
On the SPEC-CPU 2017 opportunities
for dynamic vectorization possibilities on PIM architectures*

Rodrigo M. Sokulski1, Sairo R. dos Santos2, Marco A. Z. Alves1

1Department of Informatics
Federal University of Paraná (UFPR) – Curitiba, Brazil

2Department of Exact Sciences and Information Technology
Federal Rural University of the Semi-arid (UFERSA) -– Angicos, Brazil

1{rmsokulski, mazalves}@inf.ufpr.br, 2sairo.santos@ufersa.edu.br

Abstract. Processing-In-Memory (PIM) devices usually implement vector in-
structions to efficiently utilize the large main memory bandwidth. One possible
way to vectorize applications for such PIM systems is to convert CPU instruc-
tions into PIM vector instructions dynamically. In this work, we present a study
on the feasibility of the dynamic conversion between these instructions for the
Vector-In-Memory Architecture (VIMA). Our results show that 24 % of the loops
from some SPEC-CPU 2017 applications are suitable for this conversion. Fur-
thermore, we conclude that dynamic conversion mechanisms must to be able to
efficiently deal with memory access conflicts, a problem present in 99 % of all
possible conversions to VIMA.

1. Introduction
One of the main characteristics of computer systems based on the von Neumann archi-
tecture is the separation between processing and storage units. This separation implies
the frequent need for the CPU to move data from the main memory through an inter-
connection called the von Neumann bottleneck. This bottleneck can lead to considerable
energy expenditures and performance reductions. This constant data transfer corresponds
to around 60 % of the total system energy expenditure for some applications, such as
rendering web pages and capturing and playing videos [Boroumand et al. 2018].

Between 2004 and 2011, the average speed of high-performance processing cores
increased by 20 % per year [Preshing and Poley 2012]. As for CPUs released for desk-
tops, this single-thread growth was 10% per year between 2005 and 2020 [Lechner 2020].
In terms of memories, the emergence of new versions of DRAM and new technologies
of 3D memories led to improved bandwidth while keeping the latency practically sta-
ble [K. Chang 2017]. Figure 1 illustrates this effect, showing the average performance
improvement of CPUs compared to bandwidth and access latency to different types of
memory between 2004 and 2020. We consider a 10 % growth per year in CPU speed
from 2012 onwards. Every year, the gap between CPU speeds and memory latency be-
comes more dramatic. Thus, applications with sparse accesses, which do not benefit from
greater bandwidth, end up being harmed, which is one of the issues associated with the
Memory Wall. On the other hand, applications with coalescent accesses may require
multiple threads/processing cores to fully utilize the memory bandwidth.

*This work was supported by the Serrapilheira Institute (grant number Serra-1709-16621) and CAPES
(Brazilian government).



2004 2006 2008 2010 2012 2014 2016 2018 2020
Year

2.5

5.0

7.5

10.0

12.5

15.0
Im

pr
ov

em
en

t

DDR 2-5 HMC HB
M

2e

Tendencies
Memory - Bandwidth
Memory - Latency
CPU - Single-Thread

Figure 1. Relative improvement in single-thread speed of CPUs compared to
bandwidth and latency offered by memories.

Processing-In-Memory (PIM) techniques emerge as an alternative to reduce these
low bandwidth utilization and high latency and energy consumption problems. They con-
sist of adding processing units close to or inside the memory module, allowing the reduc-
tion of data traffic between the memory and the processor.

Although this technology appeared over five decades ago [Stone 1970],
the recent advent of 3D integrated memories, such as the Hybrid Mem-
ory Cube (HMC) [Jeddeloh and Keeth 2012] and the High-Bandwidth Mem-
ory (HBM) [Jun et al. 2017], fostered the proposal of several new PIM mechanisms inside
the memory die, thus classified as In-Memory Accelerators (IMA) [Santos et al. 2021].
These new devices are implemented on top of the logical layer of 3D memories, allowing
faster access to stored data through Through-Silicon Vias (TSVs) [Motoyoshi 2009].

