
CUDA-Parttree:
A Multiple Sequence Alignment Parallel Strategy in GPU

Caina Razzolini1, Alba Cristina Magalhaes Alves de Melo1

1Department of Computer Science, University of Brası́lia (UnB)

cainarazzolini@aluno.unb.br, alves@unb.br

Abstract. In this paper, we propose and evaluate CUDA-Parttree, a parallel
strategy that executes the first phase of the MAFFT Parttree Multiple Sequence
Alignment tool (distance matrix calculation with 6mers) on GPU. When com-
pared to Parttree, CUDA-Parttree obtained a speedup of 6.10x on the distance
matrix calculation for the Cyclodex gly tran (50, 280 sequences) set, reduc-
ing the execution time from 33.94s to 5.57s. Including data conversion and
movement to/from the GPU, the speedup was 2.59x. With the sequence set
Syn 100000 (100, 000 sequences), a speedup of 4.46x was attained, reducing
execution time from 209.54s to 47.00s.

1. Introduction
Bioinformatics is an interdisciplinary field that seeks to create algorithms and tools to
help biologists analyze data, in order to understand the function and structure of bio-
logical sequences and the evolution of organisms [Mount 2013]. Sequence alignment
is a basic Bioinformatics operation used to identify the similarity of sequences and
can be done between two (pairwise alignment) or more (Multiple Sequences Align-
ment - MSA). MSA is a computationally challenging problem, proved to be NP-
Complete [Wang and Jiang 1994]. Because of that, it is common to use heuristic algo-
rithms.

MSA algorithms receive a set of sequences and return a score and a multiple
alignment, which identifies regions of similarity and difference between the sequences.
A heuristic MSA algorithm usually can be divided in three phases: (a) similarity matrix
(distance matrix) calculation; (b) construction of a guide tree and (c) progressive align-
ment.

The evolution of sequencing methods have been generating increasingly larger
genomic databases. In this scenario, heuristic MSA algorithms have difficulty align-
ing sets with tens of thousands of sequences in a timely manner. Even algorithms
specifically designed for tens of thousands of sequences may take hours to obtain re-
sults [Deorowicz et al. 2016].

In order to shorten execution times, many Bioinformatics applications have been
using the great parallel capacity of GPUs (Graphics Processing Units). There are MSA
tools using GPU, but most are focused on sequence smaller than 20,000 sequences.

MAFFT [Katoh et al. 2002] is an MSA package that uses FFT (Fast Fourier Trans-
form) in the progressive alignment phase. One of the algorithms offered by MAFFT is
Parttree, which uses, by default, shared 6mer (subsequences of 6 characters) counting

to calculate the distance between sequences, and is capable of aligning over 100,000 se-
quences. The sequential version of Parttree has been used in many different works like
[Mi et al. 2012], [Nam-phuong et al. 2015] and [Lamnidis et al. 2018], but its execution
may take hours. At this moment, there is no version of Parttree for GPU.

In this paper, we propose and evaluate CUDA-Parttree, a parallel strategy using
GPU to calculate the MSA of tens of thousands of sequences using Parttree. This strategy
uses the GPU to calculate the number of shared 6mers betweens sequences, because not
only is it a computationally demanding operation, but also because 6mer counting (or
more generically k-mer counting) is also used on other Bioinformatics problems, like
DNA assembly [Ghosh et al. 2019].

Using this strategy, we were able to reduce the execution time of the distance cal-
culation between all sequences compared to Parttree. CUDA-Parttree was used to align 6
real sequence sets, ranging from 25, 534 to 151, 443 sequences, and 4 synthetic sets, rang-
ing from 10,000 to 100,000 sequences. CUDA-Parttree obtained a speedup of 6.10x on
the distance matrix calculation for the Cyclodex gly tran (50, 280 sequences) set, reduc-
ing the execution time from 33.94s to 5.57s. Including the data transformation required
for the GPU calculation and to return the distance matrix, CUDA-Parttree obtained a
speedup of 2.59x. With the sequence set Syn 100000 (100, 000 sequences), a speedup of
4.46x was attained, reducing execution time from 209.54s to 47.00s.

