
Identification and Characterization of Memory Allocation
Anomalies in High-Performance Computing Applications *

Antônio Tadeu A. Gomes1, Enzo Molion2, Roberto P. Souto1 Jean-François Méhaut3,1

1 Laboratório Nacional de Computação Cientı́fica (LNCC)
Petrópolis-RJ, 25651-075, Brazil

2École Polytechnique (Polytech Grenoble)
Université Grenoble Alpes, 38000 Grenoble, France

3Université Grenoble Alpes, CNRS, Grenoble INP
LIG, 38000 Grenoble, France

{atagomes,rpsouto}@lncc.br

enzo.molion.0@gmail.com

jean-francois.mehaut@univ-grenoble-alpes.fr

Abstract. A memory allocation anomaly occurs when the allocation of a set of
heap blocks imposes an unnecessary overhead on the execution of an applica-
tion. In this paper, we propose a method for identifying, locating, characterizing
and fixing allocation anomalies, and a tool for developers to apply the method.
We experiment our method and tool with a numerical simulator aimed at ap-
proximating the solutions to partial differential equations using a finite element
method. We show that taming allocation anomalies in this simulator reduces the
memory footprint of its processes by 37.27% and the execution time by 16.52%.
We conclude that the developer of high-performance computing applications
can benefit from the method and tool during the software development cycle.

1. Introduction
Researchers and practitioners have long worked on the performance analysis and op-
timization of high-performance computing applications [Appelbe and Bergmark 1996,
Gropp and Lumsdaine 2006, Servat et al. 2013, Supalov et al. 2014]. These specialists,
however, have marginally considered the subject of memory allocation anomalies. An
allocation anomaly occurs when the allocation of a set of heap blocks imposes an un-
necessary overhead on the execution of an application. This overhead may increase the
number of CPU cycles the application uses because of the heap management (time over-
head), or increase the memory space the heap blocks actually occupy (space overhead).

In this paper we focus on memory allocation anomalies in the context of numeri-
cal simulators aimed at approximating solutions to partial differential equations (PDEs).
The use of higher-level compiled languages like C++ [Kirk et al. 2006,Arndt et al. 2019]
or dynamic languages such as Python [Logg et al. 2012,Rathgeber et al. 2016] is increas-
ingly common in software libraries that support the development of these simulators.

*This work has been partially funded by CNPq, LNCC/MCTIC and Petrobras (the Brazilian oil com-
pany). The authors acknowledge LNCC for providing HPC resources of the SDumont supercomputer,
which have contributed to the research results reported within this paper. URL: http://sdumont.lncc.br. The
authors also thank Yliès Falcone (UGA, LIG) for his comments that greatly improved the paper.

Different numerical methods may be available in these libraries, and of different cate-
gories (finite elements, finite differences, finite volumes). Moreover, as mathematicians
create innovative numerical methods, new libraries are made available for these methods.
These libraries build on a set of fundamental linear algebra operations and data structures:
matrices, vectors, matrix-matrix and matrix-vector operations, solvers of systems of linear
equations, to name the most important ones. In many cases, these structures and the algo-
rithms running atop them are irregular (e.g., polytopal meshes, heterogeneous degrees of
polynomials) and of unknown a-priori sizes. Therefore, dynamic memory allocation on
the heap is a pre-requisite for this type of software. Support libraries such as Eigen,1 Boost
uBlas,2 and NumPy3 offer these operations and data structures in higher-level languages,
but allocation anomalies may arise if the developer does not properly use them.

As a first contribution of this paper, we present a method for identifying, locat-
ing, characterizing and fixing memory allocation anomalies. The method is iterative—at
each iteration, the developer chooses and tackles a region of the application code and a
specific allocation size, and then measures the impact of this iteration on the performance
of the target application. To experiment with the method, we chose a set of numerical
simulation libraries developed at LNCC [Gomes et al. 2017]. The so-called MSL (Multi-
scale hybrid-mixed Set of Libraries) supports the implementation of numerical simulators
based on classical or multiscale finite element methods. It is developed in C++, and has
28, 260 lines of non-commented code.4 It supports hybrid parallelism with OpenMP and
MPI, and integrates with many third-party libraries. Among them, Eigen and the Stan-
dard Template Library (STL) are the main sources of dynamic memory allocations—and
also of allocation anomalies—in MSL. We show that taming these anomalies in a MSL
simulator reduces its memory footprint by 37.27% and its execution time by 16.52%.

