadrotor UAVs. Journal of
Electrical Engineering & Technology, 14(6):2539–2547.

Biguri, A., Dosanjh, M., Hancock, S., and Soleimani, M. (2016). TIGRE: a MATLAB-
GPU toolbox for CBCT image reconstruction. Biomedical Physics & Engineering
Express, 2(5):055010.

Brandao, A. S., Filho, M. S., and Carelli, R. (2013). High-level underactuated nonlinear
control for rotorcraft machines. In 2013 IEEE International Conference on Mechatro-
nics (ICM). IEEE.

Han, L., Dong, X., Li, Q., and Ren, Z. (2017). Formation tracking control for time-
delayed multi-agent systems with second-order dynamics. Chinese Journal of Aero-
nautics, 30(1):348–357.

Ji, Y. and Kang, Z. (2020). Three-stage forgetting factor stochastic gradient parameter
estimation methods for a class of nonlinear systems. International Journal of Robust
and Nonlinear Control.

Koksal, N., An, H., and Fidan, B. (2020). Backstepping-based adaptive control of a
quadrotor UAV with guaranteed tracking performance. ISA Transactions, 105:98–110.

Lv, F., He, W., and Zhao, L. (2020). A multivariate optimal control strategy for the attitude
tracking of a parafoil-UAV system. IEEE Access, 8:43736–43751.

Ma, F., Wang, J., Yu, Y., Wu, L., Liu, Z., Aksun-Guvenc, B., and Guvenc, L. (2020).
Parameter-space-based robust control of event-triggered heterogene-ous platoon. IET
Intelligent Transport Systems, 15(1):61–73.

Neto, V. E., Sarcinelli-Filho, M., and Brandao, A. S. (2019). Trajectory-tracking of a hete-
rogeneous formation using null space-based control. In 2019 International Conference
on Unmanned Aircraft Systems (ICUAS). IEEE.

Piskorski, S. and Brulez, N. (2012). Ar. drone developer guide parrot. sdk version 2.0.
tech. rep.

Rabelo, M. F. S., Brandao, A. S., and Sarcinelli-Filho, M. (2018). Centralized control
for an heterogeneous line formation using virtual structure approach. In 2018 Latin
American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018
Workshop on Robotics in Education (WRE). IEEE.

Santana, L. V., Brandao, A. S., and Sarcinelli-Filho, M. (2015). Outdoor waypoint navi-
gation with the AR.drone quadrotor. In 2015 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE.

Santana, L. V., Brandão, A. S., and Sarcinelli-Filho, M. (2016). Navigation and coopera-
tive control using the AR.drone quadrotor. Journal of Intelligent & Robotic Systems,
84(1-4):327–350.

Tang, Y.-R. and Li, Y. (2015). Dynamic modeling for high-performance controller de-
sign of a UAV quadrotor. In 2015 IEEE International Conference on Information and
Automation. IEEE.

Tang, Y.-R., Xiao, X., and Li, Y. (2017). Nonlinear dynamic modeling and hybrid control
design with dynamic compensator for a small-scale UAV quadrotor. Measurement,
109:51–64.

Zhang, B., Xu, S., Zhang, F., Bi, Y., and Huang, L. (2011). Accelerating MatLab code
using GPU: A review of tools and strategies. In 2011 2nd International Conference
on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC).
IEEE.

Zhu, S. and et al (2018). Parameter space and model regulation based robust, scalable and
replicable lateral control design for autonomous vehicles. In 2018 IEEE Conference
on Decision and Control (CDC). IEEE.

	Introduction
	UAV Dynamic and Kinematic Modeling
	Robot Control Under Time Delay
	Control Evaluation in Parameters Space
	Controller Tuning in Parameters Space
	Analytical Convergence and Stability Check
	Performance Analysis

	High-performance GPU Implementation
	Experiments and Simulated Results
	Time-Delayed Control Analysis in Parameters Space
	Implementation Strategies Evaluation

	Conclusion