The rest of this paper is organized as follows. We present an overview of the MSA
problem in Section 2. Section 3 discusses related work in the area of MSA using High
Performance platforms. In Section 4, we present the design of CUDA-Parttree and the
experimental results are shown in Section 5. Finally, we conclude the paper in Section 6.

2. Multiple Sequence Alignment (MSA)
Biological sequences are ordered set of amino acids, for proteins, or nucleotides, for
DNA/RNA. DNAs e RNAs are represented by sequence of characters from alphabet
{A, T, C,G} and {A,U,C,G}, respectively, and protein by sequences of characters from
alphabet {A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y } .

A Multiple Sequence Alignment is obtained by inserting gaps (spaces) into the
n sequences until all sequences have the same length (l). A scoring function is used in
order to qualify an alignment. The most used scoring function is the Sum-of-Pairs, which
defines the score (SP) of a MSA as the sum of the scores of the pairwise alignment of
all possible pairs. The score of each pairwise alignment can be calculated in many ways.
DNA/RNA alignments usually set a value for a match (equal characters) and another for a
mismatch (different characters), and the total score of a pairwise alignment is given by the
sum of the scores of each column. Protein alignments, on the other hands, use substitution
matrices, like PAM250 [Dayhoff et al. 1978], in order to score each column.

The Weighted Sum-of-Pairs (WSP) is an adaptation of the SP scoring function
that uses different weights for each pairwise alignment, chosen based on evolutionary
distances between sequences.

There is an exact algorithm for obtaining the optimal alignment between a set of
N sequences [Mount 2013]. The algorithm has one loop for each sequence that covers
the L character of the sequences. A multi-dimensional dynamic programming matrix is

computed. The complexity of the algorithm is O(LN), which makes it unfeasible for even
small sequence sets (30 sequences).

The MSA of a large number of sequences is of great interest to biologists since
it allow the identification of subtle and disperse similarities. However, the MSA using
SP was proved to NP-complete [Wang and Jiang 1994], as such, many heuristic methods
were developed in order to obtain the MSA in a timely manner. Most methods can be
classified in two categories: progressive alignment or iterative refinement.

Progressive alignment methods, such as Clustal W [Thompson et al. 1994], con-
sists of 3 steps: (a) Distance matrix calculation; (b) Guide tree construction; and (c)
Progressive alignment construction.

On the fist step (distance matrix calculation), the distance matrix is built using the
scores of the pairwise alignment between all sequences or between a selected subset of the
sequences and the remaining sequences, like the center-star strategy, where a single se-
quence is aligned to all others. There are many algorithms used for the pairwise alignment
like [Smith et al. 1981], [Hirschberg 1977] or the number of shared kmers (subsequences
of length k). The progressive alignment construction (step 3) is built following the order
of the guide tree. It can be done adding the sequences to a single growing alignment or
building temporary alignments that are eventually aligned themselves.

Iterative refinement algorithms seek to reduce the error introduced in the progres-
sive alignment. They consist of 4 steps, the first 3 being the progressive alignment steps
(a,b and c) and the fourth being (d) the iterative refinement step. The iterative refinement
uses an initial alignment, obtained using a progressive method, and iteratively remove se-
quences from the alignment and realigns them, for as long as there is a gain in the overall
accuracy higher than a defined value. This often results in more accurate alignments, but
also in longer execution times.

MAFFT Parttree [Katoh and Toh 2006] is a progressive alignment algorithm for
tens of thousands of sequences on the MAFFT package. It is a divisive clustering algo-
rithm that builds a guide tree from unaligned sequences in O(N logN). It uses a recursive
approach where on each level of recursion a piece of the guide tree is built from a subset
of sequences and the superior level of recursion combines the trees. In order to build
the tree, the distance between sequences is calculated using the number of shared 6mers
(subsequences on 6 characters).

