
Coherence State Awareness in Way-Replacement Algorithms
for Multicore Processors

Matheus Alcântara Souza1, Henrique Cota de Freitas1, Frédéric Pétrot2

1 Pontifícia Universidade Católica de Minas Gerais,
Graduate Program in Informatics, CArT Lab,

Belo Horizonte, Brazil

2 Univ. Grenoble Alpes, CNRS, Grenoble INP∗, TIMA,
38000 Grenoble, France

matheus.alcantara@sga.pucminas.br, cota@pucminas.br,
frederic.petrot@univ-grenoble-alpes.fr

Abstract. Due to their performance impact on program execution, cache
replacement policies in set-associative caches have been studied in great depth.
Currently, most general-purpose processors are multi-core, and among the very
large corpus of research, and much to our surprise, we could not find any
replacement policy that does actually take into account information relative to
the sharing state of a cache way. Therefore, in this paper we propose to add,
as a complement to the classical time-based related way-selection algorithms,
an information relative to the sharing state and number of sharers of the ways.
We propose several approaches to take this information into account, and our
simulations show that LRU-based replacement policies can be slightly improved
by them. Also, a much simpler policy, MRU, can be improved by our strategies,
presenting up to 3.5× more IPC than baseline, and up to 82% less cache misses.

1. Introduction

Cache misses can be broadly classified in 3 categories [Hennessy and Patterson 2003]:
(1) Compulsory misses, due to a first access to the data, (2) Capacity misses, because of
the cache reduced size compared to the working set size, and (3) Conflict misses, due to
the fact that even though all cache blocks may not be occupied, the function that maps
a memory address to a cache set cannot target an empty block in this set. Reducing
conflict misses can be done by increasing the associativity of the cache, i.e. having
mapping functions targeting more blocks per set. Unfortunately, searching for the data
then requires more hardware and more time to take the hit/miss decision. The solution
used to allow resources/performance trade-offs is using set-associativity: a block may
be placed anywhere in a set whose elements (called ways) can be searched in parallel.
Searching a small number of ways is fast, but there may be many conflicts, whereas
searching among many sets requires more time, but limits the conflicts.

We trace back the invention of set-associative caches to 1968 [Conti et al. 1968],
and since then, way-replacement policies, i.e. choosing which way should be evicted,
have been extensively studied. Already in 1978, Smith [Smith 1978] and Rao [Rao 1978]

∗Institute of Engineering Univ. Grenoble Alpes.



independently published surveys and analysis of replacement algorithms. Since then, new
replacement policies have been devised and many optimizations proposed to fit different
hardware related constraints, such as area, power and number of ways.

The current computing systems are parallel in nature, and they contain several
processors that share a single memory address space. For obvious performance and
power efficiency reasons, these multicore systems include caches, raising a new concern:
ensuring cache coherence. This leads to a new category of conflicts, coherence misses,
due to a block having been evicted as a result of a coherence action. And this eviction
may interfere with the local way-replacement policy.

In this paper, our goal is not to devise a new way-replacement algorithm, but to
evaluate if the sharing state or any information relative to it, e.g. the number of sharers
of a cache block, can be used to enhance the performance of existing way-replacement
policies. To that aim, we propose several approaches to take the sharing state into account,
and we evaluate our proposals on parallel kernels and applications from the SPLASH-2
benchmark [Woo et al. 1995] using the Sniper simulator [Carlson et al. 2014]. Given this,
our contributions are the following:

• Introduction of way-replacement strategies based on the current coherence state
of cache blocks, and based on its number of sharers,

• Comparative analysis of these strategies when combined with well-known
replacement policies (LRU, MRU, NRU and Random).

• We provide experimental evidence that a less complex policy (MRU) can be
improved with our strategies, to compete on equal terms with LRU, for instance.

The remainder of the paper is organized as follows. Section 2 presents the related
work. Our proposal to take into account cache coherence state in way-replacement is
presented in Section 3. Section 4 presents simulation results obtained on a state-of-the-art
simulator for both our proposal and classical way-replacement algorithms. Finally,
Section 5 summarizes the results and concludes the paper.

2. Related work
Choosing the best option for eviction is a challenge that has been addressed by numerous
way-replacement policies. As it is impossible to know the future references of the
program, by nature it is impossible to devise an optimal solution to that problem, hence
the vast number of heuristics that have been proposed.

