
PIOSS: A Simulation Model for the Analysis of Parallel I/O
Performance Variability on Large-scale Applications

Eduardo C. Inacio1, Mario A. R. Dantas2

1Centro Universitário SENAI/SC
Florianópolis – SC – Brazil

2Universidade Federal de Juiz de Fora
Juiz de Fora – MG – Brazil

eduardo.inacio@edu.sc.senai.br, mario.dantas@ice.ufjf.br

Abstract. To meet ever increasing capacity and performance requirements of
emerging data-intensive applications, parallel file systems (PFSs) have been
employed in large-scale computing environments. In such complex storage sys-
tems, the load distribution on PFS data servers compose a major source of in-
put/output (I/O) performance variability. Albeit mitigating such variability is
desirable, understanding its sources and behavior remains a challenging task.
In this research work, a differentiated approach for evaluating the parallel I/O
performance variability perceived by large-scale applications is proposed. The
Parallel I/O and Storage System (PIOSS) simulation model represents main
components and mechanisms observed in typical PFS implementations and en-
ables fast evaluations of large and complex scenarios. Experimental results
presented in this paper demonstrate PIOSS can accurately reproduce the load
balance on PFS data servers, with a confidence level of 95%.

1. Introduction

Digital data production and consumption is increasing at unprecedented rates. By 2025,
approximately 175 ZiB (i.e. 175×1012 GiB) of data is expected to be created, captured,
or replicated globally [Reinsel et al. 2018]. In light of such data deluge, data-intensive
scientific discovery grows even more in importance [Hey et al. 2009], which poses great
challenges for the high performance computing (HPC) field.

To cope with such capacity and performance demands, most HPC en-
vironments present distributed, multilayered, and deep file input/output (I/O)
paths [Inacio et al. 2017b]. A particularly relevant layer in such environments is the
scratch file system, which is responsible for absorbing bulk data transfers from large-
scale concurrent applications running on compute nodes [Boito et al. 2018]. The scratch
file system is traditionally implemented through a parallel file system (PFS). In most
PFSs, files are divided into multiple contiguous chunks, which are distributed across a
cluster of data servers, a process known as file striping [Corbett and Feitelson 1996].

Although providing a high data rate, as read and write requests can be served by
multiple data servers in parallel, file striping can be a significant source of I/O perfor-
mance variability [Inacio et al. 2017a]. File chunks are distributed in a random or semi-
random fashion across data servers, which implies the adopted file distribution method



affects directly the load balance on the PFS. Also, as most large-scale data-intensive ap-
plications present a synchronous I/O phase [Song et al. 2011], this potential imbalance
on PFS data servers’ load can translate into a huge variability in the I/O performance
perceived by the application across distinct I/O phases.

Many parameters can affect the I/O performance perceived by an application in
such complex computing environments [Inacio et al. 2017a]. This variability effect, in-
herent to PFSs, makes finding optimal values for such parameters even more challenging.
Performing experimental evaluations on target computing environments can provide very
accurate results. However, this might become a daunting and time consuming approach,
due to the large number of parameters involved and their possible values. In such condi-
tions, simulation approaches present themselves as viable solutions.

Despite the existence of some PFS simulation models, to the best of our knowl-
edge, none was designed with the purpose of investigating the load balance on data
servers, neither favor examining its impact on the I/O performance variability perceived
by applications. Towards addressing that particular issue, this research work proposes the
Parallel I/O and Storage System (PIOSS) simulation model, a light-weight approach for
analyzing the parallel I/O performance variability perceived by large-scale data-intensive
applications over PFSs. Through a moderate level of detail, PIOSS enables fast evaluation
of spatial-related aspects affecting I/O performance and variability provided by traditional
PFS designs.

The remaining of this paper is organized as follows. Section 2 provides further de-
tails about file I/O on PFSs. In Section 3, related works on PFS simulation are examined.
The PIOSS simulation model, proposed in this research work, is presented in Section 4,
with experimental evaluation results discussed in Section 5. Finally, Section 6 concludes
this paper with our final considerations and future directions of this research work.

2. File I/O on Parallel File Systems
Most large-scale HPC applications alternate between very distinguishable execution
phases [Yu et al. 2017]. During the compute phase, application’s processes are busy pro-
cessing data and communicating with each other, whereas the I/O phase is dominated by
processes reading or writing data from or to files in the back-end storage system. For
most applications, the I/O phase is synchronous, as each process blocks until all other
processes complete the I/O phase [Song et al. 2011].