Initially all sequences are aligned to the longest sequence. Next, a subset of n ref-
erence sequences is chosen, containing the longest sequence, the most distant sequence
from the longest and n− 2 random sequences. The reference sequences are then aligned
amongst themselves and a tree is built between them. Following, the N − n other se-
quences (base sequences) are then aligned to the reference sequences and grouped to the
closest one. A recursive call to Parttree in then made for each group and the resulting
trees stores. Finally, the resulting trees are combined with the reference tree and the result
returned.

MAFFT Parttree was able to align more than 60,000 sequences with an average
loss of 3% accuracy compared to the golden standard of PFAM [Finn et al. 2006].

Table 1. State of the art MSA algorithm in HPC platforms.

Reference Year
Distance
algorithm

Maximum
Number of
sequences

Platform

CUDA Clustal W 2015 LCS 1.000 GPU
CUDA-Linsi 2015 Smith-Waterman 200 GPU

CSMA 2017
Center-star/
K-band 500.000 GPU

MSAProsbs-MPI 2016 HMM 1.543 MPI/OpenMP
FAMSA 2016 LCS 415.519 AVX ou GPU

3. Related work

There are several works on the literature that uses HPC platforms for MSA.
We have analyzed 5 recent works: CUDA Clustal W [Hung et al. 2015],
MAFFT CUDA-Linsi [Zhu et al. 2015], CMSA [Chen et al. 2017], MSAProbs-
MPI [González-Domı́nguez et al. 2016] and FAMSA [Deorowicz et al. 2016], that were
published between 2015 and 2017. Four of them, CUDA Clustal W, MAFFT-Linsi,
MSAProbs-MPI and FAMSA, compare all possible sequence pairs with quadratic dy-
namic programming algorithms (LCS,Smith-Waterman,HMM-Viterbi). CMSA compares
only one sequence to all sequences, reducing considerably the number of comparisons,
with a negative impact on the quality of the alignments. Only CMSA and FAMSA
are able to compare more than 100, 000 sequences either in GPU or CPU with SIMD
instructions (AVX). The best performance is given by FAMSA [Deorowicz et al. 2016]
with the AVX implementation.

4. Design of CUDA-Parttree

4.1. Parttree analysis

CUDA-Parttree is proposed in this paper and it is a version of Parttree that executes part
of the distance calculation using shared 6mers in GPU. The distance calculation step is
of interest in regards to parallelization because it requires a large quantity of independent
calculations. Each pairwise distance can be calculated independently from one another,
which makes it very compatible with GPU processing.

The calculation of the distance matrix usually requires N(N−1)
2

comparisons. For
sequence sets with tens of thousands of sequences, this means an order of billion of com-
parisons. Parttree only aligns a sequences to a subset of up to n sequences (reference
sequences), which reduces the number of comparisons to n(N−n)

2
. Usually, n << N , as

such Parttree is able to calculate the alignment much faster than most progressive align-
ment algorithms. Besides, Parttree uses shared 6mer counting to define distances between
sequences, which is much faster than alignments using dynamic programming.

Parttree uses a recursive approach to build the guide tree, and in each level of
recursion, three distance calculations are executed: (a) between all sequences and the
largest (1 × N)(Area 1 in Figure 1); (b) between the reference sequences (n × n)(Area
2); and (c) among the reference sequences and the remaining ones (base sequences) (n×
(N − n))(Area 3). Since, for a huge set of sequences, Area 3 is much bigger than the
other areas, we decided to use GPU to accelerate the calculation of shared 6mers only on
the first level of recursion and only for Area 3.

