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1Petróleo Brasileiro S.A. (PETROBRAS) – Rio de Janeiro – RJ – Brazil

2Instituto de Computação – Universidade Federal Fluminense (UFF)
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Abstract. Modeling petroleum field behavior provides crucial knowledge for
risk quantification regarding extraction prospects. Since their processing re-
quires significant computational power and storage capabilities, oil companies
run reservoir simulation jobs on high-performance computing clusters. Effi-
ciently using machine learning algorithms in job schedulers to predict the in-
coming job execution time can increase the effectiveness of cluster resources,
such as improving its resource usage rate and reducing the job queue time. This
paper introduces a novel and robust predictor, based on SLURM logs from Petro-
bras, that classifies with more than 74% accuracy the duration time interval of
reservoir simulation jobs. The results reveal that our model exceeded the per-
formance of the EASY++ algorithm-based estimator.

1. Introduction

Petroleum Reservoir Simulation is a fundamental tool in the Oil and Gas (O&G) indus-
try, helping to minimize risks and optimize decision-making processes during the devel-
opment of petroleum reservoirs by reproducing the production history and forecasting
future production, providing valuable insights into the behavior of oil, gas, and water
within reservoir fields over time. These simulations, conducted using reservoir mod-
els, enable engineers to explore multiple scenarios more cost-effectively and efficiently
than through real-world operations [Portella et al. 2022]. Reservoir models generally use
three-dimensional grids to represent the physical reservoir in thousands or millions of
cells and rely on mathematical equations derived from physical principles such as mass
conservation, thermodynamic equilibrium, heat transfer, and Darcy’s law for flow in
porous media [Coats 1982]. Due to the large size and complexity of numerical models of
real-world applications, reservoir simulations require powerful computational resources.
Therefore, they are typically performed on High-Performance Computing (HPC) clusters,
which explains why multiple supercomputers owned by oil companies are on the TOP500
list of the most powerful supercomputers in the world.
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Predicting the execution time of reservoir simulation jobs in the oil and gas sec-
tor is particularly critical to optimize computational resources and maximize productivity.
Multiple realizations or scenarios must be performed within reservoir simulations to ad-
dress the uncertainties associated with reservoir characterization and fluid behavior. The
speed at which these simulations can be executed assumes prominent significance, as it
enables a greater number of realizations, capturing inherent uncertainties and enhancing
decision-making processes. In addition to optimizing HPC resource allocation, predict-
ing the execution time of reservoir simulation jobs also contributes to better scheduling
policies for those cluster queue manager systems, such as SLURM (Simple Linux Utility
for Resource Management) [Yoo et al. 2003]. SLURM is an open-source job scheduler
and resource management system designed to handle clusters with thousands of nodes
and has been widely adopted as a workload manager at numerous HPC sites.

Cloud computing has gained popularity in the industry due to its scalability and
cost-efficiency. By accurately estimating execution time, O&G companies can optimize
the allocation of on-premise and cloud resources, reducing unnecessary costs associated
with excessive or extended resource usage. However, it is not a simple task, as job time is
influenced by several factors, such as the complexity of the reservoir modeling, the size of
the simulation model, the underlying target computer architecture, and other parameters
related to the software and the hardware.

Recent work [Kuchnik et al. 2019] has shown that the use of learning algorithms
in job schedulers potentially increases the effectiveness of the HPC cluster. Nonetheless,
deployments have, so far, been limited because three challenges have not received suffi-
cient attention in the literature: first, the lack of data diversity can adversely affect the de-
sign of prediction systems, such as impractical feature engineering, unreliable prediction
performance, and inconspicuous overfitting. Secondly, workload changes can negatively
affect predictor performance, as accuracy degrades over time due to the nonstationarity
(job profiles changing), which is typical across most job traces. Finally, aiming for high
prediction accuracy alone does not guarantee dramatically better end-to-end performance.