IMA devices can perform either scalar or vector operations. Scalar instructions
are more generic and simpler to apply and use. On the other hand, vector instructions are
more efficient because they require less communication between the CPU and memory
(when transmitting the instructions) and because they make better use of the 3D memo-
ries’ bandwidth (requesting large data chunks).

VIMA is a IMA device capable of executing vector instructions. Its instructions
can be adopted in several ways. As with other PIM devices, VIMA instructions can be
used manually, through intrinsic functions [Cordeiro et al. 2017], with specialized com-
pilers [Ahmed et al. 2019, Nai et al. 2017, Hadidi et al. 2017].Intrinsic functions and spe-
cialized compilers are limited when dealing with legacy code or proprietary applications,
which may lack source code to be recompiled. Although compilations can be executed
over the binary code, as it does not contain the complete semantics of the source code,
this alternative is more limited than the previous ones. On the other hand, the conver-
sion of instructions at runtime could be performed transparently to users and developers,
regardless of the code executed. Nevertheless, as far as we know, there are no dynamic
conversion mechanisms for vector PIM instructions nor papers studying the challenges of
this kind of mechanism on the SPEC-CPU 2017 benchmarks.

Therefore, this work aims to define the existing possibilities and challenges for
future dynamic conversion mechanisms. For this, we characterized the SPEC-CPU 2017
benchmark applications looking for the dynamic vectorization possibilities for the VIMA.
We evaluated characteristics of these applications’ loops that are relevant to runtime



mechanisms, such as dependencies between instructions, memory accesses, number of it-
erations, and control flow instructions. Our goal is to identify the most relevant difficulties
to overcome during the future development of PIM dynamic conversion mechanisms. Our
main finding is that the most commonly found problems faced when runtime vectorizing
CPU into PIM instructions are adjacent memory accesses and flow deviations, problems
present in more than 90 % of the possible convertible patterns in most of the evaluated
applications. This hampers dynamic conversions by requiring mechanisms aware of these
problems and capable of get around them.

The rest of this paper is organized as follows: Section 2 presents an overview of
our adopted PIM mechanism and the difficulties encountered during the dynamic conver-
sion of instructions. Section 3 presents some dynamic vectorization related work. Sec-
tion 4 presents our methodology, as well as our results and analyses. Finally, Section 5
presents our conclusions, and potential future work.

2. The VIMA architecture and the dynamic conversion challenges

The rise of 3D memories paved the way for creating PIM IMA devices, encouraging
several architectural proposals that implement this type of processing. Among these pro-
posals, some use vector instructions to take full advantage of the main memory internal
parallelism, efficiently utilizing its large bandwidth.

One of these IMA proposals is called VIMA, which adds instructions to the pro-
cessor’s Instruction Set Architecture (ISA) in the same way as Intel’s Advanced Vector
Extension (AVX) instructions. However, such new operations shall execute near-data.
Considering that each VIMA instruction must be fetched and decoded by the processor
before it triggers the operation to near-data execution, we can classify such architecture
as fine-grain PIM (in contrast to architectures that implements a full processor near data).

VIMA is accessible through simulations and allows the maintenance of cache co-
herence, as well as the use of virtual memory, being applied to generic workloads, ac-
cording to the classification proposed by Singh et al. [Singh et al. 2019].

In this Section, we present VIMA, its characteristics and restrictions, and some of
the difficulties encountered when converting CPU instructions to VIMA instructions in
runtime.

2.1. Vector in Memory Architecture (VIMA)

Proposed by Alves et al. [Alves et al. 2022], VIMA extends the system’s ISA, allowing
the execution of vector instructions near-data. Although there are other similar proposals,
such as the HMC Instruction Vector Extensions (HIVE) [Alves et al. 2016] and the HMC
Instruction Prediction Extensions (HIPE) [Tomé et al. 2018], VIMA provides some im-
portant advantages related to the in-memory processing, such as a simpler programming
interface capable of reusing data, presenting precise exceptions, and allowing active mul-
tithreading, in addition to showing an expansive design.