Figure 1. One recursive level of the Distance matrix calculated by Parttree

The distance calculation algorithm (calculateSimilarity) groups each amino acid
in one of 6 groups, based on the values of PAM250 [Dayhoff et al. 1978], and represent
them as a number between 0 and 5. Next, each 6mer (subsequence of 6 characters) is
transformed into an integer number using kmer =

∑5
i=0 6

i ∗ s[i], having a value between
0 and 66 − 1. This way, each sequence of amino acids is converted into a sequence of
6mers.

Algorihtm 1 presents the pseudo code for the calculateSimilarity function. Firstly,
a vector called refMap, containing 66 positions, where element i represents the number
of times that 6mers i appeared in the sequence, is created (lines 2 to 8). Next, the calcu-
late6mers function is called and for each 6mer k on the base sequence it is checked if the
value position k on the mirrorMap is less than the value of position k on the refMap. If
positive, the number of shared 6mers and the position k on the mirrotMap are incremented
by 1. Otherwise, it means that 6mer k appeared more times in the base sequence and no
value is changed.

Algorithm 1 calculateSimilarity(refSeq,baseSeq)
1: function CALCULATESIMILARITY(refSeq, baseSeq)
2: distMtx[n ∗ (N − n)] = [0, 0...0]
3: for r ∈ refSeq do
4: refMap[66] = [0, 0...0]
5: for i = 0→ length(r) do
6: k ← r[i]
7: refMap[k] + +
8: end for
9: calculate6mers(refMap, baseSeqs, dstMtx)
10: end for
11: return distMtx
12: end function
13: function CALCULATE6MERS(refMap, baseSeq, dstMtx)
14: for s ∈ baseSeqs do
15: mirrorMap[66] = [0, 0...0]
16: for i = 0→ length(s) do
17: k ← s[i]
18: if refMap[k] > mirrorMap[k] then
19: distMtx[r][s] + +
20: mirrorMap[k] + +
21: end if
22: end for
23: end for
24: end function

4.2. CUDA-Parttree
The objective of CUDA-Parttree is to speedup the calculation of the distance matrix of
the last call to calculateSimilarity on the first level of recursion (Figure 1 Area 3) when
compared to Parttree.

The calculation of the distance matrix in CUDA-Parttree was divided in 3 phases:
(a) Data conversion (Input); (b) GPU computation and (c) Data retrieval (Output). Fig-
ure 2 illustrates our design.

Figure 2. CUDA-Parttree organization

The Data Conversion (Input) phase receive the base sequences, makes the nec-
essary transformations for execution on GPU and then sends them to GPU. The GPU
Calculation phase generates the refMaps, sends them to GPU, execute the GPU shared
6mer calculation and moves the distance matrix from GPU to CPU. Finally, the Data Re-
trieval phase applies a length based correction to the value of shared 6mers calculated and
returns the distance matrix back to the Parttree algorithm.

In order to achieve good performance on GPU, some transformations were made
to the data. First, for each pair of reference sequence and base sequence, Parttree used a
mirror vector in order to avoid over counting 6mer. Since the original code is sequential,
it was possible for Parttree to always use the same vector, only requiring the values to be
reset for each new pair. In CUDA-Partree however, the calculations are done in parallel,
requiring multiple vectors, each with 66 integers, which means about 182KB per pair.

In order to reduce the amount of memory necessary without affecting the paral-
lelism, a new way of representing the sequences is proposed in CUDA-Parttree. In Part-
tree, sequences are represented as a vector of integers representing 6mers, on the order in
which they appear. The new way of representing the sequences uses a vector of structs,
(2 integers): 6mer and the number of times it appears in the sequence (Figure 3). In this
new representation, the mirror vector is no longer necessary and the 6mer counting is still
done in O(L), where L is the length of the sequence.

Figure 3. CUDA-Parttree data conversion

Once the sequences are converted, they are sorted according to length, setting the
positionMap vector with the original positions of the sequences. Next, paddings are
added to the sequences so that each group of 32 sequences (section) has the same length,

which will help reduce the time threads remain idle on GPU. Finally, the sequences are
transfered to a linearized vector and copied to GPU. During this phase, two additional
vectors are created to keep the length of the sequences of each section and the initial
positions of each section in the linearized vector.

