
Design Space Exploration of Heterogeneous Systems Applied
to the Cloud Resource Allocation Problem

Danillo C. A. Arigoni1, Ricardo Ribeiro dos Santos1, Liana D. Duenha Garanhani1

1 College of Computing – Federal University of Mato Grosso do Sul (UFMS)
Campo Grande – Brazil

{danillo.arigoni, ricardo.santos, liana.duenha}@ufms.br

Abstract. Cloud computing services providers offer on-demand computing re-
sources to applications. Finding the best cloud resource allocation that fits the
users’ budget, meets application performance and constraints are still a re-
search challenge. The cloud resource allocation problem is quite akin to the
Design Space Exploration (DSE) problem once they both have to find suitable
hardware configurations in an ample design space, having incompatible objec-
tives subject to several constraints. This work presents a solution to the cloud
resource allocation problem by applying a design space exploration technique.
We have designed and developed a software extension, MultiExplorer-VM, from
a DSE tool, MultiExplorer, that has a workflow to provide virtual machine con-
figurations according to the users’ requirements and application constraints.
A comprehensive set of experiments has been performed to evaluate and vali-
date the proposed tool. We have also compared solutions from our proposal to
other existing research work focused on the cloud resource allocation problem
based on the Paramount Interaction (PI) technique. The results show that the
MultiExplorer-VM achieves significant (better) results than the PI technique.
The cost results brought by the MultiExplorer-VM were up to 8.8 times lower
compared to the PI technique. The experiments also reveal that for most of the
applications, MultiExplorer-VM achieved the optimal cloud configuration.

1. Introduction

The increase in application workload density running on a cloud environment makes it
paramount to optimize the resources and services that will be made available in this
environment. Additionally, the applications complexity generates demands for hetero-
geneous computational resources; for example, workloads may require intensive CPU
usage (CPU-intensive), while others may require intensive input and output usage (IO-
intensive), or even GPU or other accelerators [Lee and Katz 2011]. Once the application
demands are known, it becomes necessary to allocate a set of hardware and software
resources that best meet those demands. For many applications, allocating computing
resources should simultaneously achieve multiple objectives.

In the context of cloud computing applications, the virtual machine - VM
- is a resource available as a combination of real hardware and virtualization soft-
ware [Smith and Nair 2005]. From the user’s perspective, the virtualization software

Acknowledgment: The authors wish to thank the FUNDECT for the financial support to this work,
process number 71/700.151/2020.

enables the VM to present necessary hardware (processor, memory, I/O devices, stor-
age) and software (operating system) resources in a way that is individualized to
the application. However, the original hardware (host) can be shared among differ-
ent applications or users. The suitable VM allocation for cloud applications should
meet different objectives such as: maximizing application performance, minimizing
cost, minimizing execution time, and minimizing communication time, among oth-
ers [Buyya et al. 2009, Calheiros et al. 2011].

The cloud computing services industry has adopted tools to recommend appropri-
ate configurations for user applications. For example, AWS cloud infrastructure and ser-
vice provider offers the AWS Compute Optimizer tool that applies machine learning tech-
niques to analyze historical utilization metrics from applications including IO, storage,
CPU, and network utilization. Compute Optimizer creates VMs recommendations that re-
duce costs and optimize computing power and application performance [Amazon 2020].
This tool only generates recommendations for some AWS instances, and it can take up to
12 hours for the service to finish the analysis and resource recommendations.

In the field of computer systems, the Design Space Exploration (DSE) consists
of algorithms and optimization techniques to choose, within a set of architectural pa-
rameters (the design space), computational solutions (or configurations) to meet applica-
tions demands. In general, DSE techniques aim at meeting multiple objectives (such as
maximizing performance or minimizing energy consumption) subject to several design
constraints (cost, area, power dissipation, among others). Cloud resource allocation and
design space exploration problems share essential characteristics. While one demands
suitable resource configurations, the other offers techniques to explore alternative con-
figurations. In this context, this work aims to develop a solution to the cloud resource
allocation problem by adopting design space exploration techniques. The motivation to
propose design space exploration techniques as a potential solver for cloud resource allo-
cation is to take advantage of the ability of DSE techniques to scale up resources solutions
by addressing issues such as heterogeneity, multiple objectives, sets of constraints.