This work aimed to create a novel runtime predictor for reservoir simulation jobs.
To achieve this, we utilized statistical and machine learning techniques to extract as much
information as possible from reservoir simulation workload records. The logs were ob-
tained from over three hundred engineers at Petrobras, a globally recognized Brazilian
energy company. With real-world data, it is possible to execute an in-depth investiga-
tion to identify patterns and trends that will improve job time prediction. Thus, the main
contributions of this article are the following:

I. Employment of statistical and machine learning techniques to extract relevant fea-
tures from reservoir simulation workload records;

II. Development of a novel and robust machine learning predictor that accurately clas-
sifies the duration time interval of reservoir simulation jobs based on SLURM logs;

III. Implementation of the EASY++ scheduling algorithm as a runtime estimator, con-
sidering the relevant features; and

IV. Experimental analysis of our proposed model, comparing the results to EASY++.

The remainder of this paper is organized as follows. Section 2 covers related
works. Section 3 presents our execution time predictor for reservoir simulation jobs,



while Section 4 shows the experimental results. Finally, Section 5 concludes this article
and proposes future directions.

2. Related Works

Previous research has addressed the issue of user competence in determining the resources
required for High-Performance Computing (HPC) jobs. This matter is far from trivial, and
users are under pressure to overestimate predictions of memory, CPUs, and time to avoid
their jobs being killed by the scheduler due to insufficient resources. Overestimating job
resources usually leads to resources being wasted, lower throughput, and longer user re-
sponse times. To solve this problem, [Tanash et al. 2019] developed a supervised machine
learning model built into the SLURM resource manager simulator to predict the memory
and time required to perform the computation. The adjusted model dramatically helped
reduce the computational response time for larger jobs. Another study [Witt et al. 2019]
focused on Predictive Performance Modeling (PPM) to estimate future metrics such as
execution time, memory, and wait times, without requiring workload modifications, and
achieved similar results, identifying several issues that need more in-depth research.

Scheduling policies determine the order in which the jobs are executed, affecting
the system’s performance. The most commonly used scheduling algorithm for HPC jobs
is FCFS (First-Come, First-Served) with Backfilling, as introduced in the EASY sched-
uler [Lifka 1998]. The scheduler goes through the job queue in FCFS order and starts jobs
until it finds a job that can not begin immediately. Then, it makes a reservation for this job
at the earliest predictable time and starts backfilling the job queue in FCFS order using
any other jobs that do not delay that reservation. [Tsafrir et al. 2007] presented an ad-
vancement over the EASY scheduler, named EASY++, which became a widely adopted
benchmark for evaluating new algorithms in this field. The main addition in EASY++ is
a predictor that considers the elapsed time of two most recently submitted jobs by a given
user to predict the job execution time. Despite its relative simplicity, this history-based
system proved to be very successful. [Gaussier et al. 2015] investigated whether learn-
ing techniques are worth using on job running times for improving existing scheduling
algorithms. They proposed a new cost function for prediction and ran simulations based
on actual workload logs for the most popular variants of backfilling. The results show
an average gain of 28% compared to the EASY policy and 11% on average compared
to the EASY++ policy. Later, [Gaussier et al. 2018] proposed reordering the submission
queues under EASY using two methods. The first, based on a simulator, reduced the av-
erage waiting times of the baseline FCFS ordering policy by 11 to 60%, and the second
one, based on a multi-armed bandit algorithm, had an improvement factor of 8 to 46%.

Other papers have tackled the real-time scheduling problem. [Cheng et al. 2022],
for instance, used deep reinforcement learning to develop a real-time task scheduler in
the cloud. Experimental results showed that this approach outperformed commonly used
real-time scheduling algorithms, providing greater efficiency.

These related works present different approaches and techniques to tackle job
scheduling challenges in high-performance systems, aiming to improve resource utiliza-
tion and optimize system performance. However, to the best of our knowledge, none of
them was adjusted to predict the execution time of reservoir simulator jobs in an actual
energy industry scenario with more than five hundred thousand jobs executed daily.