The GPU calculation phase consists of the calculation of the refMaps, sending
them to GPU, executing the calculation of the distance matrix (6mer counting) in GPU,
retrieving the resulting matrix to CPU and freeing the GPU memory.

Algorithm 2 presents the algorithm for counting shared 6mers in GPU. Each GPU
thread is responsible for calculating the number of shared 6mers between one base se-
quence and all reference sequences. The padding added ensures that all threads in a warp
execute over vector of the same length, improving the parallelism.

Algorithm 2 starts by calculating the id of the base sequence that the thread will
be responsible (line 1) and checking that it is a valid id (line 2). Next, the id of the section
to which the sequence belongs is calculated (line 3), followed by its position within the
section (line 4). In line 5 the initial position of the section is obtained, followe by the
length of the sequences on the section (line 6) and then the position of the sequence on the
vector (line 7). The loop in line 8 is responsible for iterating over the reference sequences
and in line 9 the position of the refMap is calculated. The loop on line 11 iterates over
the vector of 6mer. In line 12, the number of times that the 6mer appeared on the base
sequence is recovered, followed by he number of times it appeared on reference sequence
(line 13). Next the number shared 6mers is updated with the lowest value (lines 14 to 18).
Finally, in lines 20 and 21 the total value obtained is moved to distance matrix.

Algorithm 2 calculate6mersGPU(sectionLengthVec,sectionAddrVec,N,n,refMap,
baseSeqs,distMtx)
1: seqId = blockIdx.x ∗ blockDim.x+ threadIdx.x
2: if seqId < N then
3: sectionId = bseqId/WARPSIZEc
4: offset = sectionId%WARPSIZE
5: sectionAddr = sectionAddrV ec[seqId]
6: sectionLength = sectionLengthV ec[seqId]
7: sequenceAddr = sectionAddr + offset ∗ sectionLength
8: for refSeqId = 0→ n do
9: mapAddress = refMap+ (refSeqId ∗MAPSIZE)
10: distance = 0
11: for j = 0→ sectionLength do
12: baseCount = baseSeq[sequenceAddr + j].count
13: refCount = mapAddress[baseSeq[sequenceAddr + j].kmer]
14: if baseCount <= refCount then
15: distance += baseCount
16: else
17: distance += refCount
18: end if
19: end for
20: index = N ∗ refSeqId+ seqId
21: distMtx[index] = distance
22: end for
23: end if

This phase ends after the resulting distance matrix is recovered from GPU and the
GPU memory is freed.

The Data Retrieval phase is responsible for moving the values calculated in GPU
to the correct positions, according to the original sequence order before the sorting on

phase 1 and for applying a length based correction to the distances calculated.

5. Experimental Results
5.1. Experimental Setup
CUDA-Parttree was written in CUDA C and tested in the test environment described in
Table 2. It was executed using GPU blocks with 256 threads each (T = 256), and as
many blocks as necessary to cover all sequences (B = N/T). These values were chosen
empirically. The maximum number of reference sequences used for these experiments
was n = 5.000, the highest value our execution environment was able to complete. The
section size was set to 32, the same as the GPU’s warp size. All other parameters used the
Parttree default values.

Table 2. Test Environment.

CPU GPU Software
Intel Core i7-3770 CPU, 3.40GHz
4 Cores
128KB L1 Cache
8GB RAM
1 TB Disco

GeForce GTX 980 Ti
2816 CUDA cores
1.19 GHz
6GB RAM

CentOS Linux 7
nvcc release 8.0
gcc version 4.8.5
CUDA Toolkit 8.0

We used 6 real sequence sets, obtained from the extHomFam bench-
mark [Gudys 2016] and 4 synthetic sequence sets generated randomly. Tables 3 present
the sequence sets used.

Table 3. Description of the sequence sets.