As a second contribution of this paper, we present a tool we have developed to sup-
port our method. Notice that some available tools (e.g., the Google Heap Profiler [Ghe-
mawat 2019] and Valgrind/Massif [Seward et al. 2015]) provide, each of them, a different
subset of the features that our method needs. Yet the developer cannot use these tools as
an integrated toolset that provides these features in an efficient and effective way.

The remainder of this paper is structured as follows. In Section 2 we give the con-
text of our work and discuss related work on allocation anomalies. Section 3 presents our
method and the associated tool. Section 4 validates the method experimentally. Finally,
we present some concluding remarks and possibilities for future work in Section 5.

2. Background and Related Work on Memory Anomalies
Heap allocators reserve memory chunks—so-called heap blocks—that applications re-
quest at runtime. The programming interface (API) of these allocators is always based
on a dozen functions such as malloc()/new(), free()/delete(), calloc(), and
realloc()/resize(). Most Linux distributions use GNU Libc (GLIBC) [GNU De-
veloper community 2019] as their standard C runtime library. Other allocators are also
available such as Hoard [Berger et al. 2000], TCMalloc [Ghemawat and Menage 2007],
and TBB Malloc [Kukanov and Voss 2007]. The performance of these allocators may

1http://eigen.tuxfamily.org
2https://www.boost.org/doc/libs/1_65_1/libs/numeric/ublas
3https://www.numpy.org
4Computed with the sloccount tool.

vary in execution time and in consumed memory space. Nevertheless, all of them impose
on the application an overhead that increases with the amount of allocation anomalies.

Researchers and practitioners have already studied the issues of memory con-
sumption by applications.

The study on the Belady anomaly [Belady et al. 1969] was the first to analyze
the performance behavior of applications taking into account memory access patterns.
This study focused on memory paging, but showed that a method for such analysis was
needed for assessing counter-intuitive behaviors. Since then, memory leaks [Hastings and
Joyce 1992, Boehm 1995] have been the main memory issue studied by the scientific
community [Novark et al. 2009, Andrzejak et al. 2017]. Memory leaks are areas of
dynamically allocated memory that the application can no longer reach or free. Memory
leaks pose problems that are different from the ones the memory allocation anomalies
introduce, but some profiling tools used to analyze the former can be also used to deal
with the latter, as discussed in Subsection 2.1.

Space leaks are less studied than memory leaks. They occur when the application
uses more memory than needed. The term was first coined in [Wadler 1987] in the context
of functional programming to refer to applications that do release the allocated memory,
but later than the developer expects. Since then, researchers have revisited space leaks for
different languages (e.g., Haskell in [Mitchell 2013], or Java for embedded applications
in [Guo et al. 2013]). Space leaks are a type of memory allocation anomaly, and our
method can detect and fix them, together with other anomalies.

To the best of our knowledge, there is no other work in the area of high-performance
computing applications that deals with the identification and characterization of diverse
types of memory allocation anomalies, as our work does.

2.1. Tools
The heap allocators already provide some global statistics on the memory space the ap-
plications allocate (e.g., malloc stats()). In the case of TCMalloc, statistics on the
number of memory allocations per heap block size are also available. These statistics are
useful to identify some potential allocation anomalies, but lack information that allows
locating and characterizing these anomalies.

Some memory profiling tools can help in locating and characterizing allocation
anomalies. These tools can be divided into two groups: (i) tools that allow instrument-
ing parts of the application code; (ii) tools that offer allocation statistics. The Google
Heap Profiler [Ghemawat 2019] and the GNU Libc mtrace5 pertain to the first group.
They allow the developer to reduce the cost of profiling, but offer no means by which
the developer can select specific allocation sizes for a detailed analysis. The Intel Vtune
Amplifier [Kukunas 2015] and Valgrind/Massif [Seward et al. 2015] pertain to the sec-
ond group. They offer the developer information regarding the location and size of the
allocations, but does not allow the developer to instrument code regions. This limitation
results in a high cost in terms of analysis time because of the significant overhead during
the profiling. To sum up, the tools presented herein are inappropriate for our method,
because they cannot provide a view of allocation measurements that is at the same time
precise and selective. That is the reason we have developed a tool to support our method.