The VIMA instructions are executed through a set of functional units, a small
data cache memory and an instruction sequencer contained in the logical layer of 3D
memories. As in the original VIMA paper, for our experiments we consider a 3D mem-
ory containing 32 vaults, each with 8 independent banks, using a row buffer of 256 B.



Thus, VIMA instructions are capable of performing operations on data operands between
256 B and 8 KB in size, which corresponds to the minimum and maximum vault paral-
lelism (32x256B) when considering a HMC 3D memory.

2.2. Conversion problems
During execution, VIMA instruction must load its operands and store the results directly
from memory using physical addresses as VIMA does not have a register bank. These
instructions receive only one or two operands, which allows us to classify them according
to three categories: (i) memory copy, (ii) operation on a vector, and (iii) operation between
vectors. Figure 2 illustrates these categories.

OP

(I) (II) (III)

OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP OP

Figure 2. VIMA operations are classified into three categories: (I) memory copy;
(II) operation on a vector and; (III) operation between two vectors.

Thus, in order for a VIMA conversion mechanism to function, some pattern of
CPU instructions equivalent to one of these categories must be found, for example, a se-
quence with a load, an operation and a store instruction corresponding to the pattern (II).
However, creating PIM vector instructions through dynamic conversion faces problems
due to the large size of the data they operate. The converter engines must vectorize multi-
ple CPU instructions to compose a VIMA instruction. For example, a VIMA instruction
of 256 B is equivalent to 4× AVX-512 instructions.

This vectorization can be performed through the union of instructions from a ba-
sic block or several iterations of the same loop. Nevertheless, the dynamic vectorization
without loops seems unfeasible due to the number of instructions required for a single
VIMA conversion. Thus, in this work, we consider a mechanism that identifies sequences
of instructions inside loops that could be vectorized and converted into VIMA instruc-
tions. Figure 3 illustrates in (a) a vector sum algorithm and in (b) the execution of this
code in CPU. Since the sum of vectors present in multiple iterations of this loop can be
vectorized into one memory instruction, (c) shows an example of such a conversion.

In some cases, this conversion can be problematic if adjacent instructions perform
memory accesses, present changes in execution flow, or read registers written by previ-
ously converted instructions. These issues are further explored next.

2.2.1. Memory accesses

When vectorizing a sequence of instructions to PIM, adjacent instructions performing
memory reads and writes can lead to issues. This problem happens when the memory
access order changes between the vectorized sequence and its adjacent instructions. In



for (...) {

}

Vc[i] = Va[i] + Vb[i];

*a += 1;

1

2

3

0

(a) (b) Original (c) PIM

Vc[0] = Va[0] + Vb[0];
*a += 1;
Vc[1] = Va[1] + Vb[1];

*a += 1;
Vc[2] = Va[2] + Vb[2];

*a += 1;
Vc[3] = Va[3] + Vb[3];

*a += 1;

Vc[0] = Va[0] + Vb[0];
*a += 1;
Vc[1] = Va[1] + Vb[1];

*a += 1;
Vc[2] = Va[2] + Vb[2];

*a += 1;
Vc[3] = Va[3] + Vb[3];

*a += 1;

_vim256_isum(&Va[0], &Vb[0], &Vc[0]);

Replaced

Figure 3. In (a) we have vector sum algorithm, in (b) a conventional execution of
(a) and in (c) the replacement of some of the original (b) instructions with
a VIMA instruction in runtime.

Figure 3, considering that the pointer a update the value of V a[3], (a) presents a loop
in this situation. At each iteration, line 2 increments the content of V a[3] by 1, through
the pointer a. Thus, as shown in (b), before the fourth iteration, that calculates V c[3] =
V a[3] + V b[3] , line 2 increments V a[3] 3 times. However, this is altered in (c), with
the dynamic conversion of line 1 into a PIM instruction operating over 4 times more data
than the CPU instruction. Therefore, V a[3] is only incremented after the PIM instruction
calculates the vector sum result of V c[3] = V a[3] + V b[3], generating an incorrect result.