ID
Number of
sequences

Length
shortest
sequence

Length
longest
sequence

Average
length

Dataset
size(MB)

bac luciferase 25534 30 405 294 8.4
Peptidase M24 25574 23 354 218 6.4
fn3 49584 21 157 84 5.7
Cyclodex gly tran 50280 18 686 190 11.2
mdd 104692 24 387 120 15.7
HATPase c 151443 31 243 115 21.9
syn 10000 10000 130 149 140 1.5
syn 25000 25000 130 149 140 3.8
syn 50000 50000 130 149 140 7.6
syn 100000 100000 130 149 140 15.2

5.2. Number of reference sequences
Because Parttree choses a subset of n − 2 random sequences as reference sequences and
then filters them so that if sequences too similar only the longest is kept we measured how
many reference sequences remained after the filtration step of Parttrre. Table 4 presents
for each sequence set, the total number of sequences, the number of reference sequences
after the filtration step on the first recursion level, the number cells on the calculated
distance matrix and the size it occupies.

These same measurements were made for the synthetic sequence sets. However,
because the sequences in these sets were generate randomly, in all sequence sets the fil-
tration step did not find any sequences that were too similar to one another, as such the
number of reference sequences used on the alignment was 5, 000. This means that for
the largest sequence set, Syn 100000, the distance matrix calculated had 500 million cells
(5, 000× 100, 000).

Table 4. Number of reference sequences after filtration (the real sequence sets).

ID
Number of
sequences

reference
sequences

distMtx
cells

distMtx
size(MB)

bac luciferase 25.534 906 23.133.804 88.25
Peptidase M24 25.574 835 21.354.290 81.46
fn3 49.584 2.278 112.952.352 430.88
Cyclodex gly tran 50.280 1.291 64.911.480 247.62
mdd 104.692 1.446 151.384.632 577.59
HATPase c 151.443 2.281 345.441.483 1317.75

5.3. CUDA-Parttree execution time

In order to evaluate the speedup obtained with CUDA-Parttree, we measured the execution
times of the distance matrix calculation in both CUDA-Parttree and Parttree. In CUDA-
Parttree, this counts all three phases (data conversion, GPU calculation and data retrieval).
Tables 5 and 6 present the results of our measurements. The execution times are those
for the whole CUDA-Parttree, including Data conversion, GPU comparison and Data
Retrieval.

Table 5. Execution time for Parttree and CUDA-Parttree (real sequences).

ID Parttree(s)
CUDA
Parttree(s) Speedup

bac luciferase 15.47 6.48 2.39x
Peptidase M24 10.29 5.64 1.83x
fn3 27.17 13.47 2.02x
Cyclodex gly tran 33.94 13.18 2.58x
mdd 54.02 24.96 2.16x
HATPase c 121.56 68.65 1.77x

Table 6. Execution time for Parttree and CUDA-Parttree (synthetic sequences).

ID Parttree(s)
CUDA
Parttree(s) Speedup

Syn 10000 9.50 4.73 2.01x
Syn 25000 41.22 14.86 2.77x
Syn 50000 98.96 34.54 2.87x
Syn 100000 209.54 70.40 2.98x

CUDA-Parttree was able to achieve a maximum speedup of 2.58x on the real
sequence set Cyclodex gly tran, reducing the execution from 33.94s to 13.18s. On the
synthetic sequences, CUDA-Parttree obtained a speedup of 2, 98x on set Syn 100000,
reducing execution time from 209.54s to 70.40s.

5.4. Profiling of CUDA-Parttree

The speedups obtained, despite being good, were below our expectations. Because of
that, we made a profiling of the execution times of each step of CUDA-Parttree: (a)
sequence setup; (b) creation and movement of reference maps (Calc/Send refMaps); (c)
GPU calculation; (d) movement of the distance matrix from GPU to CPU; and (e) return
to Parttree. Step (a) is equivalent to the Data conversion (Input) phase of Parttree, steps
(b), (c) and (d) belong to the GPU calculation phase (Compute) and step (e) is equivalent
to the Data Retrieval phase (Output).