In this work, we propose an approach that adopts the MultiExplorer framework
for the design space exploration in multicore systems as the building block for design-
ing and developing an extension (MultiExplorer-VM). The MultiExplorer-VM goal is to
offer alternative virtual machine configurations to meet cloud applications’ resource de-
mands. We evaluated our approach by searching lesser applications’ runtime and lesser
VM cost for 27 workloads and showed the results from MultiExplorer-VM were better
than those from the PI technique achieving VM cost results up to 8.8 times lower. The
main contributions of this work are:

• A new approach to provide alternative virtual machine solutions for resource de-
manding applications in cloud computing using DSE techniques.

• Predictor systems to evaluate cloud application runtime and cost running on VMs
configurations. The design and developing of accurate runtime and cost predictors
were also carried out in this work.

• A comprehensive validation and evaluation on a set of applications from the
NPB benchmark and on AWS virtual machine configurations. Additionally, we
compare the results of the MultiExplorer-VM to the Paramount Interaction Tech-
nique [Rosario et al. 2020].

The remainder of this paper is organized as follows: Section 3 presents a literature
review and discussion of work related to the topic of this project. Section 4 details the
development of the MultiExplorer-VM extension and the development and evaluation of
the time and cost predictors for cloud virtual machines used in the extension. Section 5
presents the entire experimental procedure, validation, discussion of the results obtained,
and comparisons with other techniques available in the literature in the area. Section 6
presents the conclusions and propositions for future work.

2. Related Work
Cloud providers like AWS [Amazon 2020], Google Cloud1, and Microsoft Azure 2 pro-
vide to their users a diversity of virtual machine types and cloud configurations to be
instantiated. There are different costs and performance depending on the chosen VM
instance so that it is hard to a user to choose the best VM configuration to meet its appli-
cation demands. The task of choosing a suitable VM configuration to the applications is
subject to the Cloud Resource Allocation Problem and it is also a current topic of research
in the literature.

There are proposals that seek to solve the cloud resource allocation problem by
extracting information from multiple application runs to model the resources and perfor-
mance demands of applications [Yadwadkar et al. 2017][Venkataraman et al. 2016]. The
collected information constitutes a training set for machine learning algorithms aimed
at recommending cloud configurations. Ernest and PARIS are examples of systems that
have gone into this direction.

Ernest [Venkataraman et al. 2016] exploits the internal structure of a workload
to generate a linear model that predicts execution time. The prediction needs only
a small amount of data as input, significantly reducing the cost of measurement.
PARIS [Yadwadkar et al. 2017], on the other hand, builds a measurement-based Random
Forest model to make predictions of execution time or operation cost of workloads.

Some authors focused on exploring the search space of instance configurations.
Techniques such as random search and network search achieved lower performance
when compared to statistical methods such as Bayesian Optimization with Random For-
est [Hsu et al. 2018][Rosario et al. 2020] or Gausian Process [Alipourfard et al. 2017].
Those approaches have the benefit of low-cost search by looking at a few configurations.
In [Rosario et al. 2020] the search cost is even lower with the adoption of Paramount
Interactions.

The proposal presented in this paper differs from the research work found in
the literature by not resorting to the cloud provider at any stage of the working flow.
MultiExplorer-VM, on the other hand, adopts the a simulation tool [Calheiros et al. 2011]
to obtain the performance and cost data that will act as inputs (constraints) to the DSE
module. The DSE module uses time and cost accurate predictors to estimate runtime
and cost of the applications running on the proposed cloud resource. Another highlight
of this work is the ability to search for VM instances that meet elasticity and heteroge-
neous VM configurations. Such features can lead to better cost × runtime relationships
for determining the configuration of VM instances suitable to the workload.

1https://cloud.google.com
2https://azure.microsoft.com

3. MultiExplorer-VM
MultiExplorer-VM3 carries out a new execution flow on the top of the MultiExplorer tool.
In this flow, a new user interface is made available so that it is possible to simulate appli-
cations on virtual machines, besides offering architectural alternatives, via design space
exploration, according to the users’ demands. Figure 1 illustrates the MultiExplorer-VM
main modules execution flow (the dashed modules were designed in this work):

Results
(Pareto frontier of

cloud configurations)

1: Platform
Description

2: Performance
Simulation
(CloudSim)

3: Design Space Exploration
(NSGA-II)

(Time and Cost Predictors)VMs Database

User Constraints +
Performance

Results

Detailed VM Model
(MIPS, cores, price,

RAM size)

Detailed Application
Model

(instructions, cores)

Figure 1. MultiExplorer-VM modules and execution flow.