3. Reservoir Simulation Jobs Runtime Predictor
Predictive analytics is the process responsible for extracting information from large data
sets to make predictions and estimates about future outcomes [Larose and Larose 2015].
The foremost objective of predictive modeling is not to understand why something will
occur (or not) but to accurately project the chances that something will happen (or not)
by analyzing relevant historical data [Kuhn and Johnson 2013]. Classification and Clus-
tering are among the most common tasks during this process. The Classification task
approximates the value of a categorical (nominal) target variable using a set of numeric
or categorical predictor variables. Understanding two- and three-dimensional relation-
ships in the data can be done through graphs and plots. However, classification models
are sometimes based on many different predictors, demanding multidimensional plotting.
The Clustering task packs records, observations, or cases into classes of matching objects.
A cluster is a collection of data similar to each other and different from those belonging
to other clusters. Clustering does not attempt to classify, estimate, or predict the value of
a target variable. Instead, clustering algorithms aim to segment the whole data set into
relatively homogeneous subgroups or clusters, where the similarity of the records within
a cluster is maximized, minimizing the similarity with data outside it.

Having a prediction model to estimate the execution time of a workload under cer-
tain conditions, we could determine the most suitable computing resource configuration
for a given reservoir simulation job. This section introduces the accomplished exploratory
analysis of the SLURM logs and how its outcome was used to build our runtime predictor
strategy. First, we investigated the peak usages of a cluster in terms of days of the week
and hours of the day, seeking occupancy events spread in thirty-minute observation win-
dows (Subsection 3.1). Next, we performed a visual Clustering analysis to get the most
frequently submitted job profiles (Subsection 3.2). Finally, through the Features Selection
technique, we selected relevant attributes to be used by our predictor (Subsection 3.3).

3.1. Preliminary Analysis of the SLURM Log

The main objective, as an initial step, was to identify peak usage occurrences considering
the highest amount of simultaneous jobs. This analysis aimed to identify patterns over
days of the week and month and their respective highest amounts of requested CPU cores.
Therefore, the usage behavior of the cluster was verified by analyzing the simulation jobs
submitted to the SLURM scheduler throughout the year 2022 at Petrobras, as it was the
only full year from our three-year log.

We defined three cluster occupancy categories using continuous observation win-
dows of thirty minutes: low, medium, and high. The first category represented intervals
with up to 20,000 CPU cores usage. The second one described intervals with utilization
between 20,000 and 40,000 CPU cores. The third one expressed intervals with utilization
greater than 40,000 CPU cores. For high occupancy events in the cluster, we performed
an additional analysis to group their occurrences into days of the week and hours of the
day. The latter grouping was arranged into four predefined six-hour intervals: from 00:00
until 06:00, from 06:00 until 12:00, from 12:00 until 18:00, and from 18:00 until 00:00.

Considering the total number of thirty-minute observation windows, we surveyed
4,517 low occupancy events, 10,953 medium occupancy events, and 2,050 high occu-
pancy events in 2022. Figure 1 shows that the high occupancy events in 2022 mainly



occurred when jobs started on Wednesday (20.78%) and from 18:00 until 00:00 (38.34%).

(a) (b)

Figure 1: High occupancy events of the cluster in 2022 regarding (a) day of the
week and (b) hours interval.

3.2. Clustering of Submitted Job Profiles

To further analyze the submitted jobs and extract relevant data attributes, we conducted
a visual Clustering investigation. We generated annual Heat maps from the SLURM
logs from May 4, 2021, to April 4, 2023, using Kibana [Gupta 2015], an open-source
browser-based visualization tool mainly used to analyze more than three million jobs. We
considered three types of submitted job profiles for each year: i) Profile 1 – jobs that
required up to 15 CPUs and ran for up to 5 hours; ii) Profile 2 – jobs that required 20
CPUs and ran for up to 15 hours; and iii) Profile 3 – jobs that required 40 CPUs and ran
for up to 15 hours. Table 1 summarizes their year distribution regarding the number of
occurrences and relative frequency.

Table 1: Submitted job profile types yearly distribution.