Simple algorithms do not take into account the way the blocks are accessed when
choosing one for eviction. This is the case for First In First Out (FIFO) that evicts the
block that first entered the set or Last In First Out (LIFO), which takes the opposite stand,
and evicts the last one. Random or Round Robin are even simpler policies. Using these
algorithms can get counter-intuitive results: larger caches or higher associativities may
lead to higher miss-rates [Bélády et al. 1969].

More sophisticated strategies care about the frequency of accesses or the moment
accesses were made to a block. However, there is a disadvantage of hardware complexity
which rapidly increases with the number of ways. For instance, Least Recently Used
(LRU) maintains additional bits to track the entry which has not been used for the longest
time. However, this comes at the cost of k(k−1)

2
bits per set for a k-way associative cache



for the most efficient encoding. The opposite idea is Most Recently Used (MRU), in which
the entries to be evicted are the recently used ones.

Although those strategies have been proposed a long time ago, new
way-replacement policies are still under investigation. For instance, an adaptive policy
that detect the application behavior was developed recently [Tada 2018]. The idea is to
calculate a global fluctuation of priority values on each cache set. This information is then
used to demote or promote a way in the set for eviction. The strategy presents a 0.37%
IPC improvement over LRU, with cache miss rate reductions.

Another adaptive cache replacement policy select blocks by monitoring their
reuse characteristics [Bang et al. 2018]. The authors categorize the blocks as reuse or
non-reuse, and as dirty or clean. Then, a priority between those categories is defined to
select blocks in such situations for eviction. The IPC is improved by 13% was compared
to LRU, according to the authors.

There is also a claim that some correlation exists between the number of hits
in a last level cache block and its reuse distance [Vakil-Ghahani et al. 2018]. Thus, the
authors suggest a block selection strategy based on the number of hits, stored in a table,
which evicts the block with the lowest value. They obtain up to 12.2% performance
improvements over pseudo LRU.

Finally, a cache replacement policy that cares about application behavior
was proposed in [Pai et al. 2018]. In that strategy, memory level parallelism and
data-reuse behavior are taken into account. This information is used in functions as
weights and costs, to determine the candidates for eviction. Results using simulated
multicores showed to 23.8% IPC improvements over SRRIP [Jaleel et al. 2010] and
ABRIP [Lathigara et al. 2015] replacement policies1.

To the best of our knowledge, very few studies address replacement algorithms
making use of the coherence state of a cache block. In fact, we found only two.
The first one [Mounes-Toussi and Lilja 1998] evaluates the effect of prioritizing a cache
coherence state over others when choosing blocks for eviction. The strategy maintains
an MRU state information to be used during the way selection process. Assuming the
cache implements the MESI cache coherence protocol, the authors statically select which
way has the block to evict following the order ‘Invalid’, then ‘Shared’ and not MRU,
‘Exclusive’ and not MRU, ‘Modified’ and not MRU, and finally MRU. If more than one
block in a set is candidate for replacement, a random strategy is applied to choose among
them. Later on, another study evaluated a similar strategy, but this time using dynamic
priorities [Agarwal 2015]. In this dynamic strategy, the priority coherence state is stored
for each cache set, being updated on every block access. This state is called Most Recently
Used State.

Both policies are relatively easy to implement. However, the studies reported
satisfactory results only with a very small number of processors according to today’s
standards – they do not bring much improvement over the traditional and local LRU
approach. Furthermore, none of them took into account the number of sharers a cache

1SRRIP and ABRIP are replacement policies that take into account streaming applications with mixed
access patterns. Those strategies use the concepts of MRU and LRU to keep cache blocks which tend to be
reused as MRU and not reusable blocks from streaming applications at LRU.



block has. Thus, there is an open challenge regarding the use of the coherence state
and sharing of cache blocks to choose the best amongst the k for eviction in k-way
set-associative caches. Our contribution focuses on this challenge. We design and
implement a second chance approach that differs from the related work since, unlike
our proposal, most of it does not care about the sharing information of cache blocks.
In addition, the two initiatives that took into account this information evaluated their
proposals only for a random replacement policy.

3. Coherence Aware Way-Replacement Policy
We consider two main approaches to prioritize the eviction of the block contained in
one way over another. The first one consists of counting how many sharers a single
cache block has and take this information into account when an eviction is needed. In
the second one, basically the decision of evicting or not the cache block depends on its
coherence state. This approach is subdivided into two strategies that differ in the choice
of the coherence state to be checked, which can be either static or dynamic.