5http://man7.org/linux/man-pages/man3/mtrace.3.html

3. Method and Tool for Taming Allocation Anomalies
Allocation anomalies can be numerous and involve a wide spectrum of allocation sizes.
To tackle them, we propose an iterative method and an associated tool. We summarize
the steps of our method below.

First, the developer performs a global profiling of the number and sizes of memory
allocations. From this profiling, the developer chooses an allocation size to analyze in
more detail. The choice of such size may depend on the developer’s knowledge of the
source code and data structures. Nevertheless, if the developer does not understand why
there are so many allocations of specific sizes, he or she can choose as a general rule the
smallest sizes first, because they are the ones more likely to impose the highest overheads.

Second, the developer performs a detailed profiling of memory allocations of the
chosen size. This detailed profiling allows the developer to first locate the places in the
source code where these allocations happen, and then characterize their importance.

Third, the developer refactors the source code to reduce the amount of allocations
of the chosen size. The developer may then measure the impact of the refactoring on the
performance of the application, and get back to the first step for a new iteration, if needed.

Example: we illustrate the use of the method with a simulator implemented with MSL.
More specifically, we explore the Multiscale Hybrid-Mixed (MHM) finite-element method
available in this set of libraries [Araya et al. 2013]. The MHM method is interesting for
presenting our method because it is composed of different, clearly separable phases of
resolution, each one with a distinct allocation pattern:

• split: This phase has a work distribution process. The MHM method departs from
a coarse mesh defined over the physical domain of interest, and then defines a
local problem for each element of this mesh. It also defines a global problem that
glues together the upscaled solutions of the local problems;

• local: This phase has a loosely-coupled process. Each local problem is solved
independently from other local problems;

• reduce: This phase has a gather process, followed by a tightly-coupled process.
The solutions to the local problems are loaded as inputs to the global problem,
which is then solved;

• post: This phase has a work distribution process followed by a loosely-coupled
process. The solution to the global problem is combined with the solution to each
local problem, again independently from other local problems, thus rendering the
final approximating solution.
In Fig. 1 we show the number and size of dynamic memory allocations during

the simulation of a two-dimensional diffusion process with MHM. The allocations are
divided into 3 main groups: small allocations (up to 256 KiB), medium-sized allocations
(from 256 KiB to 1 MiB), and large allocations (more than 1 MiB). Notice in Fig. 1a that
the number of allocations of the first group is much larger than the other two. Besides, as
we show in Fig 1b, within the group of small allocations the number of 4- to 512-byte al-
locations is much larger than that of 512-byte to 256-KiB allocations. In the following we
detail the steps of our method that tackle the anomalies related to these small allocations.

3.1. Identification of anomalies
First, the developer needs a global view of dynamic memory allocations in the application,
to identify which parts of its code need further attention in the analyses that will follow.

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

Size group

n
u
m

b
e
r

o
f

a
llo

ca
ti

o
n
s

(l
o
g

sc
a
le

)

Small
Medium-sized

Large

(a) Number of allocations per size group.

 1

 32

 1024

 32768

 1.04858x106

 3.35544x107

 1 4 16 64 256 1024 4096 16384 65536 262144

n
u
m

b
e
r

o
f

a
llo

ca
ti

o
n
s

(l
o
g

sc
a
le

)

allocation size in bytes (logscale)

(b) Number of small-size allocations.

Figure 1. Number and size of dynamic memory allocations.

The developer can use our tool to identify these parts more efficiently by instrumenting
specific code regions (see Subsection 3.6). With our method and tool the developer may
instrument regions at the application’s main function only. Taking for example the MHM
simulation presented at the beginning of this section, the developer can instrument each
of the 4 phases of the simulation in the main function: split, local, reduce, post. In Table 1
we show the results of such an instrumentation—taking only allocation sizes with more
than 106 allocations in at least one of the 4 phases of the simulation.

After collecting overall statistics, the developer chooses a specific code region and
a specific allocation size for the following steps of the method. The choice of such a size
may take into account not only the total number of allocations for each size, but also the
knowledge and level of openness of the code and of the data structures involved.