Job Profile Year 2021* Year 2022 Year 2023*
Jobs % Jobs % Jobs %

Profile 1 164,119 26.68 453,448 24.19 119,897 20.37
Profile 2 239,935 39.01 667,319 35.59 171,417 29.12
Profile 3 169,247 27.51 597,367 31.86 170,614 28.98

Remainder 41,818 6.8 156,650 8.36 126,793 21.53

Total 615,119 100.0 1,874,784 100.0 588,721 100.0

We noticed that the evaluated job profiles represented the majority of jobs sub-
mitted each year. Jointly, they expressed 93.2%, 91.64%, and 78.47% of all jobs for the
years 2021, 2022, and 2023, respectively. It is worth remembering that the 2023 year is
underway at the time of writing, and the relative percentage of these three job submission
profiles is expected to increase throughout the year.

3.3. Attributes Selection for the Machine Learning Models

The better the selection of attributes, the better the quality of the model predictions. The
exploratory analysis steps of the SLURM logs (Subsections 3.1 and 3.2) have enabled
us to understand the variations in the cluster occupancy rate and the specific characteris-
tics of the executed jobs. Such acquired knowledge allowed to define a suitable starting
subset of three nominal (categorical) attributes to be employed by the machine learn-
ing models, as follows: i) job start day of week class, derived from the @start field; ii)



job start hour of day class, derived from the @start field; and iii) job duration class,
derived from the elapsed field.

The @start field has the timestamp at which a job started running, and the elapsed
field holds the duration of this job in seconds. The possible categories of the first two
attributes were categorized by the earlier defined groupings (Subsection 3.1). Our prelim-
inary analysis of the SLURM log and the submitted job profiles types led us to establish
23 possible categories for job duration class, as shown in Table 2.

Table 2: Possible categories for the job duration class attribute.

Category Meaning Category Meaning

0 The job lasted up to 1 minute. 12 The job lasted between 6 and 7 hours.
1 The job lasted between 1 and 5 minutes. 13 The job lasted between 7 and 8 hours.
2 The job lasted between 5 and 10 minutes. 14 The job lasted between 8 and 9 hours.
3 The job lasted between 10 and 15 minutes. 15 The job lasted between 9 and 10 hours.
4 The job lasted between 15 and 30 minutes. 16 The job lasted between 10 and 11 hours.
5 The job lasted between 30 and 45 minutes. 17 The job lasted between 11 and 12 hours.
6 The job lasted between 45 minutes and 1 hour. 18 The job lasted between 12 and 24 hours.
7 The job lasted between 1 and 2 hours. 19 The job lasted between 24 and 48 hours.
8 The job lasted between 2 and 3 hours. 20 The job lasted between 48 and 72 hours.
9 The job lasted between 3 and 4 hours. 21 The job lasted between 72 and 96 hours.

10 The job lasted between 4 and 5 hours. 22 The job lasted more than 96 hours.
11 The job lasted between 5 and 6 hours. − −−−−−−−−−−−−−−−−−

However, raw logs contain a mixture of data, including fields that can be irrele-
vant and unfeasible for training prediction models. In addition to the previous exploratory
analysis, the Ranker tool from the Weka software package [Hall et al. 2009] was used
to evaluate the worth of each attribute by measuring the gain of information concerning
the target attribute (particularly the job duration class). Weka is a collection of machine
learning algorithms for data mining tasks and includes tools for data preparation, classifi-
cation, regression, clustering, association rule mining, and visualization.

Moreover, the cluster managers initially assisted in the most appropriate attribute
selection based on their experience, and then the final selection was the outcome of the
information gain ranking tool. Table 3 summarizes the remaining selected attributes with
their respective worth score.

Table 3: Remaining selected attributes for the machine learning models.

Attribute Worth Score

work dir parent (derived from the work dir field) 2.4289
username 1.3732
account 0.8315
employed simulator (derived from the script field) 0.7169
total cpus 0.4492
nodes prefix (derived from the nodes field) 0.0964

Except for total cpus, which is numerical, all attributes are nominal (categorical).
The work dir parent indicates which directory a job ran from. The username identifies
the user who submitted a job. The account indicates which project a job is associated with.
The employed simulator gives the name and version of the reservoir simulator selected
to run a job. The total cpus reports the number of CPU cores requested to execute a job.
Finally, the nodes prefix points to the subset of compute nodes on which a job was run.