In order to prevent this issue, conversion mechanisms for PIM should perform
pointer aliasing checks or not convert sequences with other instructions performing mem-
ory accesses in the same loop.

2.2.2. Execution flow deviations

For a sequence of loop instructions to be converted to PIM, there must be a sufficient
number of consecutive iterations enabling vector opportunities. Furthermore, loops with
conditional statements between converted statements can lead to incorrect conversions.
Figure 4 (a) presents a algorithm that illustrates this situation. Depending on the value
contained in V a[i], line 3 changes the value of tmp, so if a set of iterations of line 4 is
turned into a PIM instruction, executing in-memory, without considering this flow devia-
tion, this may lead into an incorrect result. This situation inhibits the conversion of these
loops, requiring complex checks, something not viable considering lightweight dynamic
conversion mechanisms.

2.2.3. Register readings

Since instructions converted to PIM are executed near-data, their resulting values are un-
available within the CPU registers. As a result, loops containing dependent instructions
must be converted entirely to PIM, or the conversion must be avoided. Figure 4 presents
an example where (b) if instructions 2 and 3, performing a memory copy, were converted
to PIM, the result of instruction 2 would not be available for instruction 4. Thus, in-
structions and their dependents must be converted into PIM operations, or the conversion
should not be performed.



for (i=0; i < N; ++i) {

}

Vc[i] = tmp + Vb[i];

1

2

3

4

0

int tmp = Va[i];

if (tmp == 3)

tmp = 0;

5

for (i=0; i < N; ++i) {

}

g = Vb[i] - tmp + 3;

1

2

3

4

0

int tmp = Va[i];

Vc[i] = tmp;

5

int g = 0;

(a) (b)

Figure 4. Vector sum and memory copy algorithms with conversion problems
due to flow deviations during conversion (a) and register readings by con-
version external instructions (b), respectively.

3. Related Work

This paper presents an analysis of the loops present in SPEC-CPU 2017 for the creation of
a runtime converter mechanism between CPU instructions and VIMA instructions. As far
as we know, there are no dynamic vectorization mechanisms for in-memory instructions.
Thus, our related work analysis consists of proposals for runtime vectorization of CPU
instructions performed by software or hardware.

Among the software-based mechanisms, Yardimci and
Franz [Yardimci and Franz 2008] propose a virtual machine that converts the appli-
cation binary into an intermediate representation before execution. During execution,
profiling is performed, and the loops of this representation can be parallelized at several
levels, such as simultaneous threads, processes, or vector instructions. Nakamura et
al. [Nakamura et al. 2011] also perform profiling to identify the most expensive functions
of the application, performing vectorizations on these functions basic blocks and loops.
Likewise, Hallou et al. [Hallou et al. 2016] use profiling information to identify hot
spots on which to apply its optimizations. Despite this, conversions focus on updating
existing Single Instruction-Multiple Data (SIMD) instructions, while Nakamura et
al. [Nakamura et al. 2011] aim to vectorize application scalar instructions.

Considering hardware-based proposals, Pajuelo et al. [Pajuelo et al. 2002] iden-
tify loads with a fixed stride and instructions that operate over such data. Thus, their
mechanism recursively vectorizes these instructions. However, due to the speculative
nature of the mechanism, writing instructions are not vectorized. Similarly, Call Bar-
reiro [Call Barreiro 2014] identifies operations of the same type to be vectorized. How-
ever, these vector operations are accumulated in the Reorder Buffer (ROB) and executed
when confirmed that all scalar instructions would execute, avoiding speculative vector-
izations. In addition, it does not vectorize loads and stores. Other approaches are adopted
by Kalathingal et al. [Kalathingal et al. 2016], which use instructions present in different
threads to compose large shared vector instructions. Stephens et al. [Stephens et al. 2017]
present a set of size-agnostic vector instructions. Thus, the same vectorization can be used
by different systems containing vector instructions of different sizes.