Although past works also implement state-based replacement
algorithms [Mounes-Toussi and Lilja 1998, Agarwal 2015], they only evaluate it
for random replacement algorithms. We improve their work by using the replacement
policies that are known to give much better results than random. We modified four
widely used replacement policies to evaluate our strategies: LRU, MRU, NRU and
also RANDOM. The main idea is to let the way-replacement algorithm select the
candidate for eviction, and then check if that candidate should or not be evicted. In
essence, we implemented a second chance approach. In the next sections we detail the
way-replacement policies we designed and implemented. For the purpose of this work,
we use the ‘Modified’, ‘Shared’, ‘Invalid’ (MSI), cache coherence protocol.

LRU, MRU
NRU or 

RANDOM

...

way N

way 1

...
word + tag cache info.

0 0...

Coherence
transition

Update
block state

Coherence
state

{

A
CL2 cache

access

Mapping
strategy

Choose
a way

Evict
Invalid blockValid block

set N

set 10 0
. . .

0 0

Cache
accessB

Update the dynamic
MRU state in the set

Try once
again

Equal states

Different
states

Evict

Compare
states

or 2nd chance

Figure 1. Overview of the coherence state based eviction

3.1. Coherence state based eviction

Our first proposal is to decide evicting or not a cache block based on its current coherence
state. We have two approaches, dynamic and static, taking into account the ‘Modified’
and ‘Shared’ states. Figure 1 shows an overview of the dynamic strategy. The ‘cache
info.’ contains information about the cache entry, such as the coherence state and the
sharing set. Each cache block has its own coherence state, which is updated when there
is a coherence transition, as in A . We adopt the Most Recently Used State (MRU-State)
approach. Thus, each cache set must know the state the most recently used block was,



either ‘Modified’ or ‘Shared’. Additional bits are required per set, and they are updated
when a cache access occurs on each set, as in B .

The replacement algorithm is performed after the cache set selection, accordingly
to the set-associative mapping strategy in C . A candidate way is chosen, and if the block
is valid, its coherence state is compared to the MRU-State. The replacement algorithm
favors blocks that are not in the same state than the current MRU-State for eviction. If they
are equal, the way selection is performed only one more time. In the static strategy, we
set a global state that has priority for staying in the cache. This strategy is performed with
‘Modified’ and ‘Shared’ states. For instance, consider the ‘Modified’ state as priority.
When the replacement algorithm choose a way whose block is in ‘Modified’ state, this
block will not be evicted. Hence, another way will be selected in the modified replacement
policy. For LRU, MRU and NRU, the new selected way is the second in the ordered list.
For Random, simply another random way is selected.

...

way N

way 1

...
word + tag cache info.

LRU, MRU
NRU or 

RANDOM

0... 0 1 0 1...
Sharers bit vector{ {

Threshold

Update
bit set

Cache
access

Update
threshold

D

L2 cache
access

Mapping
strategy

Choose
a way

Evict
Invalid blockValid block

Try once
again

Verify the
threshold

or 2nd chance

Threshold bit = 1 Evict

Threshold bit = 0

E

Figure 2. Overview of the sharer count based eviction strategy

3.2. Sharer count based eviction

The class of cache coherence protocol we used in our tests is the directory-based one. In
directory-based protocols, additional meta-data is needed to keep track of the sharing set,
i.e. the set of caches that cache a given block. In its initial form, the representation of
the sharing set is done using a simple bit-vector. Figure 2 presents an overview of our
strategy, and also depicts a single cache block and its sharers bit-vector. A 1 in position i
in this bit-vector indicates that cache i caches this block. With that in mind, our approach
simply tracks this bit-vector, counting how many sharers each cache block has.

We added a bit to each block, which is set to 1 when the number of sharers is higher
than a threshold, otherwise 0. The bit-vector and the threshold bits are updated when
there is a cache access, as in D in Figure 2. Thus, despite the 1-bit for each cache block,
this approach adds new computational complexity to update the bit on every coherence
transaction. For simplicity reasons, we set the threshold at 50%. However, the idea is that
it can be predetermined by the architect, or even be stored, for instance, in a hardware
register.