3.4. Job Duration Prediction Using a Decision Tree as a Classifier

Classification problems aim to predict a class within the limited existing possibilities. In
the context of our work, we were able to forecast what the duration interval, in units of
time, should be for a job to run on the cluster given a set of possible duration intervals.

We employed Weka’s Decision Tree implementation, known as J48, to per-
form model training and validation. J48 is an implementation of the algorithm C4.5
[Quinlan 1993], an extension of the algorithm ID3, which produces decision trees based
on information theory. We utilized a decision tree model because it operates smoothly on
large data sets and can use various feature subsets and decision rules at distinct classifi-
cation stages. It is worth noting that the target attribute we selected for the job duration
interval predictor was job duration class.

4. Experimental Results
We present the experimental evaluation of our reservoir simulator job runtime predictor
strategy, proposed in Section 3. We investigated the potential benefits of the relevant
feature extraction to improve predictor quality and compared our proposed model with
the EASY++ scheduling algorithm as a runtime estimator. The input data used to run the
machine learning models was for years 2021, 2022, and 2023, with the first containing
records as of May fourth and the last containing records up to April fourth.

4.1. J48 Classifier Model

We considered only jobs submitted from a particular script call to run the J48 model as a
Classifier, totaling 1,099,029 records (149,390 in 2021, 694,974 in 2022, and 254,665 in
2023). We formed six experimental scenarios. For each, 80% of the job logs were used
for training and 20% for testing the trained model. Random stratified sampling was used
for the splits. The J48 model took only 9.12 seconds to train and 1.23 seconds to evaluate
the whole testing split in the last experimental scenario. It is worth mentioning that the
model was also validated with 10-fold cross-validation, producing similar results. Thus,
we present only the results obtained with the dataset split validation. Table 4 summarizes
the scenarios and their respective amount of available data.

Table 4: Experimental scenarios used to run the J48 model.

Experimental
Scenario Observation Period Training Dataset

(80%)
Testing Dataset

(20%)

ES1 Year 2021* 119,512 29,878
ES2 Year 2022 555,979 138,995
ES3 Year 2023* 203,732 50,933
ES4 Years 2021* and 2022 675,491 168,873
ES5 Years 2022 and 2023* 759,711 189,928
ES6 Years 2021*, 2022, and 2023* 879,223 219,806

*This year’s record does not include job data for all days of the year.

We used the following Classification numerical metrics for the model validation:
Accuracy, Cohen’s Kappa Coefficient, True Positive Rate (or Recall), False Positive Rate,
Precision, F-Measure (or F1 Score), Matthews Correlation Coefficient, Receiver Oper-
ating Characteristic Curve Area, and Precision-Recall Curve Area. Table 5 summarizes
their best possible values.



Table 5: Classification numerical metrics used to validate the trained J48 model.

Classification Numerical Metric Best Value

Accuracy 1.0
Cohen’s Kappa Coefficient (Kappa) 1.0
True Positive Rate (TP Rate) 1.0
False Positive Rate (FP Rate) 0
Precision 1.0
F-Measure 1.0
Matthews Correlation Coefficient (MCC) 1.0
Receiver Operating Characteristic Curve Area (ROC Area) 1.0
Precision-Recall Curve Area (PRC Area) 1.0

Figure 2 presents the values obtained for the Accuracy and Kappa metrics in the
six experimental scenarios. Regarding the former metric, the lowest value was 0.6415,
the highest was 0.7769, and the mean was 0.7351 (with a standard deviation of 4.8443).
Regarding the latter metric, the lowest value was 0.6148, the highest was 0.7517, and the
mean was 0.7048 (with a standard deviation of 0.0475).

(a) (b)

Figure 2: J48 model results in terms of the metrics (a) Accuracy and (b) Kappa.

The last experimental scenario (ES6) is the most significant as it encompasses
submitted jobs from three different years, showing the prediction capability of the trained
model when more diversified data are available. Table 6 summarizes its training and
testing samples distribution per job duration class obtained with Weka’s percentage split
function. Table 7 shows the values obtained for all classification numerical metrics for
each job duration class and the weighted mean per metric.