• The first step (Platform Description) allows a user to set the applications to be
evaluated, an initial VM configuration to work as a cloud resource reference, the
maximum budget (cost) that can be applied to run the application on a cloud re-
source, and the number of VMs to be used as parameters for the DSE step.

• In the performance simulation step, the CloudSim cloud simulator
[Goyal et al. 2012] is run aiming to determine the performance of the appli-
cation(s) on the virtual machine(s) chosen as an initial solution. The initial VM
solution is named the original solution. The application runtime and cost together
with the parameters from the first step are sent to the DSE module.

• In the design space exploration stage, a DSE algorithm (MultiExplorer uses a Non-
Sorted Genetic Algorithm - NSGA-2 - heuristic) is run from the initial (original)
solution in order to find new alternative VMs configurations to meet the applica-
tions demands for cost and performance subject to the users’ constraints. The DSE
algorithm constitutes the VMs configurations from a VMs database comprised of
AWS instances dataset. The instances work as design space exploration building
blocks forming up a new VM configuration that meet the constraints and objec-
tives set by the user. Time and cost predictors are coupled to the DSE module in
order to estimate application’s performance and cost data for each VM configura-
tion.

From Figure 1, one may observe that the first step is the platform description
where a user should inform an initial VM model and some applications parameters to be

3https://github.com/lscad-facom-ufms/multiexplorer/tree/MultiExplorer-VM

used by the second step. The Performance Simulation module is responsible for simu-
lating (on CloudSim) the application on the initial VM model. The Design Space Explo-
ration module carries out a design space exploration from the applications’ data coming
from the second stage and from the user’s constraints from the first stage. The module
picks up VM configurations from the VMs Database and runs the runtime and cost predic-
tors to estimate the time and cost of the user’s application on the chose VM configuration.
Once the configuration meets all the constraints and improve the time and cost objectives,
it constitutes the Pareto Frontier of VM configurations solutions.

4. Dataset and VMs Configurations
The VMs configurations adopted in the design of the MultiExplorer-VM are comprised
of nine families (available at AWS [Amazon 2020]) {c3, c4, c5, m3, m4, m5, r3, r4 and
r5} and three sizes {large, xlarge and 2xlarge}. Table 1 presents a summary of the VM
configurations and the price per hour.

Table 1. VMs configurations and pricing.

VM vCPU Memory Price VM vCPU Memory Price
Type (GB) (USD/h) Type (GB) (USD/h)

c3.large 2 4 0.163 r4.large 2 16 0.133
c3.xlarge 4 8 0.325 r4.xlarge 4 32 0.266

c3.2xlarge 8 16 0.650 r4.2xlarge 8 64 0.532
m3.large 2 8 0.190 c5.large 2 4 0.131

m3.xlarge 4 16 0.381 c5.xlarge 4 8 0.262
m3.2xlarge 8 32 0.761 c5.2xlarge 8 16 0.524

r3.large 2 16 0.350 m5.large 2 8 0.153
r3.xlarge 4 32 0.700 m5.xlarge 4 16 0.306

r3.2xlarge 8 64 1.399 m5.2xlarge 8 32 0.612
c4.large 2 4 0.100 r5.large 2 16 0.201

c4.xlarge 4 8 0.199 r5.xlarge 4 32 0.402
c4.2xlarge 8 16 0.398 r5.2xlarge 8 64 0.804
m4.large 2 8 0.100

m4.xlarge 4 16 0.200
m4.2xlarge 8 32 0.400

The applications to validate and evaluate the MultiExplorer-VM are from the Nu-
merical Aerodynamic Simulation Parallel Benchmarks (NPB) suite version 3.4.2 with
MPI support [Bailey et al. 1995] 4. The NPB is a set of parallel computing performance
benchmarks with five kernels and three fluid dynamics applications. Each benchmark has
a set of eight inputs divided into classes: S, W, A, B, C, D, E, and F. The S class consists
of small workloads for quick testing; class W is designed to run on workstations; classes
A, B, and C contain standard workloads; and classes D, E, and F are large workloads. The
five available kernels were used with the input classes S, W, A, B, C, D, and E. Each of
the kernels are detailed in Table 2.