Data access parallelism can be achieved in different ways at the applica-
tion level. Most adopted approaches include the N-1 and N-N process-to-file map-
pings [Son et al. 2017]. In the N-1 process-to-file mapping, all application processes
transfer data from/to a single file. This approach favors data sharing among processes,
but may incur in performance degradation due to serialization of concurrent accesses. In
the N-N process-to-file mapping, each application process transfers data from/to an indi-
vidual and independent file. This approach is easier to implement and avoids serialization
drawbacks, but may pose a great pressure on the metadata service of the back-end storage
system as the number of files increases.

The back-end storage system is usually implemented through a PFS, such as Or-
angeFS and Lustre [Boito et al. 2018]. Although differences in design and implementa-
tion can be observed, in general, PFSs present a cluster architecture composed of three



main components: clients, data servers, and metadata servers. Clients, commonly located
at compute nodes, provide the interface to the file system namespace. Data servers are
responsible for storing files contents, while metadata servers keep up-to-date information
about files (e.g. location, name, timestamps, owner, permissions, etc).

In order to provide high data rate, especially for large I/O requests, most
PFSs stripe file data across multiple data servers, a technique known as file strip-
ing [Corbett and Feitelson 1996]. An example of the file striping technique is presented
in Figure 1. In this example, a write of 400 KiB is requested by the application. The PFS
client, upon receiving the request, divides the request data into fixed-size stripe fragments,
and distributes them across a subset of the available data servers. This way, the PFS can
serve a single I/O request from multiple data servers in parallel, leveraging the aggregated
throughput to improve the data transfer rate.

400 KiBWrite Request

Stripe Fragment Size (64 KiB) 

Stripe Width (4) 

Server #1 Server #2 Server #3 Server #4 Server #5

Application
Parallel File System Client

Parallel File System Servers

Figure 1. A simple example of the file striping technique of a PFS.

The subset of data servers is selected for a given file according to the file distribu-
tion method defined for the PFS. Typical approaches, adopted by most popular PFSs, such
as OrangeFS and Lustre, include the random method, in which a subset of data servers is
randomly selected, and the round-robin method, in which the first data server is randomly
selected and the remaining data servers of the subset are taken sequentially according to
the PFS configuration. The size of the subset of data servers is also a parameter of the
PFS, known as the stripe width.

3. Related Works
Some PFS simulation models have been proposed in previous research works. Most of
the existing simulation models focus on a specific aspect of the hardware and software
architecture from such high performance storage systems. The detailing level of elements
and processes involved also varies from model to model.



IMPIOUS [Molina-Estolano et al. 2009] is a trace-driven PFS simulator whose
design is centered on fundamental features, including data placement, replication,
caching strategies, and locking disciplines, through simple and abstract components.
HECIOS [Settlemyer 2009] is a trace-driven simulator designed to model the PVFS
file system [Carns et al. 2000]. Developed over the OMNeT++ discrete-event simula-
tion framework [Varga and Hornig 2008], HECIOS explores a detailed network model.
SIMCAN [Núñez et al. 2012] is a trace-driven storage network simulation platform
built upon the OMNeT++ framework that models different layers of the I/O system,
such as the virtual file system, the volume manager, the block scheduler, and disk
drive modules. Another simulator based on the OMNeT++ framework is the PFS-
Sim [Liu et al. 2013]. PFSSim main purpose is the efficient evaluation of I/O schedul-
ing algorithms. FileSim [Erazo et al. 2012] is a simulator developed specifically for the
evaluation of end-to-end I/O performance of HPC systems. Components modeled by
FileSim include clients, metadata servers, object storage devices, and the interconnec-
tion network. CODES [Cope et al. 2011] is a simulation framework, developed over the
parallel discrete-event simulation framework ROSS [Carothers et al. 2002], focused on
the evaluation of exascale storage system designs. Finally, HPIS3 [Feng et al. 2014] is a
trace-driven simulator, also developed over the ROSS framework, particularly designed
for the evaluation of hybrid PFSs (i.e. with both HDD-based and SSD-based data servers).