Considering the last experimental scenario (ES6), we built its Confusion Matrix,
as illustrated in Figure 3. Classification models are often evaluated using a confusion
matrix. For the multiclass classification problem, the matrix has the square form of n×n,
where n is the number of classes in the target attribute. In particular, job duration class
has 23 possibilities. For each, the matrix displays the number of True Positives (i.e., the
actual and predicted values are the same) colored gray on the main diagonal.

As shown in Figure 3, the main diagonal of the confusion matrix contains the most
occurrences for each class. This result indicates that the jobs were correctly classified
in general. When the classifier made an inaccurate prediction for a particular category,
its suggested job duration class was usually right before or right after the actual one.
Therefore, even when the classifier misestimated, its forecast for the job duration time
interval was not so far from the actual duration interval.



Table 6: Training and testing samples distribution per job duration class in ES6.

job duration class
Training Samples Testing Samples

job duration class
Training Samples Testing Samples

Count % Count % Count % Count %

0 192,519 78.90 51,491 21.10 12 17,749 83.66 3,467 16.34
1 96,892 79.65 24,750 20.35 13 15,012 75.86 4,778 24.14
2 58,978 81.62 13,284 18.38 14 12,578 83.24 2,533 16.76
3 51,907 81.06 12,125 18.94 15 10,805 85.47 1,837 14.53
4 77,768 76.86 23,412 23.14 16 9,874 86.18 1,583 13.82
5 38,810 84.08 7,348 15.92 17 9,496 90.60 985 9.40
6 24,335 83.97 4,644 16.03 18 53,157 77.21 15,690 22.79
7 61,718 77.70 17,713 22.30 19 9,149 82.83 1,897 17.17
8 48,906 80.08 12,166 19.92 20 2,094 82.60 441 17.40
9 45,458 79.87 11,457 20.13 21 273 83.23 55 16.77
10 25,075 83.25 5,045 16.75 22 305 85.67 51 14.33
11 16,365 84.27 3,054 15.73 − − − − −

Table 7: Metrics values per job duration class in ES6 using the J48 model.

job duration class TP Rate FP Rate Precision F-Measure MCC ROC Area PRC Area

0 0.935 0.035 0.884 0.909 0.882 0.991 0.965
1 0.817 0.025 0.800 0.809 0.785 0.979 0.887
2 0.716 0.013 0.792 0.752 0.736 0.979 0.834
3 0.673 0.017 0.713 0.692 0.674 0.975 0.750
4 0.827 0.034 0.712 0.765 0.742 0.979 0.829
5 0.565 0.010 0.708 0.629 0.618 0.977 0.724
6 0.579 0.006 0.721 0.642 0.638 0.976 0.672
7 0.794 0.025 0.717 0.754 0.734 0.981 0.829
8 0.651 0.021 0.645 0.648 0.628 0.976 0.733
9 0.666 0.019 0.662 0.664 0.645 0.977 0.744

10 0.476 0.010 0.560 0.515 0.504 0.971 0.552
11 0.485 0.006 0.610 0.540 0.537 0.972 0.589
12 0.426 0.008 0.520 0.468 0.461 0.971 0.527
13 0.517 0.012 0.439 0.474 0.465 0.975 0.470
14 0.321 0.007 0.378 0.347 0.340 0.970 0.354
15 0.305 0.005 0.424 0.355 0.353 0.974 0.375
16 0.305 0.004 0.435 0.358 0.359 0.970 0.367
17 0.214 0.003 0.445 0.289 0.304 0.961 0.308
18 0.855 0.018 0.758 0.804 0.791 0.988 0.873
19 0.613 0.003 0.707 0.657 0.656 0.981 0.665
20 0.570 0.001 0.687 0.623 0.625 0.968 0.662
21 0.302 0 0.345 0.322 0.323 0.975 0.314
22 0.449 0 0.608 0.517 0.522 0.934 0.475

Weighted Mean 0.741 0.022 0.734 0.735 0.717 0.981 0.798

4.2. Comparison with the EASY++ Algorithm-based Estimator

Since EASY++ continues to be a reference for scheduling algorithm, we used it as a pre-
dictor benchmark. Its implementation is simple: the algorithm considers the execution
times of the last two jobs to dynamically adjust task prioritization and scheduling deci-
sions, optimizing resource allocation and enhancing overall job performance. First, we
evaluated EASY++ in its proposed form, which relies solely on user-submitted job in-
formation. To facilitate a more equitable comparison with J48, we extended this vanilla
EASY++ functionality to include the attributes we selected whenever possible.