Tables 7 and 8 present the execution times of each step of CUDA-Parttree. The
first column presents the ID of the sequence sets and the next five present the execution

Table 7. Profiling of CUDA-Parttree using real sequence sets.

ID
Sequence
Setup(s)

Calc & send(s)
RefMaps(s)

GPU
calc(s)

distMtx
Retrieve(s)

Parttree
return(s)

Input Compute Output
bac luciferase 3.342 0.029 2.466 0.022 0.619
Peptidase M24 3.319 0.024 1.769 0.020 0.506
fn3 5.792 0.086 4.670 0.177 2.739
Cyclodex gly tran 5.890 0.037 5.529 0.074 1.644
mdd 11.417 0.037 9.580 0.210 3.719
HATPase c 16.531 0.120 22.411 10.936 18.230

Table 8. Profiling of CUDA-Parttree using synthetic sequence sets.

ID
Sequence
Setup(s)

Calc & send(s)
RefMaps(s)

GPU
calc(s)

distMtx
Retrieve(s)

Parttree
return(s)

Input Compute Output
Syn 10000 1.68 0.13 1.85 0.05 1.01
Syn 25000 3.23 0.13 8.30 0.12 3.09
Syn 50000 5.74 0.13 22.56 0.23 5.87
Syn 100000 10.90 0.12 46.88 0.69 11.80

times of each step in seconds. The profiling allowed us to identify that a significant
amount of time is spent on the Input and Output phases (Figure 4). As the size of the sets
increase, so does the proportion of time spent in the Compute phase, reaching 42.75%
on the largest set. The synthetic sequence sets spent proportionally more time on the
Compute phase than the real sequence sets since more reference sequences remained after
the filtration phase for synthetic sequences.

Real sequence sets Synthetic sequence sets

Figure 4. Distribution of time on each phase of CUDA-Parttree

5.5. Comparison with FAMSA

FAMSA [Deorowicz et al. 2016] was the multiple sequence alignment algorithm for tens
of thousands of sequences that presented the best results during our review of the state
of the art, providing better accuracy and shorter times than the other algorithms, includ-
ing Parttree. In order to evaluate the performance of CUDA-Parttree, we compared the
total execution times of FAMSA and CUDA-Parttree using the same parameters used by
[Deorowicz et al. 2016] on the 6 real sequence sets (Table 9). FAMSA obtained the best
execution times on the smaller sequence sets. However, for the larger sets CUDA-Parttree
had better execution times, achieving a speedup of 1.34x for sequence set HATPase C.

Table 9. Total execution times of FAMSA and CUDA-Parttree for the real sequence
sets.

ID FAMSA(s)
CUDA
Parttree(s) Speedup

bac luciferase 55.96 70.67 0.79x
Peptidase M24 56.67 60,33 0.94x
fn3 91.35 118.33 0.77x
Cyclodex gly tran 182,80 428,33 0.43x
mdd 330.20 326.67 1.01x
HATPase c 707.78 528.00 1.34x

6. Conclusion
In this paper, we proposed and evaluated CUDA-Parttree, parallel strategy for heuristic
multiple sequence alignment of tens of thousands of sequences in GPU. CUDA-Parttree
executes the counting of shared 6mers between sequences in GPU with sequences sorted
by length, a new data structure for representing the sequences and paddings.

The results obtained from the experiments showed that CUDA-Parttree was able
to calculate the distances between sequences much faster than Parttree. Considering Data
Conversion and movement to/from the GPU, very good speedups were still obtained. Us-
ing a GTX980 Ti GPU we obtained a maximum speedup of 2.58x, reducing the execution
time from 33.94s to 13.18s. We also observed that, despite setting the maximum number
of reference sequences to 5000, the real sequence sets used a lot less sequences than that,
which also impacted the speedup. In the experiments with synthetic sets, we achieved a
maximum speedup of 2.98x (100, 000 synthetic sequences) on the distance matrix calcu-
lation, reducing the execution time from 209.54s to 47.00s. The comparison with FAMSA
showed we achieved a speedup of up to 1.34x on our test environment.