3.2. Location of anomalies

In this step the developer employs our tool to collect data about stack trace types that
match the code region and allocation size selected in the previous step of our method. A
stack trace type is a set of stack traces gathered during the application execution that have
exactly the same function signature at each level of the stack. A stack trace type thus

Table 1. Number of allocations per allocation size (in bytes).

allocation size split local reduce post
8 289.9× 103 92.43× 106 19.7× 103 2.6× 103

12 135.2× 103 53.88× 106 0 0
16 0 49.41× 106 2 2.7× 103

24 577.5× 103 72.36× 106 1 0
32 12.3× 103 35.86× 106 3 0
40 5.0× 103 3.9× 106 0 0
48 7 39.53× 106 2 0
64 12.3× 103 20.3× 106 1 0
72 24.6× 103 14.98× 106 0 0
96 5 36.82× 106 0 0
144 3 5.18× 106 0 0
288 0 5.44× 106 1 0
320 36.9× 103 24.7× 106 0 0
384 0 3.88× 106 4.0× 103 2.7× 106

576 0 2.95× 106 0 0

represents a specific execution path the application took one or more times throughout its
execution. Each function signature includes the name of the function, its parameters, the
source code file, and the line number in which the function is defined.

In Listing 1 we show an extract of output from our tool when we instrumented the
local phase of a MHM simulation to trace 12-byte allocations. The first line of the output
shows the number of different stack trace types. The following lines give further detail for
each stack trace type. We only show two of these stack trace types in the listing—notice
that they have different signatures at some of the levels of their stacks. The listing also
shows the number of occurrences of each stack trace type. The developer may use this
number to select the most pertinent stack trace types for the next step of the method.

3.3. Characterization of anomalies

To characterize an anomaly, the developer takes all the stack trace types selected in the
previous step, and builds from them a call graph indicating the different execution paths
each stack trace type represents. Each entry of a stack trace type is a vertex in this call
graph; the vertices shared by distinct execution paths in the call graph are functions called
within distinct stack trace types.

In Fig. 2 we show a snip of the call graph obtained from Listing 1. The en-
tries in the stack trace types that Fig. 2 illustrates are in boldface in Listing 1. The ver-
tices shared by the largest amount of execution paths—functions Mesh::getElem() and
Mesh::operator[]() in the example—are the targets of the next step of our method.

Listing 1. Stack trace types
Number of stack trace types: 14
Stack trace type 1/14 : 256 occurrences
[0]operator new(...) @ /usr/lib/x86_64-linux-gnu/libstdc++.so.6
[1]__gnu_cxx::new_allocator<int>::allocate(...) @ /usr/include/c++/7/ext/new_allocator.h:101
[2]std::vector<...>::max_size() const @ /usr/include/c++/7/bits/stl_vector.h:676
[3]std::_Vector_base<...>::_M_allocate(...) @ /usr/include/c++/7/bits/stl_vector.h:169
[4]std::vector<...>::_M_fill_insert(...) @ /usr/include/c++/7/bits/vector.tcc:504
[5]std::vector<...>::resize(...) @ /usr/include/c++/7/bits/stl_vector.h:712
[6]Element::allocNodes(...) @ .../include/element.h:288
[7]Element::alloc(...) @ .../include/element.h:266
[8]Mesh::getElem(...) const @ .../src/mesh.cpp:5007
[9]Mesh::operator[](...) const @ .../include/mesh.h:1297
[10]StdFiniteElementSpace::create() @ .../src/space_stdfiniteelem.cpp:134
[11]StdFiniteElementSpace::create(...) @ .../src/space_stdfiniteelem.cpp:187
[11]DiffusionCGProblem::configureSpacesImpl() @ .../examples/src/problem_cgdiffusion.cpp:356
[13]Problem<...>::getDataFiles[abi:cxx11]() @ .../include/problem.h:489
[14]MHMLocalProblem<...>::readDataFiles(...) @ .../include/problem_mhmlocal.h:320
[15]main @ .../src/main_mhm_diffusion_memalloc.cpp:81
[16]__libc_start_main @ /lib/x86_64-linux-gnu/libc.so.6
[17]_start @ ??:?