The predictor algorithm works as follows: the SLURM log is fully iterated con-
cerning the actual job submission timestamps (submit field) to mimic the submission
events. For each simulated job submission, the last two jobs that finished before the
current job submission timestamp and have coincident parameters are selected and used
to predict the execution time of the simulated job underway. Notice that the predictor
hypothesizes that the execution behavior of the current job should be the same or very
similar to its most recent related jobs.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Classified as 0 45533 1911 169 41 312 112 32 176 158 44 21 3 34 2 27 8 6 0 95 22 7 0 4

Classified as 1 3088 19805 425 105 155 102 89 244 41 33 19 11 9 6 14 6 2 4 53 15 1 0 4

Classified as 2 740 1224 10526 1420 293 50 40 261 14 21 9 10 21 22 0 2 0 0 40 4 11 1 2

Classified as 3 159 265 1469 8647 1873 144 51 185 7 4 2 2 0 3 0 0 0 0 27 5 6 0 1

Classified as 4 186 306 256 1450 16680 720 38 325 59 12 15 2 3 6 7 7 0 2 94 6 3 0 0

Classified as 5 127 119 59 286 2897 5205 265 153 16 14 8 4 5 5 4 0 3 2 39 1 1 0 1

Classified as 6 61 132 26 78 556 680 3348 797 23 15 5 0 3 14 6 1 3 0 24 3 5 0 0

Classified as 7 118 155 142 84 377 207 731 12702 1165 79 29 12 25 6 8 6 1 3 117 23 10 0 0

Classified as 8 231 145 33 7 77 55 10 2153 7853 1266 79 16 18 2 18 3 4 3 75 11 0 0 1

Classified as 9 275 68 46 3 33 21 4 379 1807 7579 923 40 47 12 20 5 8 4 105 4 3 0 0

Classified as 10 126 56 35 1 59 9 16 96 386 1681 2824 360 104 37 13 3 6 4 108 4 0 0 0

Classified as 11 65 71 17 0 14 1 5 47 141 230 694 1864 441 119 29 3 10 1 89 5 0 0 0

Classified as 12 117 50 11 0 2 2 5 42 182 208 238 457 1804 768 145 50 18 2 135 1 0 0 0

Classified as 13 84 67 5 0 2 2 2 15 54 68 76 131 501 2096 512 124 50 11 250 6 1 0 0

Classified as 14 59 39 2 0 5 7 0 8 51 19 27 68 233 889 958 290 53 15 251 8 0 0 0

Classified as 15 30 18 27 0 10 9 1 16 27 14 14 23 81 384 463 778 312 45 290 5 1 0 1

Classified as 16 48 16 0 0 4 12 0 12 58 26 24 11 51 175 154 332 688 197 446 3 0 0 0

Classified as 17 33 35 2 0 5 7 1 4 17 9 8 12 30 91 73 115 230 438 931 8 1 0 0

Classified as 18 267 226 17 0 49 3 4 56 101 134 30 23 43 134 76 95 180 249 11900 320 13 2 0

Classified as 19 89 36 9 3 5 0 1 28 5 1 0 1 8 4 5 6 9 5 584 1342 44 3 0

Classified as 20 43 2 7 0 2 0 1 14 1 0 0 3 5 2 1 0 0 0 32 92 303 19 5

Classified as 21 5 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 3 7 25 19 1

Classified as 22 7 4 0 0 2 0 0 0 0 0 0 0 1 1 0 2 0 0 2 2 6 11 31

Figure 3: Confusion matrix obtained in ES6 using the J48 model.