Although not explicitly stated, it is reasonable to infer that some of the aforemen-
tioned PFS simulators may represent I/O performance variability by modeling some sort
of stochastic process. In the context of parallel I/O performance variability analysis, a rel-
evant, and usually random, process is the file distribution method, as it is directly related
to the load balance in data servers [Inacio et al. 2017a]. None of the previously referred
proposals is focused on evaluating the impact of this mechanism on the PFS performance,
although most of them provide a simple file distribution implementation, usually, based
on the random method. Furthermore, many of the state-of-the-art simulators provide a
high level of detail, which, usually, results in complex parametrization, increased compu-
tational resources demands, and long time to results.

4. The PIOSS Simulation Model
The Parallel I/O and Storage System (PIOSS) simulation model is a differentiated pro-
posal devised for reproducing and evaluating the parallel I/O performance perceived by
large-scale data-intensive applications executing over general PFS designs. Through a
moderate level of detail, PIOSS enables fast evaluation of spatial-related aspects affecting
I/O performance and variability. PIOSS light-weight design aims at improved execution
performance for simulating extreme-scale applications and environments.

4.1. Modeling Approach
Main components and mechanisms observed in popular PFS implementations are mod-
eled with a moderate level of detail in PIOSS. This detailing level was carefully chosen
focusing on modeling most fundamental performance behaviors, sacrificing absolute tim-
ing accuracy in favor of generality and simulation performance. Figure 2 provides an
overview of simulated PFS components and their interplay as modeled in PIOSS.

The CLI component models PFS clients. It is responsible for generating appli-
cation workload, striping files, and transferring their contents to PFS data servers. PFS



CLI CLI CLI CLI

MDS

DTS DTS DTSDTS

Figure 2. Main PFS components modelled by the PIOSS simulation model.

metadata servers are modeled by the MDS component and its main purpose in PIOSS
is defining which data servers are allocated for each file created by the CLI component.
Finally, the DTS component models PFS data servers, keeping the amount of data stored
in each data server for a simulated scenario.

The simulation workflow in PIOSS is, in this primary version, sequential. For each
PFS client defined for the simulated scenario, the CLI component requests a file creation
for the MDS component. The MDS component, then, selects the PFS data servers to
host the file according to the stripe width and file distribution method. In scenarios with
N-1 process-to-file mapping, the MDS component returns the same set of data servers
to every CLI request, as clients share the same file. For scenarios with N-N mapping,
most probably, distinct sets of data servers are returned by the MDS component for each
CLI request. After that, the CLI component simulates a file contents division according
to the defined stripe fragment size. At that point, simulated file chunks are distributed
across data servers through the CLI component sending to the DTS component the data
server id and the size of the respective simulated file chunk. Finally, the DTS component
accumulates the amount of data (in bytes) stored in each simulated data server for later
reporting the load distribution in the PFS. Simulation scenarios can be defined through a
set of parameters supported by PIOSS. Table 1 lists these parameters and their meaning.

Table 1. PIOSS simulation parameters.

Parameter Description

num_cli number of simulated PFS clients
data_size bytes transferred per simulated PFS client
shared sets a N-1 process-to-file mapping (N-N mapping, otherwise)
num_dts number of simulated PFS data servers
stripe_width number of simulated PFS data servers per file
stripe_size size of a simulated file chunk
file_dist file distribution method
rng_seed seed for the random number generator
out_path path for storing simulation results report

4.2. Implementation Details
PIOSS is implemented entirely in C. Figure 3 presents an overview of its internal software
structure. As can be observed, PIOSS implementation consists of three modules.



pioss

param

screen

cli

mds

dts

csvexporter

timing
file_dist_random

file_dist_roundrobin

util

core

file_dists

PIOSS

Figure 3. Overview of PIOSS internal software components.

The core module contains the main components of the simulation model. It is in
the core module that the CLI, MDS, and DTS components are implemented. Also, the
core module hosts the param component, which is responsible for parsing user-provided
simulation parameters, and the csvexporter component, which enables exporting simu-
lation results in a CSV file format. This is a particularly interesting feature that allows
analysing simulation results in a varying of tools, from digital spreadsheets to more so-
phisticated data science workflows. Finally, the pioss component initializes simulation
components and coordinates the simulation workflow.