... //other stack trace types

Stack trace type 12/14 : 256 occurrences
[0]void* std::malloc(...) @ /usr/lib/x86_64-linux-gnu/libc.so
[1]void* Eigen::conditional_aligned_malloc<true>(...) @ .../Eigen3/src/Core/util/Memory.h:212
[2]int* Eigen::internal::conditional_aligned_new_auto<...>(unsigned long) @ .../Eigen3/src/Core/util/Memory.h:374
[3]Eigen::DenseStorage<...>::resize(long, long, long) @ .../Eigen3/src/Core/DenseStorage.h:555
[4]Eigen::PlainObjectBase<...>::resize(long, long) @ .../Eigen3/src/Core/PlainObjectBase.h:47
[5]void Eigen::PlainObjectBase<...>::resizeLike<...>(...) @ .../Eigen3/src/Core/PlainObjectBase.h:374
[6]Eigen::PlainObjectBase<...>::PlainObjectBase<...>(...) @ .../Eigen3/src/Core/PlainObjectBase.h:533
[7]Eigen::Matrix<...>::Matrix<...>(...) @ .../Eigen3/src/Core/Matrix.h:376
[8]Mesh::getElem(...) const @ .../src/mesh.cpp:5007
[9]Mesh::operator[](...) const @ .../include/mesh.h:1297
[10]FiniteElementSpace::setEssentialBC(...) @ .../src/space_finiteelem.cpp:36
[11]DiffusionCGProblem::configureSpacesImpl() @ .../examples/src/problem_cgdiffusion.cpp:356
[12]Problem<...>::getDataFiles[abi:cxx11]() @ .../include/problem.h:489
[13]MHMLocalProblem<...>::readDataFiles(...) @ .../include/problem_mhmlocal.h:320
[14]main @ .../main_mhm_diffusion_memalloc.cpp:81
[15]__libc_start_main @ /lib/x86_64-linux-gnu/libc.so.6
[16]_start @ ??:?

... //other stack trace types

...

...Element::alloc(...) @ .../include/element.h:266

Eigen::Matrix<...>::Matrix<...>(...) @ .../Eigen3/src/Core/Matrix.h:376

Mesh::getElem(...) const @ .../src/mesh.cpp:5007

Mesh::operator[](...) const @ .../include/mesh.h:1297

StdFiniteElementSpace::create() @ .../src/space_stdfiniteelem.cpp:134

...

FiniteElementSpace::setEssentialBC(...) @ .../src/space_finiteelem.cpp:36...

Figure 2. Call graph derived from the stack trace types in Listing 1.

3.4. Fixing anomalies

In the last step of our method, the developer refactors the code so that the functionality
is preserved while minimizing the undesired allocations. In the example used throughout
this section, the creation of temporary objects of class Element caused the identified
anomaly. These objects represent geometric elements in a mesh—they allocate memory
for storing information such as node coordinates and node-edge connectivity. Most of
the time, these objects are used for a simple processing (e.g., computing the number of
degrees of freedom related to the element) and destroyed just afterwards. In these cases,
the cost of memory allocation and deallocation surpasses that of the actual computation.

To fix the anomaly above, we implemented a new class SurrogateElement

with the same interface as Element, and a template superclass ElementBase to guar-
antee an efficient interface compatibility. Instances of SurrogateElement, however,
only store a reference to the original mesh and an index of the element in that mesh.
As a result, SurrogateElement operations are computationally less efficient than the
equivalent ones from Element, but without the added cost of heap management. Mind
that SurrogateElement does not replace Element in MSL; in some situations the
developer needs the representation of a geometric element dissociated from a mesh. Dis-
tinguishing these situations emphasizes the importance of characterizing anomalies.

3.5. Iterating

At the end of the last step, the developer assesses the results of the iteration and chooses
another allocation size for a next iteration, if needed. In Subsection 4.2 we illustrate the
use of iterations in our method with a complete case study.

3.6. Tool

The tool we have developed to support our method collects two types of measurements:
(i) number of allocations per allocation size; and (ii) number of instances of each stack
trace type per allocation size. To reduce the cost of profiling, our tool allows the developer
to select code regions for detailed profiling. We achieve this via a “code sectioning” sys-
tem (like Google Heap Profiler). Our tool is also precise with regard to the location of al-
locations, because it records the full stack trace for each stack trace type. Our tool is open
source and available at: https://gitlab.com/EnzoMolion/profiling-library.

4. Results

4.1. Experimental setup

We conducted experiments with our method in two setups of MHM simulations. In all
the experiments, the simulator code was compiled with GNU C++ compiler version 7.4,
and used the standard GLIBC heap allocator.