These vectorization techniques presented lead to promising results. Nevertheless,
during vectorization for VIMA, new problems arise because in-memory processing is
only advantageous for memory-bound code, as CPU-bound code benefits from the more
complex Out-of-Order (OoO) execution existing in CPUs. Furthermore, the lack of a



VIMA register bank limits the conversions performed to simple operations linked to mem-
ory reading and writing operations. Besides, the distance between the CPU and the PIM
execution also poses a challenge when considering moving results. Because of this, the
following sections present benchmarks characterizations to understand essential aspects
and limitations of real applications conversions.

4. Methods and Results
This section details the workload applications evaluated in this work and the process used
for identifying and evaluating loops.

4.1. Benchmark SPEC-CPU 2017

Our evaluations consider over 200 million instruction traces from SPEC-CPU 2017 ap-
plications. These traces were obtained using the PinPoints [Patil et al. 2004] tool, present
in Intel’s Pin [Intel 2018] dynamic binary instrumentation application. This tool uses
SimPoints [Calder et al. 2005] technology to select the most significant portions of an
application, accelerating our analysis while maintaining the results’ reliability.

We evaluated 18 of the 20 SPEC-CPU 2017 applications. Due to conflicts within
Pin during trace generation, we did not evaluate the applications pop2 and cactuBSSN.
All applications have been compiled with default options and flags to enable SSE, AVX,
AVX2, and AVX-512 instructions. Since PinPoints had problems generating traces with
gather and scatter instructions, the applications cam4, deepsjeng, fotonik3d, gcc, leela,
nab, perlbench, rooms and wrf had their vectorization restricted. That was accomplished
with the following flags: -mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512vl.

4.2. Loop identification

We consider a loop instructions between a backward branch and its target instruction,
although function calls and returns are not considered branches. Once we identify all
instructions between a branch and its target, these are considered the loop’s body. Also,
in loops with flow control instructions, the first path was considered the loop’s body.

After the initial loop body identification, we count every iteration until the loop’s
end. Future executions of this loop are accounted for as new loops since loop’s outside
instructions are executed, hardening inter executions vectorizations. In the final step, we
discarded loops with only one iteration since we can not vectorize them.

4.3. Iterations distribution

In order to convert CPU instructions from loops into more extensive VIMA instructions,
the converted loop needs a sufficient number of iterations. This number depends on the
size of the data processed by the CPU instruction and the PIM device, as shown in Table 1.

Table 1. Number of iterations required to form each type of VIMA instruction,
according to the size of the data processed by CPU and VIMA instructions.

32 bits 64 bits 128 bits 256 bits 512 bits
VIMA-256 B 64 32 16 8 4
VIMA-512 B 128 64 32 16 8

VIMA-1024 B 256 128 64 32 16



In order to evaluate the existence of possibly convertible loops, we analyze the
number of iterations present in each loop of our traces. We categorize the loops into some
types: i) scalar loops without any vector instruction; ii) vector loops with most vector
instructions over 128-bit data; iii) vector loops with most vector instructions over 256-bit
data and; iv) vector loops with most vector instructions over 512-bit data.

bw
av

es
ca

m4
de

ep
sje

ng
ex

ch
an

ge
2

fot
on

ik3
d

gc
c

im
ag

ick
lee

la
mcf na

b
om

ne
tp

p
pe

rlb
en

ch
ro

ms
wr

f
x2

64
xa

lan
cb

mk xz

0%

20%

40%

60%

80%

100%

Sc
al

ar
 lo

op
s

pe
rc

en
ta

ge

Number of Iterations (X)
2 <= X < 4 4 <= X < 8 8 <= X < 16 16 <= X < 32 32 <= X < 64 64 <= X

Figure 5. Iterations distribution in scalar loops of some SPEC-CPU 2017 applica-
tions.

bw
av

es
ca

m4
de

ep
sje

ng
fot

on
ik3

d
gc

c
im

ag
ick lbm lee
la

na
b

om
ne

tp
p

pe
rlb

en
ch

ro
ms
wr

f
x2

64
xa

lan
cb

mk xz

0%

20%

40%

60%

80%

100%

Ve
ct

or
ia

l (
12

8 
bi

ts
) l

oo
ps

pe
rc

en
ta

ge

Number of Iterations (X)
2 <= X < 4 4 <= X < 8 8 <= X < 16 16 <= X < 32 32 <= X < 64 64 <= X

Figure 6. Iterations distribution in loops containing vector instructions, mostly
over 128-bit data, in some SPEC-CPU 2017 applications.