As future works, we intend to test CUDA-Parttree on more modern GPUs, spe-
cially of the Volta architecture. Additionally, we intend to implement techniques of asyn-
chronous data movement between CPU and GPU and use CPU threads in order to increase
the speedup of CUDA-Parttree. Finally, we intend to adapt our shared 6mer counting al-
gorithm for use in other Bioinformatics applications.

Acknowledgment

We would like to thank Prof. Kazutaka Katoh for his support with the Parttree tool. This
work is partially supported by Capes/PROCAD n. 183794.

References
Chen, X. et al. (2017). CMSA: a heterogeneous CPU/GPU computing system for multiple

similar RNA/DNA sequence alignment. BMC bioinformatics, 18(1):315.

Dayhoff, M., Schwartz, R., and Orcutt, B. (1978). 22 A Model of Evolutionary Change
in Proteins. In Atlas of protein sequence and structure, volume 5, pages 345–352.
National Biomedical Research Foundation Silver Spring, MD.

Deorowicz, S., Debudaj-Grabysz, A., and Gudyś, A. (2016). FAMSA: Fast and accurate
multiple sequence alignment of huge protein families. Scientific reports, 6.

Finn, R. D. et al. (2006). Pfam: clans, web tools and services. Nucleic acids research,
34(suppl 1):D247–D251.

Ghosh, P., Krishnamoorthy, S., and Kalyanaraman, A. (2019). Pakman: Scalable assem-
bly of large genomes on distributed memory machines. bioRxiv.

González-Domı́nguez, J., Liu, Y., Touriño, J., and Schmidt, B. (2016). MSAProbs-MPI:
parallel multiple sequence aligner for distributed-memory systems. Bioinformatics,
32(24):3826–3828.

Gudys, A. (2016). extHomFam benchmark.

Hirschberg, D. S. (1977). Algorithms for the longest common subsequence problem.
Journal of the ACM (JACM), 24(4):664–675.

Hung, C.-L. et al. (2015). CUDA ClustalW: An efficient parallel algorithm for progressive
multiple sequence alignment on Multi-GPUs. Computational biology and chemistry,
58:62–68.

Katoh, K. et al. (2002). MAFFT: a novel method for rapid multiple sequence alignment
based on fast Fourier transform. Nucleic acids research, 30(14):3059–3066.

Katoh, K. and Toh, H. (2006). PartTree: an algorithm to build an approximate tree from
a large number of unaligned sequences. Bioinformatics, 23(3):372–374.

Lamnidis, T. C. et al. (2018). Ancient fennoscandian genomes reveal origin and spread
of siberian ancestry in europe. Nature communications, 9(1):5018.

Mi, H., Muruganujan, A., and Thomas, P. D. (2012). Panther in 2013: modeling the
evolution of gene function, and other gene attributes, in the context of phylogenetic
trees. Nucleic acids research, 41(D1):D377–D386.

Mount, D. (2013). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor
Laboratory Press, 2nd edition.

Nam-phuong, D. N. et al. (2015). Ultra-large alignments using phylogeny-aware profiles.
Genome biology, 16(1):124.

Smith, T. F., Waterman, M. S., et al. (1981). Identification of common molecular subse-
quences. Journal of molecular biology, 147(1):195–197.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic acids research,
22(22):4673–4680.

Wang, L. and Jiang, T. (1994). On the complexity of multiple sequence alignment. Jour-
nal of computational biology, 1(4):337–348.

Zhu, X. et al. (2015). Parallel implementation of MAFFT on CUDA-enabled graphics
hardware. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
12(1):205–218.