From the VMs configurations and the applications of the NPB suite, we had
to build the database of VM configurations to be used by the DSE module of the
MultiExplorer-VM workflow. The VM database has 27 VM configurations (VM Types in
Table 1) and 27 application configurations (5 applications × 5 entries + 1 application ×

4https://www.nas.nasa.gov/publications/npb.html

Table 2. NPB kernels.

Benchmark Description Language
EP Embarrassingly Parallel Fortran
FT Discrete 3D fast Fourier Transform Fortran
MG Block Tri-diagonal solver Fortran
IS Integer Sort, random memory access C
CG Conjugate Gradient Fortran

2 entries). Along the experiments, the input classes D and E succeeded only for the EP
kernel when run on a local machine (Intel Core i7-5500U CPU 2.40GHz × 4 processors,
12GB RAM, Ubuntu 20.04.2 LTS 64-bit operating system).

The time and cost of each VM are obtained from the CloudSim simulator which
requires that each application (each application configuration is named cloudlet) should
provide the number of application instructions and the applications’ core demands. The
Pin [Luk et al. 2005] profiling tool was adopted to get the total number of instructions
from each cloudlet. For each benchmark application, Pin inserts a call to counter function
before every instruction. When the program exits, it saves the count of the total number
of instructions executed in a file. The cores demands for each cloudlet were evaluated
in 5 configurations (2, 4, 8, 16, and 32 cores). The CloudSim simulator estimates the
runtime of each cloudlet on a VM configuration. The application costs were calculated
by multiplying the runtime results and pricing (from Table 1). The VMs dataset has also
heterogeneous VM configurations. In this case, the virtual machine MIPS (Millions of
Instructions Per Second) metric is calculated from the weighted average of the applica-
tions’ instructions by the number of cores of each VM. Other VM metrics such as: the
number of cores, RAM, and price, come from the sum of the values of the respective
characteristics present in each VM of the heterogeneous system. The VMs dataset has a
total of 82862 configurations.

5. Development of Time and Cost Predictors

Once that the DSE module will suggest VMs configurations to meet the user’s objectives
and constraints, the configuration may have a large number of VMs so that it is neces-
sary to estimate the performance and cost of this new configuration. Those estimates will
be given by predictors which are specifically designed to provide accurate time and cost
estimates for each VM configuration. The development of the predictors were based on
machine learning algorithms available in the scikit-learn library (version 1.0.2)5. Consid-
ering that the predictors addressed in this work may consider the same set of independent
variables, a set of machine learning algorithms with a prominent focus on regression prob-
lems were selected for evaluation: Polynomial Regression (degree = 1,...,5), k-Nearest
Neighbours, Decision Tree, Random Forest and Support Vector Machines (SVM) (ker-
nel= RBF, linear, poly3, poly5, sigmoid).

The dataset of applications and VM configurations to build the predictors comes
from the NPB kernels (simulated on CloudSim) and AWS instances. The dataset was
divided into 20% for the training and 80% for the test set. The fitting procedure of each
model separated the training set into ten rounds. In each round, 90% of the set was dedi-

5https://scikit-learn.org/stable/

cated to training, and 10% was dedicated to model validation. The following metrics were
used to evaluate the prediction models: Coefficient of determination6 R2, training score,
the response time of the test score, and the Mean Absolute Percentage Error (MAPE).
Figure 2 illustrates the cross-validation strategy applied to the design and validation of
the time and cost predictors.

All data

Test dataTraining data

Fold 1 Fold 2 Fold 10

⋯

Fold 1 Fold 2 Fold 10

Fold 1 Fold 2 Fold 10Fold 1 Fold 2 Fold 10

Fold 1 Fold 2 Fold 10Fold 1 Fold 2 Fold 10

Fold 1 Fold 2 Fold 10Fold 1 Fold 2 Fold 10

Split 1

Split 2

Split 10

10-fold
cross-validation

Test dataFinal evaluation

Figure 2. Cross-validation strategy.