Figure 5 presents the iterations distribution in scalar loops, where only more than
32 iterations could be converted to VIMA-256 B instructions. Figures 6 and 7 present
the same analysis for loops with most vector instructions on 128 and 256-bit data, respec-
tively. Since the evaluated traces contains only the most representative portions of each
application, some applications may not contain some loop types, being excluded from the
correspondent figure. Due to compilation restrictions, only the x264 application presented
512-bit vector loops, with all these loops executing at least 8 iterations.

Considering scalar loops, only mcf, fotonik3d, leela, wrf, deepsjeng, xalancbmk
and gcc applications have more than 20 % of their loops convertible. On the other hand,
for vector loops over 128-bit data, only omnetpp, deepsjeng, xalancbmk, perlbench, x264
and gcc applications do not present conversion opportunities to VIMA-256 B in more



bw
av

es

ca
m4

fot
on

ik3
d

gc
c

im
ag

ick

lee
la

na
b

pe
rlb

en
ch

ro
ms

wr
f

x2
64

xa
lan

cb
mk

0%

20%

40%

60%

80%

100%
Ve

ct
or

ia
l (

25
6 

bi
ts

) l
oo

ps
pe

rc
en

ta
ge

Number of Iterations (X)
2 <= X < 4 4 <= X < 8 8 <= X < 16 16 <= X < 32 32 <= X < 64 64 <= X

Figure 7. Iterations distribution in loops containing vector instructions, mostly
over 256-bit data, in some SPEC-CPU 2017 applications.

than 20 % of their loops. This also occurs for bwaves, nab, xalancbmk, roms, gcc and
cam4 applications on 256 bit data loops.

Despite this, when considering the mean of all applications, both, scalar and vec-
tor loops present 24 % of their occurrences with a sufficient number of iterations for
conversion. Therefore, in order to fully utilize these applications conversions opportu-
nities, a dynamic conversion mechanism should be prepared for utilize both, scalar and
vector CPU instructions as sources for PIM conversions.

4.4. Representativeness of loops

bw
av

es
ca

m4
de

ep
sje

ng
ex

ch
an

ge
2

fot
on

ik3
d

gc
c

im
ag

ick lbm lee
la

mcf na
b

om
ne

tp
p

pe
rlb

en
ch

ro
ms
wr

f
x2

64
xa

lan
cb

mk xz

100

101

102

103

104

Nu
m

be
r o

f l
oo

ps

Operands size
Scalar 128 bits 256 bits 512 bits

Figure 8. Number of executions of each type of loop for the evaluated applica-
tions.

Although conversions over vector operations require a smaller number of itera-
tions, these vector loops may be rare. In order to verify this, Figure 8 presents the number
of loop executions classified in each type for our analysis. Most loops do not have vector
instructions, which points to previous compiler vectorization difficulties that could pre-
vent runtime conversions. Thus, conversion engines must be aware of these issues, being
able to undo incorrect conversions.



Furthermore, in several applications, such as cam4, fotonik3d and wrf, the num-
ber of vector loops is significant, reinforcing the hypothesis that vectorizing CPU vector
instructions is a promising path for future dynamic conversion mechanisms. Despite that,
vector loops correspond to only 28 % of all executed loops when considering all appli-
cations. So in a effective runtime conversion mechanism, scalar instructions conversion
cannot be ruled out, since it represents the conversion opportunities majority.