Another important module in PIOSS is the file_dists module. This module hosts
the file distribution methods supported by the PIOSS simulation model. Currently, two
methods are implemented in PIOSS, namely, the random and the round-robin file distribu-
tion methods (i.e. file_dist_random and file_dist_roundrobin components, respectively).
These methods were implemented in this primary version of PIOSS because they are
adopted in most HPC environments and popular PFSs, such as OrangeFS and Lustre. As
stated in Section 4.1, file distribution methods are employed by the MDS component at
file creation requests to select the set of data servers that will store each file contents.
Considering the impact of the file distribution method in the load balance on PFS data
servers and, consequently, its relevance to the analysis of the I/O performance variability
perceived by an application, the file_dists module was designed for flexibility. A file_dist
struct is defined, specifying the standard structure for a file distribution method to be inte-
grated in PIOSS. Such approach favors the research and evaluation of new file distribution
methods, which can be implemented and integrated with PIOSS with minor effort.

Lastly, the util module provides auxiliary functions for the simulation execution.
The timing component, as the name suggests, deals with execution time accounting and
date and time formatting. The screen component, on the other hand, provide helper func-
tions for displaying PIOSS messages in the standard output.

4.3. Positioning in the State-of-the-art
The moderate level of detail allows PIOSS to focus on most fundamental performance
effects. The modularity of PIOSS implementation provides flexibility for developing and
evaluating different PFS designs and mechanisms. For instance, different PFS file distri-



bution methods can be easily included in PIOSS by implementing new file_dist compo-
nents, which can be selected at simulation run time. Finally, by exporting collected results
into CSV files, PIOSS facilitates the evaluation of simulation results, as this format can
be consumed by a variety of analysis tools.

Compared to state-of-the-art proposals for PFS simulation, considering the level
of detail of the models, PIOSS differs significantly from previous approaches based on the
OMNeT++ simulation framework [Settlemyer 2009, Núñez et al. 2012, Liu et al. 2013].
These related works rely on the high-fidelity network models provided by OMNeT++,
focusing on time-related analysis and accuracy. Although this approach does not pre-
vent supporting the analysis of the I/O performance variability, such level of detail re-
garding the network communication does not contribute to the referred effect, adding
unnecessary complexity and computational power demands nonetheless. In terms of
generality, most of the state-of-the-art proposals models a specific PFS implementation
or environment. PIOSS, as well as IMPIOUS [Molina-Estolano et al. 2009] and SIM-
CAN [Núñez et al. 2012], provide simulation models aiming at evaluating general PFS
designs. Finally, a practical concern refers to the code availability of the existing PFS
simulation models. Only HECIOS [Settlemyer 2009], SIMCAN [Núñez et al. 2012],
and PFSSim [Liu et al. 2013] are, at the moment this paper was elaborated, available
for usage. It worth mentioning that none of the aforementioned publicly available
simulation models, at their current stage of development, provide sufficient results for
the analysis of the load distribution effects on the parallel I/O performance of PFSs
and, thereby, prevent a fair comparison with PIOSS. The current prototype version of
the PIOSS simulation model is publicly available at the following GitHub repository:
http://github.com/ecamiloinacio/pioss.

5. Experimental Environments and Results

In order to verify the fidelity of the PIOSS simulation model, with respect to the load
distribution on PFS data servers, an experimental evaluation was performed, comparing
simulated results with measurements from a real environment. A full factorial experi-
mental design was adopted, combining all values for the parameters listed in Table 2.
As a result, 144 distinct experimental scenarios were evaluated in both simulated and
real environments. For more reproducible and statistically sound conclusions, the entire
experiment was replicated five times, with experimental scenarios being evaluated in a
random order in each replication.

PIOSS simulations were executed in a local shared-memory machine, while an
experimental environment representative of real-world configurations, using OrangeFS
2.9.7, was deployed on grimoire and grisou clusters, from the Grid’5000 testbed. Each
of the 59 cluster nodes consists of 2× Intel Xeon E5-2630 v3 (8 cores/CPU), 128 GiB
RAM, 200 GB SSD, 5× 600 GB HDD, 4× 10 Gbps Ethernet, and 56 Gbps Infiniband. A
CentOS 7 (Linux kernel 3.10.0) image, with MPICH 3.2.1, was deployed over all nodes.
For this experimental evaluation, 8 nodes of the grimoire cluster were set up as PFS
data servers, while 32 nodes from the grisou cluster were defined as compute nodes.
I/O workload was generated using the IOR-Extended (IORE) [Inacio and Dantas 2018],
a scalable and distributed tool especially designed for experimental analysis of parallel
I/O performance.

http://github.com/ecamiloinacio/pioss


Table 2. Parameters and values considered in PIOSS evaluation.