The MAPE7(equation 1) represents the average percent difference between the
observed (real) output Y i and the predicted value Ŷ i for n samples (i = 1, . . . , n).

MAPE =
1

n

n∑
i=1

|Y i − Ŷ i|
Y i

(1)

Figure 3 presents the heat maps generated from Pearson’s correlation8 consider-
ing only the response variables Time (a) and Cost (b). The variables chosen to the Time
predictor were based on the highest Pearson’s correlation and MAPE score: MIPS, In-
structions, Cores Cloudlet, Cores VM and Heterogeneous. The variables chosen to the
Cost predictor were: MIPS, Instructions, Cores Cloudlet, Cores VM, Price and Heteroge-
neous.

Tables 3 and 4 present the model predictors, the configuration parameters that
achieved the best results for each model, and the results according to the metrics R2,
MAPE, and Runtime. The Decision Tree-based was the model chosen as the time predic-
tor, achieving the lowest response time, the lowest MAPE, and the highest R2 for training
and testing. The models based on polynomial regression (degree = 5), Decision Tree,
and Random Forest achieved the highest R2 scores on the cost predictor. Random Forest

6https://en.wikipedia.org/wiki/Coefficient of determination
7https://en.wikipedia.org/wiki/Mean absolute percentage error
8https://en.wikipedia.org/wiki/Pearson correlation coefficient

(a) Time

(b) Cost

Figure 3. Pearson’s correlation coefficients between the independent variables
and the dependent (Time and Cost).

and Decision Tree had the lowest MAPEs, but the decision tree model’s response time is
about 30 times lowest than the second-best result so that the Decision Tree-based models
were chosen for time and cost predictions in the DSE module.

Table 3. Characteristics of time predictor models with best scores.

Model Parameters R2 Training (MAPE) R2 Testing (MAPE) Runtime
(%) (%) (s)

Decision max depth: None, 99.86 (0.009) 99.89 (0.008) 0.020
Tree min samples split: 2
Random max depth: 20, 99.85 (0.013) 99.90 (0.012) 0.613
Forest min samples split: 2,

n estimators: 50
Polynomial degree: 5 99.50 (50.77) 99.89 (46.72) 0.599
KNN n neighbors: 3 97.27 (1.46) 97.76 (1.74) 1.127
SVR kernel: poly, 93.85 (113.41) 94.65 (84.94) 19.973

degree: 5

Table 4. Characteristics of cost predictor models with best scores.

Model Parameters R2 Training (MAPE) R2 Testing (MAPE) Runtime
(%) (%) (s)

Decision max depth: 25, 96.85 (0.025) 97.64 (0.025) 0.017
Tree min samples split: 2
Random max depth: 20, 98.27 (0.024) 98.27 (0.023) 0.525
Forest min samples split: 2,

n estimators: 50
Polynomial degree: 5 99.89 (0.134) 99.88 (0.135) 0.751
KNN n neighbors: 2 95.88 (0.107) 96.55 (0.105) 0.777
SVR kernel: poly, 93.02 (0.413) 93.12 (0.536) 20.851

degree: 5

6. Experiments and Results
We have performed validation experiments on the MultiExplorer-VM and pairwise com-
parisons to the PI technique [Rosario et al. 2020] and a brute force algorithm that finds
optimal VM configurations but takes a long runtime. The validation experiments were
based on statistical tests: estimating the power of the pairwise test, testing for normal-
ity of samples (Shapiro-Wilk test9), testing for homogeneity of variances (Bartlett10 and
Fligner-Killeen11 tests). The pairwise comparison experiments targeted to explore VMs
configurations for each application of the NPB benchmark.

After the sample data validation, t-tests12 and Wilcoxon tests13 were applied to
evaluate hypotheses of statistical significant difference among the best (following time
and cost criteria) VM configurations from the MultiExplorer-VM, Brute Force and the PI
technique. The null (H0) and alternative (H1) hypotheses for the pairwise tests were:

H0 : Cost(VMME) = Cost(VMBF,PI) (2)
H0 : Time(VMME) = Time(VMBF,PI) (3)

9https://en.wikipedia.org/wiki/Shapiro–Wilk test
10https://en.wikipedia.org/wiki/Bartlett%27s test
11https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/fligner.test
12https://en.wikipedia.org/wiki/Student%27s t-test
13https://en.wikipedia.org/wiki/Wilcoxon signed-rank test