We evaluated this algorithm as an Estimator, such that we wanted to predict the
numerical value of the target attribute, particularly the job execution time, i.e., the elapsed
field of the SLURM log. Therefore, the following subset of attributes from Table 3 was
used as coincident attributes of the two most recent related jobs: work dir parent, user-
name, and account. Regarding the dataset, we considered the same used in ES6 (Table
4) but without splitting it into training and testing parts. Furthermore, we use the follow-
ing regression numerical metrics for the model validation: Mean Average Error (MAE),
Mean Average Percentage Error (MAPE), and Mean Squared Error (MSE). It is worth
noting that the best possible value for them all is zero. We obtained MAE = 2.06 hours,
MAPE = 67.84%, and MSE = 14.75 hours, meaning the estimator can grossly misesti-
mate runtimes for shorter-duration jobs.

Next, we compared the estimator results with our proposed runtime predictor strat-
egy, i.e., the J48 classifier with relevant attribute selection. We mapped the estimated and
actual execution times of the simulated jobs into one of the 23 possible categories for
the job duration class attribute (Table 2). Moreover, we use the following classification
numerical metrics for model validation: Accuracy and Cohen’s Kappa Coefficient. Re-
call that the best possible value of both metrics is one. We obtained Accuracy = 0.3041
and Kappa = 0.3692, meaning that the adapted version of EASY++ is not an effective
classifier in accurately determining the duration interval of an upcoming job.

Finally, Table 8 shows the comparison result for both classification strategies con-
cerning the Accuracy and Kappa metrics. It can be seen that the proposed model exceeded
the performance of the EASY++ implementation, with J48 achieving Accuracy = 0.7412
and Kappa = 0.712. Furthermore, the obtained results corroborate the observations in re-
cent works on the challenge of using predictors to accurately forecast the duration of a job
and indicate that our proposed classifier strategy has a reasonable predictive capability.



Table 8: Comparison result with J48 and EASY++ as classifiers.

Classification
Metric

EASY++
as a Classifier

J48
as a Classifier

Accuracy 0.3041 0.7412
Kappa 0.3692 0.712

5. Concluding Remarks
Oil companies execute reservoir simulation jobs on high-performance computing clusters
to discover petroleum field behavior, helping to minimize risks and optimize decision-
making processes regarding extraction opportunities. Resource manager systems, such as
SLURM, are typically employed to handle HPC clusters, which usually comprise thou-
sands of nodes that run massive amounts of jobs daily. The extraction of relevant informa-
tion from the workload logs allows one to understand the job submission profiles, which
can be used by learning algorithms to increase the efficacy of the HPC cluster resources.

In this paper, we used a real-world SLURM log from Petrobras, a globally rec-
ognized Brazilian energy company, to build a reservoir simulation jobs runtime predic-
tor incorporating strategically selected attributes that reasonably distinguish submitted
jobs from each other. Furthermore, we implemented the EASY++ scheduling algorithm
for comparison purposes, since it is a reference algorithm for job scheduling. The re-
sults demonstrate that our classification model exceeded the performance of the EASY++
algorithm-based estimator on the Accuracy and Kappa metrics. Among other machine
learning models, a regressor was also investigated to avoid the elapsed time discretization
into classes, but further investigation is necessary to improve the predictions.

Our future work plans include exploring other learning models, expanding our
runtime prediction strategy and validating it for the entire use case. Our goal is to provide
real-time decision-making capability for reservoir simulation job execution to increase on-
premises and cloud resources effectiveness. This system-level optimization will include
resource usage rate improvement and job queue time reduction. Within this complete
system we will be able to evaluate the benefits of our method over EASY++ and fine tune
our strategy for the job duration initial guess. Potential prediction errors will be corrected
through dynamic prediction. Nevertheless, we have a non-stationary problem, and proper
strategies should be addressed to deal with workload changes over time. Besides, the
minority classes’ recall is lower than the mean, suggesting the need for suitable techniques
to balance the dataset, such as oversampling and undersampling.
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