4.5. Conversion difficulties
Regardless of the loop’s iterations, some factors can entangle the conversion to PIM,
as presented in Section 2.2. In order to evidence these problems’ frequent occurrence,
we identified all the loops with memory copy, vector operation, and operation over two
vectors. These patterns consist of straightforward conversions to VIMA, as they perform
memory reads, writes, and, at most, one operation.

For each pattern found, we evaluated the existence of other memory accesses,
flow deviations, or register reading, blocking its conversion. From this, we noticed that
the biggest conversions problem is the existence of other memory accesses, since more
than 99 % of the patterns found have an external load and more than 98 % have an ex-
ternal store. The second most common problem are flow deviations, present in more than
90 % of the loops in 16 of 18 applications. Finally, the most unusual problem is reading
conversion instruction registers, which occurs in less than 50 % of the patterns for 17 of
the 18 evaluated applications.

Based on this, we can conclude that any runtime vectoring mechanism for VIMA
needs to be able to handle other memory accesses and flow deviations, due to their fre-
quent occurrence with most convertible patterns. This could be done by runtime checking,
but these verifications need to be fast and optimized so as not to degrade system perfor-
mance. Furthermore, if a verification indicates a conversion failure, the engine must be
able to undo the conversion, returning the processing to the CPU and ensuring the cor-
rect application execution. Since the reading of conversion instruction registers is not so
frequent, a simple alternative to work around this problem would be to avoid converting
patterns with this characteristic.

5. Conclusions and future work
With the emergence of 3D memories and the rise of devices such as the HMC and HBM,
proposals for in-memory processing have become more common. Despite this, to use
their instructions, these mechanisms usually rely on APIs, burdening developers, or re-
compilation, which is not always viable.

An alternative is to use hardware or software dynamic translation mechanisms.
This, however, faces difficulties if the data size operated by the CPU instructions is dif-
ferent from that operated by the PIM device. Thus, we explored some of the difficulties
faced in this scenario, presenting an evaluation of relevant characteristics for dynamic
conversion to vector PIM instructions in loops present in SPEC-CPU 2017 applications.

Our results show that the majority of dynamic conversion opportunities for vector
PIM devices focus on vectorizing the CPU’s scalar instructions. Also, for a dynamic
conversion device to be successful, it needs to be able to manage memory access conflicts
between conversion and external instructions, which occurs in the vast majority of VIMA



conversion patterns found in loops. It should also be able to detect flow deviations during
the conversion, being able to undo the conversion if a problem is encountered.

Our results should be considered when designing future dynamic conversion
mechanisms, which may be able to vectorize CPU scalar instructions as well as CPU
vector instructions. Since it must also handle unconverted instruction memory accesses
and changes in the execution flow, being able to deal with or avoid conversions that lead
to CPU and PIM dependencies. For future work, we consider the creation of our dynamic
conversion mechanism dedicated to overcoming these barriers.

References
Ahmed, H., Santos, P. C., Lima, J. P. C., Moura, R. F., Alves, M. A. Z., Beck, A. C. S.,

and Carro, L. (2019). A compiler for automatic selection of suitable processing-in-
memory instructions. In 2019 Design, Automation Test in Europe Conference Exhibi-
tion (DATE), pages 564–569.

Alves, M. A. Z., Diener, M., Santos, P. C., and Carro, L. (2016). Large vector extensions
inside the hmc. In 2016 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1249–1254.

Alves, M. A. Z., Santos, S., Cordeiro, A. S., Moreira, F. B., Santos, P. C., and Carro, L.
(2022). Vector in memory architecture for simple and high efficiency computing.

Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., Thakur, R., Kim,
D., Kuusela, A., Knies, A., Ranganathan, P., and Mutlu, O. (2018). Google work-
loads for consumer devices: Mitigating data movement bottlenecks. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’18, page 316–331, New York, NY,
USA. Association for Computing Machinery.

Calder, B. et al. (2005). Simpoint 3.0: Faster and more flexible program analysis.

Call Barreiro, A. (2014). Dynamic vectorization of instructions. Master’s thesis, Univer-
sitat Politècnica de Catalunya, Barcelona, Spain.