H1 : Cost(VMME) ̸= Cost(VMBF,PI) (4)
H1 : Time(VMME) ̸= Time(VMBF,PI) (5)

H0 hypotheses means that there is no difference in cost (2) or time (3) between
the best solutions from the MultiExplorer-VM (ME) and the solutions from a Brute Force
(BF) algorithm and the Paramount Interaction (PI) technique. The alternative hypotheses
(H1) represent a statistical significant difference between the solutions following the same
cost (4) and time (5) metrics. The significance level chosen for the tests is α = 0.05. For a
power of the test of 80% (reduction in the occurrence of false-negative or type II error), 21
runs of MultiExplorer-VM were generated for each application. The constraints applied
to the design space exploration by the MultiExplorer-VM technique were: a maximum
runtime of one hour and a cost of 2 USD/h for each application.

Table 5 presents the runtime and cost of the best VM configurations, considering
the lowest runtime and cost, suggested by MultiExplorer-VM (ME), Brute Force (BF),
and PI technique for each application. One may notice that ME and BF have quite akin
best results, thus indicating that ME finds the optimal VM configuration. Another inter-
esting finding from this experiment is that the ME results (time and cost) are better than
the PI results for all applications. Since PI searches for VM configurations that minimize
the cost, we compare the cost improvement of ME compared to PI. The ME cost im-
provement is up to 8.8 times (EP D application). Table 6 presents the VM configurations
details (amount of each VM) suggested by ME, BF, and PI for the EP D application. The
first three rows present the VM configurations of each technique that achieved the lowest
runtime. The last three rows present the VM configurations with the lowest cost of each
technique. The results of ME and BF, in Table 6, reveal a tradeoff between time and cost
objectives of the VM configurations.

Despite not presented, we performed statistical pairwise comparison tests (t, and
Wilcoxontests) among all three techniques. The statistical tests aimed to evaluate if the
results have statistical differences between ME and PI. The results showed statistical ev-
idence to accept the alternative hypothesis (H1) that ME and PI results are not the same
(p− value < α = 0.05). Seven (EP A, EP B, EP C, EP D, FT C, IS C, CG C) out of
eight applications achieved better (lowest) cost on ME than PI. The tests also reveal a
significant difference between ME and BF results.

One of the reasons for ME achieving better results is on exploiting VM heteroge-
neous configurations. PI and most cloud resource allocation techniques in the literature
approach the problem by searching for homogeneous VM configurations. The PI results
may also have been affected by the constraints (4 paramount interactions for each appli-
cation) adopted in this technique.

7. Conclusion
This work designed and developed a design space exploration tool (Multiexplorer-VM)
to provide alternative VM configurations for applications that demand cloud computing
resources. In addition to MultiExplorer-VM, we also designed and developed accurate
prediction systems that estimate runtime and cost of applications according to VM con-
figurations. The predictors were built on the top of the Decision Tree technique due to the
low prediction error (MAPE), high test score, and low response time compared to other

Table 5. Time and Cost of VMs configurations suggested by MultiExplorer-VM
(ME), Brute Force (BF), and Paramount Interaction (PI) techniques.

Application Time (sec) Cost (USD)
ME BF PI ME BF PI

EP S 0.385 0.322 0.17 0.17
EP W 0.774 0.644 0.204 0.17
EP A 5.112 5.112 0.193 0.17
EP B 20.628 20.628 0.255 0.255
EP C 77.76 77.76 2268 0.34 0.34 0.476
EP D 1249.2 1249.2 150048 1.02 1.02 9.07
FT S 0.117 0.117 0.17 0.17
FT W 0.290 0.235 0.17 0.17
FT A 3.96 3.96 0.17 0.17
FT B 45.72 45.72 0.255 0.255
FT C 221.4 221.4 4896 0.425 0.425 0.68
MG S 0.015 0.015 0.17 0.17
MG W 0.306 0.255 0.17 0.17
MG A 2.257 1.882 0.17 0.17
MG B 5.904 5.904 0.17 0.17
MG C 56.52 47.16 1188 0.278 0.255 0.34
IS S 0.011 0.009 0.193 0.17
IS W 0.097 0.097 0.17 0.17
IS A 0.727 0.727 0.17 0.17
IS B 3.513 2.926 0.17 0.17
IS C 11.016 11.016 5119 0.193 0.17 0.238
CG S 0.083 0.083 0.193 0.17
CG W 0.450 0.450 0.193 0.17
CG A 1.71 1.71 0.193 0.17
CG B 43.92 43.92 0.255 0.255
CG C 155.52 129.6 1623 0.34 0.34 1.36

Table 6. VM configurations details from MultiExplorer-VM (ME), Brute Force (FB),
and Paramount Interaction (PI) suggested to the EP D application.