First, we applied the method over a small use case, with the simulator compiled
in debug mode so we could collect the stack trace types. For this case, we used a single-
node machine configuration, with 8 cores in a single socket using OpenMP as the only
parallelism technique. This case simulates a diffusion process in stationary regime over
a two-dimensional domain, using quadratic approximating functions. We use a mesh
of 4, 096 triangles at the global level. Within each element of the mesh, we solve a local
problem composed of 1, 137 linear equations. These local problems feed a global problem
composed of 99, 328 linear equations. This amounts to 4, 756, 480 linear equations to be
solved in total in the simulation, of which 4, 657, 152 are related to local problems.

The numbers above reflect on the amount of memory allocated in each phase of
the simulation, as we show in Table 2. We use in this table the same size groups as
those of Fig. 1a. The phase of local problems is the one most likely to impose the largest
memory-related overheads. Hence, it has been the focus of the case study.

After each iteration, we ran a larger use case, with the simulator compiled in re-
lease mode, to measure the overall execution time and maximum memory consumption
throughout the simulation. For this case, we used a two-node configuration in a cluster,
with 2 sockets of 12 cores each, using OpenMP within each socket and 4 MPI ranks in to-
tal (one per socket). This case also simulates a diffusion process in stationary regime, but
over a three-dimensional domain, using cubic approximating functions. We use a mesh
of 1, 536 tetrahedra at the global level. Within each element of the mesh, we solve a local
problem composed of 12, 405 linear equations on average. These local problems feed
a global problem composed of 158, 208 linear equations. This amounts to 19, 212, 288
linear equations to be solved, of which 19, 054, 080 are related to local problems.

Table 2. Number of allocations and amount of allocated memory per phase.

phase small allocations mid-sized allocations large allocations
split 1.26× 106 − 87.18 MiB 21− 13.27 MiB 1− 1.66 MiB
local 136.67× 106 − 7.376 GiB 4.8× 103 − 2.666 GiB 7.3× 103 − 7.483 GiB

reduce 44.0× 103 − 3.45 MiB 45− 20.47 MiB 24− 4.05 GiB
post 36.2× 103 − 84.88 MiB 0 0

4.2. Identification and characterization of anomalies in the small use case
We applied the method in the smaller use case described above, iterating 3 times to tackle
different memory allocation anomalies found in the MHM simulator:

• Use of temporary objects that dynamically allocate memory for short periods of
time (the example depicted in Subsection 3.4): characterized when we did a de-
tailed profiling over allocations of 12 bytes;

• Use of STL C++ class std::vector<> to store matrices as vectors-of-vectors:
characterized when we did a detailed profiling over allocations of 24 bytes;

• Use of statements like objData = objData*otherData (when objData in-
ternally allocate heap blocks) instead of objData *= otherData: character-
ized when we did a detailed profiling over allocations of 16 bytes.

In Fig. 3 we illustrate the overheads of the heap management during the execution
of the small use case before the application of the method (“Not optimized” in the figure),
and after each of the 3 iterations of our method.

In Fig. 3a we show the cumulative number of allocations of small size made
throughout the simulations, as collected by our tool. This number decreases monoton-
ically after each iteration of our method. This reduction—of about 30% at the end of the
last iteration—contributes to decrease the time overhead imposed by the heap manage-
ment. Nevertheless, the actual reduction in the overall execution time of the simulation is
difficult to measure because of the size of the small use case. We therefore postpone to
the following subsection the demonstration of this reduction with the larger use case.

In Fig. 3b we show the maximum number of extra heap bytes allocated through-
out the simulations, as collected by the Massif tool [Seward et al. 2015]. This number
represents the amount of bytes allocated in excess of what the application asked for, and
can be caused: (i) by the administrative bytes associated with each heap block; or (ii) by
allocators rounding up the number of bytes asked for, to ensure suitable alignment within
the heap block. The difference of about 15% at the end of the last iteration demonstrates
that our method can also reduce the space overhead imposed by the heap management,
allowing larger simulations to take place in a same computational resource.

The reader may observe that the first and third iterations had no direct effect on the
small use case. In the first iteration, there was a “migration” of anomalies from 12-byte
to 24-byte allocations in the phase of local problems: the amount of 12-byte allocations

 0

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

 1 4 16 64 256 1024 4096 16384 65536 262144

cu
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

a
llo

ca
ti

o
n
s

allocation size in bytes (logscale)

Not optimized
After 1st iteration

After 2nd iteration
After 3rd iteration

(a) Number of allocations of small size.