Parameter Value

Application Workload
Number of processes 8, 32, 128
Process-to-file mapping N-1, N-N
Data size per process 32 MiB

PFS Configuration
Stripe fragment size 64 KiB, 256 KiB, 1 MiB
Stripe width 1, 2, 4, 8
File distribution method random, round-robin

Figure 4 presents a comparison of histograms of the load distribution on PFS data
servers simulated with PIOSS and observed on the OrangeFS environment for experi-
mental scenarios comprising applications with N-1 process-to-file mapping and a PFS
configured with a stripe fragment size of 64 KiB. Each cell of the plot grid refers to a
distinct experimental scenario, regarding the number of processes and the stripe width,
and combines histograms from PIOSS and OrangeFS results for both random and round-
robin file distribution methods. The bin width of histograms for 8, 32, and 128 processes
were set to 32, 128, and 512, respectively, for improved readability. The x-axis denotes
the number of bytes per data server in MiB, while the y-axis denotes the number of oc-
currences in the respective bin of the x-axis.

The accuracy of PIOSS simulations for N-1 mapping scenarios is noticeable in
Figure 4. In all the evaluated experimental scenarios, including those with different stripe
fragment sizes, not presented in this paper for the sake of space, PIOSS provided the exact
load distribution on data servers. This accuracy can be mostly attributed to the precise im-
plementation of PFSs file distribution methods on PIOSS, and the deterministic behavior
of the load distribution on scenarios with N-1 process-to-file mapping. For instance, for
scenarios with a stripe width of 1, a single data server receives all the load, while other
remain idle. On the other hand, for scenarios with a stripe width of 8, the load is evenly
distributed across all data servers of this experimental environment.

Results comparing the variability of the load distribution on PFS data servers sim-
ulated with PIOSS and observed on the OrangeFS environment, considering applications
with N-N process-to-file mapping, are presented in Figure 5. Each cell of the plot grid
combines box plots for both random and round-robin file distribution methods, and refers
to a different experimental scenario with respect to the stripe fragment size and the num-
ber of processes. The x-axis denotes the stripe width, while the y-axis denotes the number
of bytes per data server in MiB. Boxes enclose 50% of the observed data, with the inner
horizontal line denoting the median value. Upper and lower whiskers refer to data within
1.5 times the interquartile range (IQR) from, respectively, the third and first quartiles.
Small circles beyond whiskers refer to outliers.

As can be observed in Figure 5, results demonstrate the high accuracy of PIOSS
simulations for experimental scenarios with N-N mapping. Not only the median of simu-
lated and real scenarios are very similar for each scenario, the variance is also comparable.



Procs: 8 Procs: 32 Procs: 128

S
trip

e
 W

id
th

: 1
S

trip
e

 W
id

th
: 2

S
trip

e
 W

id
th

: 4
S

trip
e

 W
id

th
: 8

0 100 200 0 300 600 900 0 1000 2000 3000 4000

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

Bytes per Data Server (MiB)

F
re

q
u
e
n
cy

PIOSS (Random) OrangeFS (Random) PIOSS (Round-Robin) OrangeFS (Round-Robin)

Figure 4. Comparison of histograms of the load distribution on PFS data servers
simulated with PIOSS and observed on an OrangeFS environment, consid-
ering applications with N-1 process-to-file mapping and a PFS configured
with a stripe fragment size of 64 KiB.

Furthermore, the characteristic reduction of variance with the increase of the stripe width
is successfully represented by PIOSS. It is worth noting that, for all evaluated experimen-
tal scenarios, when the stripe width is equal to the number of data servers available (i.e.,
8, for this experimental environment), the load is evenly distributed across data servers.
Thus, in such conditions, there is no variance with respect to data servers load, which,
thereby, explain the flat boxes observed in respective plots.

Complementing the visual interpretation of the accuracy of the PIOSS simulation
model, an analysis of variance (ANOVA) was carried out over experimental results. The
ANOVA F -test indicates, for the evaluated experimental scenarios, that no statistically
significant difference is observed between PIOSS simulated results and real measure-
ments from the OrangeFS environment, with a confidence level of 95%. Based upon this
analysis, it is possible to conceive that PIOSS is capable of simulating the load distribution
on PFSs data servers with statistically significant accuracy.