Technique Application Time (sec) Cost (USD) VM configuration
ME 1249.2 1.7 20 ×c5.large
BF EP D 1249.2 1.7 20 ×c5.large
PI 150048 9.07 2 ×c5n.large

ME 3560.8 1.02 12 × c5.large
BF EP D 3560.8 1.02 12 × c5.large
PI 150048 9.07 2 ×c5n.large

machine learning models. A highlighted feature of MultiExplorer-VM is the capability to
explore heterogeneous VM configurations that meet the applications’ demands.

The experiments were carried out to validate and evaluate MultiExplorer-VM.
The results were compared to an optimal algorithm (brute force search) and the PI tech-
nique. The results demonstrated the feasibility of DSE as an alternative for solving the
cloud resource allocation problem. For most of the applications evaluated, the results
from MultiExplorer-VM were better (lesser applications’ runtime and lesser VM cost)
than those from the PI technique achieving VM cost results up to 8.8 times lower. Some
opportunities for future work are on evaluating the suggested heterogeneous configura-
tions in cloud computing infrastructure providers and extending MultiExplorer-VM by
covering the search for storage and memory-based cloud systems.

References
Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S., Yu, M., and Zhang, M. (2017).

Cherrypick: Adaptively unearthing the best cloud configurations for big data analytics.
In 14th Symposium on Networked Systems Design and Implementation, pages 469–
482.

Amazon (2020). Amazon Web Services. https://aws.amazon.com/. [Online;
accessed: 08-February-2020].

Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., and Yarrow, M. (1995).
The NAS parallel benchmarks 2.0. Technical report, Technical Report NAS-95-020,
NASA Ames Research Center.

Buyya, R., Ranjan, R., and Calheiros, R. N. (2009). Modeling and simulation of scalable
cloud computing environments and the cloudsim toolkit: Challenges and opportuni-
ties. In 2009 International Conference on High Performance Computing & Simulation,
pages 1–11. IEEE.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R. (2011).
Cloudsim: a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software: Practice and experience,
41(1):23–50.

Goyal, T., Singh, A., and Agrawal, A. (2012). Cloudsim: simulator for cloud computing
infrastructure and modeling. Procedia Engineering, 38:3566–3572.

Hsu, C.-J., Nair, V., Freeh, V. W., and Menzies, T. (2018). Arrow: Low-level augmented
bayesian optimization for finding the best cloud vm. In 2018 IEEE 38th International
Conference on Distributed Computing Systems, pages 660–670. IEEE.

Lee, G. and Katz, R. H. (2011). Heterogeneity-aware resource allocation and scheduling
in the cloud. HotCloud, 11:4–8.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V. J., and Hazelwood, K. (2005). Pin: building customized program analysis tools with
dynamic instrumentation. ACM sigplan notices, 40(6):190–200.

Rosario, V. M., Silva Camacho, T. A., Napoli, O. O., and Borin, E. (2020). Fast and
low-cost search for efficient cloud configurations for HPC workloads. arXiv e-prints.

Smith, J. and Nair, R. (2005). Virtual machines: versatile platforms for systems and
processes. Elsevier.

Venkataraman, S., Yang, Z., Franklin, M., Recht, B., and Stoica, I. (2016). Ernest: Ef-
ficient performance prediction for large-scale advanced analytics. In 13th Symposium
on Networked Systems Design and Implementation, pages 363–378.

Yadwadkar, N. J., Hariharan, B., Gonzalez, J. E., Smith, B., and Katz, R. H. (2017).
Selecting the best vm across multiple public clouds: A data-driven performance mod-
eling approach. In Proceedings of the 2017 Symposium on Cloud Computing, pages
452–465.