 0

 5x107

 1x108

 1.5x108

 2x108

Extra-heap

b
y
te

s

Not optimized
After 1st iteration

After 2nd iteration
After 3rd iteration

(b) Number of extra heap bytes allocated.

Figure 3. Overhead of the heap management.

in that phase felt from 53.88 × 106 to 1.36 × 106, but the amount of 24-byte allocations
in the same phase increased from 72.36 × 106 to 150.10 × 106. The second iteration
then slashed the amount of 24-byte allocations in that phase to 14.64 × 106, without
significant migrations to other allocation sizes, thus contributing to the overall reduction
in the measured overheads. In the third iteration, it appears not to have been the best
of allocation size to tackle for this specific use case: it reduced the amount of 16-byte
allocations from 73.82 × 106 to 57.95 × 106. Nevertheless, we observe that these two
iterations did have an impact in the large use case described in the following subsection.

4.3. Impact of anomaly fixing in the large use case
In Fig. 4 we show the performance of the MHM simulator for the large use case before
the application of the method (“Not optimized” in the figure), and after each of the 3
iterations of our method.

We use the following performance indicators: (i) resident set size; and (ii) overall
execution time. We collected these indicators with the accounting tool of the cluster’s re-
source manager. The maximum (resp., average) resident set size represents the maximum
(resp., average) memory footprint over all the 4 MPI ranks in the simulation. Figure 4a
shows a reduction in the maximum resident size by 37.27%, and in the average resident
size by 58.18%. Figure 4b shows a reduction in the execution time by 16.52%. Notice
that the last iteration of the method considerably reduced the total amount of memory
demanded during the simulation, even if with only a slight decrease in its overall execu-
tion time. Explaining the reasons why some iterations do not improve some of the results
is much harder for the large use case because of cost of profiling, but we believe these
reasons are related with the the ones described in Subsection 4.2.

5. Conclusions and future work
In this paper, we have studied anomalies related to dynamic memory allocations. We have
proposed an iterative method that allows a developer of high-performance computing ap-
plications to detect, locate, and correct these allocation anomalies. We have successfully
applied this method on a multiscale numerical simulator that allocated huge amounts of
small chunks of memory. The results after 3 iterations of the method (taming allocations
of 12, 24, and 16 bytes) show impressive gains in the number of calls to heap allocators—
making the simulator run faster—and in the memory footprint—making the simulator

 0

 5x106

 1x107

 1.5x107

 2x107

Maximum RSS Average RSS

kb
y
te

s

Not optimized
After 1st iteration

After 2nd iteration
After 3rd iteration

(a) Resident set sizes (RSS).

 0

 50

 100

 150

 200

 250

 300

 350

 400

Elapsed time

se
co

n
d

s

Not optimized
After 1st iteration

After 2nd iteration
After 3rd iteration

(b) Total execution time.

Figure 4. Performance of simulator.

capable of solving larger problems. We intend to apply this method on other applications,
especially from Petrobras (the Brazilian oil company).

The method we have proposed requires some profiling features to help the de-
veloper quickly detect and correct anomalies. We have developed a tool that offers a
trade-off between obtaining precise information with a manageable cost of instrumenta-
tion and collection of profiling traces. As future work, we plan to study the integration of
these features to existing memory profiling tools that are planned to be extensible, such as
Valgrind/Massif [Seward et al. 2015]. Besides, we intend to evaluate our method against
other, more scalable heap allocators such as TCMalloc and TBB Malloc. The aim is to
assess the extent to which applications linked to these allocators may also benefit from
the application of our method.

In this paper, the size of the allocations was the main criterion for optimization.
It aimed at minimizing the unnecessary allocation of temporary objects, or aggregating
the small allocations in bigger ones, or both. As future work, we plan to study other
optimization criteria, such as the lifetime of dynamically allocated memory chunks. We
believe a memory chunk with an extremely short lifetime should be allocated on the stack
rather than on the heap. Another criterion, complementary to the lifetime, is the number of
times a heap block is actually accessed and used. Assessing these new types of anomalies
may require new approaches to the anomaly fixing.

References
Andrzejak, A., Eichler, F., and Ghanavati, M. (2017). Detection of memory leaks in

C/C++ code via machine learning. In 9th International Workshop on Software Aging
and Rejuvenation (WoSAR 2017), pages 252–258, Toulouse, France.

Appelbe, B. and Bergmark, D. (1996). Software tools for high performance computing:
Survey and recommendations. Scientific Programming, 5:239–249.