Although experimental environments and scenarios evaluated in this research
work can be considered smaller in scale than real-world HPC deployments, we argue
that PIOSS can provide accurate results even for yet non-evaluated huge-scale scenarios.
The adopted evaluation method and achieved results, combined with the precise repre-
sentation of the impact of most relevant environment and workload factors on the load



Stripe Frag. Size: 1 MiB Stripe Frag. Size: 256 KiB Stripe Frag. Size: 64 KiB

P
ro

cs: 8
P

ro
cs: 3

2
P

ro
cs: 1

2
8

1 2 4 8 1 2 4 8 1 2 4 8

0

50

100

0

100

200

300

250

500

750

1000

Stripe Width

B
yt

e
s 

p
e
r 

D
a
ta

 S
e
rv

e
r 

(M
iB

)

PIOSS (Random) OrangeFS (Random) PIOSS (Round-Robin) OrangeFS (Round-Robin)

Figure 5. Comparison of box plots of the load distribution on PFS data servers
simulated with PIOSS and observed on an OrangeFS environment, consid-
ering applications with N-N process-to-file mapping.

distribution on PFSs data servers, can be considered to support that claim.

6. Conclusions and Future Works

In large-scale HPC environments, where PFSs are the main component of the back-end
storage system, variability has a considerable impact in the I/O performance perceived by
data-intensive applications. Dealing with such variability is a complex and challenging
task, considering the number of elements with potential impact in the I/O performance
variability and the uncertainty inherent to random processes part of the system design. In
the presence of such challenges, this research work proposes the PIOSS simulation model,
a light-weight approach for fast analysis of parallel I/O performance variability perceived
by large-scale data-intensive applications on PFS-based back-end storage systems.

The PIOSS simulation model was intended for modeling main conditions and
mechanisms of typical PFSs affecting the I/O performance perceived by applications.
Fast evaluation of spatial-related aspects affecting the I/O performance on PFSs is pro-
vided by PIOSS through an efficient implementation combined with a moderate level of
detail. Furthermore, the modular design of PIOSS favors its extension, in a way it can
be used for easily investigating different, or even new, methods and techniques applied to
any component of a general PFS design.

The accuracy of PIOSS was evaluated through a number of experiments, com-
paring simulated results to measurements from real environments deployed over clus-
ters from the Grid’5000 testbed. After evaluating a total of 144 experimental scenarios,
considering different file distribution methods, number of processes, process-to-file map-
pings, and PFS configurations, it was demonstrated that PIOSS can accurately estimate



the load distribution on PFS data servers with a confidence level of 95%. For scenarios
with applications adopting a N-1 process-to-file mapping, experimental results demon-
strated PIOSS replicates precisely the load distribution observed in real environments.

PIOSS is an ongoing effort, with code development in progress. Despite promis-
ing results presented in this paper, in short-term, we expect to conclude the code devel-
opment, including orthogonal requirements and documentation. Moreover, we intend to
elaborate on PIOSS evaluation, considering larger workloads and experimental environ-
ments. In long-term, we foresee the potential for additional features, such as supporting
other file distribution methods. We expect that such extensions could make PIOSS a help-
ful tool for fast investigation of the impact of user-defined configurations on the parallel
I/O performance provided by PFSs to large-scale data-intensive applications.

Acknowledgements
This research work was conducted while Eduardo C. Inacio was pursuing his Doctoral
degree at Universidade Federal de Santa Catarina (UFSC), and was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 001. Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see https:
//www.grid5000.fr).

References
Boito, F. Z., Inacio, E. C., Bez, J. L., Navaux, P. O. A., Dantas, M. A. R., and Denneulin,

Y. (2018). A checkpoint of research on parallel i/o for high-performance computing.
ACM Computing Surveys, 51:1–35.

Carns, P. H., Walter B. Ligon, I., Ross, R. B., and Thakur, R. (2000). Pvfs: A parallel file
system for linux clusters. In ALS’00 Proceedings of the 4th annual Linux Showcase &
Conference, volume 4, pages 317–328. USENIX Association.

Carothers, C. D., Bauer, D., and Pearce, S. (2002). Ross: A high-performance, low-
memory, modular time warp system. Journal of Parallel and Distributed Computing,
62:1648–1669.