Cordeiro, A. S., Kepe, T. R., Tomé, D. G., de Almeida, E. C., and Alves, M. A. Z. (2017).
Intrinsics-hmc: An automatic trace generator for simulations of processing-in-memory
instructions. XVIII Simpósio em Sistemas Computacionais de Alto Desempenho - WS-
CAD.

Hadidi, R., Nai, L., Kim, H., and Kim, H. (2017). Cairo: A compiler-assisted technique
for enabling instruction-level offloading of processing-in-memory. In ACM Transac-
tions on Architecture and Code Optimization.

Hallou, N., Rohou, E., and Clauss, P. (2016). Runtime vectorization transformations of
binary code. International Journal of Parallel Programming, 45(6):1536–1565.

Intel (2018). Pin - a dynamic binary instrumentation tool.
https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool.

Jeddeloh, J. and Keeth, B. (2012). Hybrid memory cube new dram architecture increases
density and performance. In 2012 Symposium on VLSI Technology (VLSIT), pages
87–88.



Jun, H., Nam, S., Jin, H., Lee, J., Park, Y. J., and Lee, J. J. (2017). High-bandwidth
memory (hbm) test challenges and solutions. IEEE Design Test, 34(1):16–25.

K. Chang, K. (2017). Understanding and Improving the Latency of DRAM-Based Memory
Systems. PhD thesis, Carnegie Mellon University, Pittsburgh - USA.

Kalathingal, S., Collange, S., Swamy, B. N., and Seznec, A. (2016). Dynamic inter-thread
vectorization architecture: Extracting dlp from tlp. In 2016 28th International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-PAD), pages
18–25.

Lechner, M. (2020). Evolution of single-threaded x86 cpu performance. https://
mlech26l.github.io/pages/2020/12/17/cpus.html.

Motoyoshi, M. (2009). Through-silicon via (tsv). Proceedings of the IEEE, 97(1):43–48.

Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., and Kim, H. (2017). Graphpim: En-
abling instruction-level pim offloading in graph computing frameworks. In 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages
457–468.

Nakamura, T., Miki, S., and Oikawa, S. (2011). Automatic vectorization by runtime
binary translation. In 2011 Second International Conference on Networking and Com-
puting, pages 87–94.

Pajuelo, A., González, A., and Valero, M. (2002). Speculative dynamic vectorization.
SIGARCH Comput. Archit. News, 30(2):271–280.

Patil, H., Cohn, R., et al. (2004). Pinpointing representative portions of large intel ®
itanium ® programs with dynamic instrumentation. In Int. Symp. on Microarchitecture.

Preshing, J. and Poley, H. (2012). A look back at single-
threaded cpu performance. http://preshing.com/20120208/
a-look-back-at-single-threaded-cpu-performance/.

Santos, P. C., Moreira, F. B., Cordeiro, A. S., Santos, S. R., Kepe, T. R., Carro, L., and
Alves, M. A. Z. (2021). Survey on near-data processing: Applications and architec-
tures. Journal of Integrated Circuits and Systems, 16(2):1–17.

Singh, G., Chelini, L., Corda, S., Awan, A. J., Stuijk, S., Jordans, R., Corporaal, H., and
Boonstra, A.-J. (2019). Near-memory computing: Past, present, and future. Micropro-
cessors and Microsystems, 71:102868.

Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli, G., Horsnell, M.,
Magklis, G., Martinez, A., Premillieu, N., Reid, A., Rico, A., and Walker, P. (2017).
The arm scalable vector extension. IEEE Micro, 37(2):26–39.

Stone, H. S. (1970). A logic-in-memory computer. IEEE Transactions on Computers,
C-19(1):73–78.

Tomé, D. G., Santos, P. C., Carro, L., Almeida, E. C., and Alves, M. A. Z. (2018). Hipe:
Hmc instruction predication extension applied on database processing. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 261–264.

Yardimci, E. and Franz, M. (2008). Dynamic parallelization and vectorization of binary
executables on hierarchical platforms. J. Instr. Level Parallelism, 10.