Araya, R., Harder, C., Paredes, D., and Valentin, F. (2013). Multiscale hybrid-mixed
method. SIAM Journal on Numerical Analysis, 51(6):3505–3531.

Arndt, D., Bangerth, W., Clevenger, T. C., Davydov, D., Fehling, M., Garcia-Sanchez, D.,
Harper, G., Heister, T., Heltai, L., Kronbichler, M., Kynch, R. M., Maier, M., Pelteret,
J.-P., Turcksin, B., and Wells, D. (2019). The deal.II library, version 9.1. Journal
of Numerical Mathematics.

Belady, L. A., Nelson, R. A., and Shedler, G. S. (1969). An anomaly in space-time
characteristics of certain programs running in a paging machine. Communications of
the ACM, 12(6):349–353.

Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson, P. R. (2000). Hoard: A
scalable memory allocator for mumtithreaded applications. In 9th International Con-
ferences on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX), pages 117–128, Cambridge, MA, USA.

Boehm, H. (1995). Dynamic memory allocation and garbage collection. Computers in
Physics, 9:297–393.

Ghemawat, S. (2019). Gperftools Heap Profiler. https://gperftools.github.
io/gperftools/heapprofile.html.

Ghemawat, S. and Menage, P. (2007). TCMalloc: Thread caching malloc. http://
goog-perftools.sourceforge.net/doc/tcmalloc.html.

GNU Developer community (2019). The GNU C library (glibc). https://www.gnu.
org/software/libc.

Gomes, A. T. A., Pereira, W. S., Valentin, F., and Paredes, D. (2017). On the im-
plementation of a scalable simulator for multiscale hybrid-mixed methods. CoRR,
abs/1703.10435.

Gropp, W. D. and Lumsdaine, A. (2006). Parallel Tools and Environments: A Survey,
chapter 12, pages 223–232. SIAM.

Guo, C., Zhang, J., Zhang, Z., and Zhang, Y. (2013). Characterizing and detecting re-
source leaks in Android applications. In 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE’2013), pages 389–398, Palo Alto, CA, USA.

Hastings, R. and Joyce, B. (1992). Purify: Fast detection of memory leaks and access
errors. In Winter USENIX Conference, pages 125–136, San Francisco, CA, USA.

Kirk, B. S., Peterson, J. W., Stogner, R. H., and Carey, G. F. (2006). libMesh: A C++
library for parallel adaptive mesh refinement/coarsening simulations. Engineering with
Computers, 22(3–4):237–254.

Kukanov, A. and Voss, M. J. (2007). The foundations for scalable multi-core software in
Intel Threading Building Blocks. Intel Technology Journal, 11(04):309–322.

Kukunas, J. (2015). Intel VTune Amplifier. In Kukunas, J., editor, Power and Perfor-
mance: Software Analysis and Optimization. Elsevier.

Logg, A., Wells, G. N., and Hake, J. (2012). DOLFIN: a C++/Python finite element
library. In Logg, A., Mardal, K.-A., and Wells, G., editors, Automated Solution of
Differential Equations by the Finite Element Method: The FEniCS Book, pages 173–
225. Springer, Berlin, Heidelberg.

Mitchell, N. (2013). Leaking space. Queue, 11(9):10:10–10:23.

Novark, G., Berger, E. D., and Zorn, B. G. (2009). Efficiently and precisely locating
memory leaks and bloat. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’09), pages 397–407, Dublin, Ireland.

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T. T., Bercea,
G.-T., Markall, G. R., and Kelly, P. H. J. (2016). Firedrake: Automating the finite
element method by composing abstractions. ACM Transactions on Mathematical Soft-
ware, 43(3):24:1–24:27.

Servat, H., Llort, G., Huck, K., Gimenez, J., and Labarta, J. (2013). Framework for a
productive performance optimization. Parallel Computing, 39:336–353.

Seward, J., Nethercote, N., and Weidendorfer, J. (2015). Valgrind 3.11 Reference Manual.
Samurai Media Limited.

Supalov, A., Semin, A., Klemm, M., and DahnKen, C. (2014). Optimizing HPC Applica-
tions with Intel Cluster Tools: Hunting Petaflops. Apress.

Wadler, P. (1987). Fixing some space leaks with a garbage collector. Software: Practice
and Experience, 17(9):595–608.