Cope, J., Liu, N., Lang, S., Carns, P., Carothers, C. D., and Ross, R. B. (2011). Codes:
Enabling co-design of multi-layer exascale storage architectures. In WEST ’11 Pro-
ceedings of the Workshop on Emerging Supercomputing Technologies 2011, pages
303–312.

Corbett, P. F. and Feitelson, D. G. (1996). The vesta parallel file system. ACM Transac-
tions on Computer Systems, 14:225–264.

Erazo, M. A., Li, T., Liu, J., and Eidenbenz, S. (2012). Toward comprehensive and
accurate simulation performance prediction of parallel file systems. In DSN ’12 Pro-
ceedings of the 2012 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 1–12. IEEE.

Feng, B., Liu, N., He, S., and Sun, X.-H. (2014). Hpis3: Towards a high-performance
simulator for hybrid parallel i/o and storage systems. In PDSW ’14 Proceedings of the
9th Parallel Data Storage Workshop, pages 37–42. IEEE.

https://www.grid5000.fr
https://www.grid5000.fr


Hey, T., Tansley, S., and Tolle, K. (2009). The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research.

Inacio, E. C., Barbetta, P. A., and Dantas, M. A. R. (2017a). A statistical analysis of
the performance variability of read/write operations on parallel file systems. Proce-
dia Computer Science - Special Issue: International Conference on Computational
Science, ICCS 2017, 108:2393–2397.

Inacio, E. C. and Dantas, M. A. R. (2018). Iore: A flexible and distributed i/o performance
evaluation tool for hyperscale storage systems. In ISCC ’18 Proceedings of the IEEE
Symposium on Computers and Communication, pages 1026–1031. IEEE.

Inacio, E. C., Nonaka, J., Ono, K., and Dantas, M. A. R. (2017b). Analyzing the i/o per-
formance of post-hoc visualization of huge simulation datasets on the k computer. In
WSCAD ’17 - Anais do XVIII Simpósio em Sistemas Computacionais de Alto Desem-
penho, pages 148–159. SBC.

Liu, Y., Figueiredo, R., Xu, Y., and Zhao, M. (2013). On the design and implementation
of a simulator for parallel file system research. In MSST ’13 Proceedings of the IEEE
29th Symposium on Mass Storage Systems and Technologies, pages 1–5. IEEE.

Molina-Estolano, E., Maltzahn, C., Bent, J., and Brandt, S. A. (2009). Building a parallel
file system simulator. Journal of Physics: Conference Series, 180:1–7.

Núñez, A., Fernández, J., Filgueira, R., García, F., and Carretero, J. (2012). Simcan:
A flexible, scalable and expandable simulation platform for modelling and simulating
distributed architectures and applications. Simulation Modelling Practice and Theory,
20:12–32.

Reinsel, D., Gantz, J., and Rydning, J. (2018). The digitization of the world from edge to
core. Technical report, IDC.

Settlemyer, B. W. (2009). A Study of Client-Based Caching For Parallel I/O. PhD thesis,
Clemson University.

Son, S. W., Sehrish, S., Liao, W.-K., Oldfield, R., and Choudhary, A. (2017). Reducing i/o
variability using dynamic i/o path characterization in petascale storage systems. The
Journal of Supercomputing, 73:2069–2097.

Song, H., Yin, Y., Sun, X.-H., Thakur, R., and Lang, S. (2011). Server-side i/o coordina-
tion for parallel file systems. In SC ’11 Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis. ACM Press.

Varga, A. and Hornig, R. (2008). An overview of the omnet++ simulation environment.
In Simutools ’08 Proceedings of the 1st international conference on Simulation tools
and techniques for communications, networks and systems & workshops, page 60.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

Yu, J., Liu, G., Dong, W., Li, X., Zhang, J., and Sun, F. (2017). On the load imbalance
problem of i/o forwarding layer in hpc systems. In ICCC ’17 Proceedings of the 3rd
IEEE International Conference on Computer and Communications, pages 2424–2428.
IEEE.


	Introduction
	File I/O on Parallel File Systems
	Related Works
	The PIOSS Simulation Model
	Modeling Approach
	Implementation Details
	Positioning in the State-of-the-art

	Experimental Environments and Results
	Conclusions and Future Works