The replacement process is triggered after the mapping strategy in E . A candidate
way is chosen, and if the block is valid, the algorithm checks the threshold bit. If set 1,
the block is chosen and the data is evicted. Otherwise, a second try is performed, with a
new candidate way.



4. Simulations and Result Evaluation
In this section we present the results that we obtained by evaluating our proposal using
simulation. But first, we explain our methodology and detail the simulation environment.

4.1. Simulation environment and benchmarks
To perform our experiments, we used Sniper [Carlson et al. 2014], a multicore simulator.
Sniper has integrated to its core the McPAT framework [Li et al. 2009], which we used
to measure power consumption. We modified Sniper to set up our test architectures and
way-replacement algorithms. Regarding McPAT, it uses the architecture parameters from
Sniper, and simulations output to calculate the results. Thus, we did not modify the power
model in the framework.

A 16-core processor based in a x86 Nehalem micro-architecture at 2.66 GHz was
set. Some specific characteristics from this micro-architecture cannot be reproduced in
Sniper though (e.g., Sniper only simulates an inclusive cache model). Furthermore, data
prefetching is disabled in our simulations. The memory hierarchy has three levels. L1
has 32kB for data and 32kB for instructions, each one 4-way associative, private, with 4
cycles data access time, using LRU replacement policy. L2 has 2MB, is 8-way associative,
shared by all 16 cores, with an access time of 8 cycles. We modified the policy on L2
during our experiments. The last level is L3, with 8MB size, 16-way, shared by 16, with
35 cycles of access time, and also using LRU. The aforementioned configuration is similar
to a compute cluster in the manycore processor MPPA-256 [de Dinechin et al. 2013].
This processor comprises 16 of such clusters, each with 2 MB memory inside.

Table 1. SPLASH-2 workloads input sizes

Workload Input Workload Input
barnes 32768 particles radiosity large room

cholesky tk29.O radix 1048576 integers

fft 4194304 data points raytrace car

lu 1024×1024 matrix ocean 1026×1026 grid

We used 8 well-known parallel workloads from the SPLASH-2
benchmark [Woo et al. 1995]. Those workloads were run using all 16 cores. Table 1
shows the input sizes used for the workloads we selected. We chose to evaluate three
metrics to understand the behavior of our cache replacement proposals: (i) L2 cache
miss rate, (ii) instructions per cycle (IPC) and (iii) power consumption. In our set of
simulations, we compared existing policies and our approaches. We present one chart per
unmodified policy (Base) with corresponding modified versions. Dynamic state, Modified
state (M) and Static state (S) represent the coherence based way-replacement strategies,
as introduced in Section 3.1. Bit set is the approach we presented in Section 3.2.

4.2. L2 cache miss rate
In a first evaluation we look at the miss rate on L2 cache. Figure 3a shows the L2 cache
miss rate for LRU. The Dynamic state approach presented equal or better values than Base
for all applications. The best reduction was 2.20% in barnes. We keep in cache the least



ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0%

20%

40%

60%

80%

100%

M
is

s 
ra

te
 (%

)

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(a) LRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0%

20%

40%

60%

80%

100%

M
is

s 
ra

te
 (%

)

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(b) MRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0%

20%

40%

60%

80%

100%

M
is

s 
ra

te
 (%

)

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(c) NRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0%

20%

40%

60%

80%

100%

M
is

s 
ra

te
 (%

)

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(d) RANDOM

Figure 3. L2 cache miss rates

recently used cache block that is in the current mostly used state. Thus, cache blocks in
this state tend to be used in short periods of time, favoring this approach.

Static state approaches also presented cache miss rates slightly better than Base in
some applications. The best cases with 2.48% and 0.89% less miss rates are cholesky and
radiosity, respectively. However, this was not the case for radix and raytrace. Those are
applications with working sets that might not fit in cache [Woo et al. 1995], presenting
irregular access patterns and cache state behavior. Thus, evicting cache blocks based on
static decisions is not a good approach. This raytrace behavior also led to an increase
in cache miss rate for Bit set. However, other six applications have their cache misses
slightly reduced when we use this heuristic. For instance, using LRU with Bit set, it was
possible to obtain up to 1.51% less cache miss rate than Base in radiosity.

Figure 3b presents the L2 cache miss results when using MRU. At first glance, we
can see high reductions in miss rate for some applications, in all approaches. In fact, by
modifying the MRU policy, the mostly recently used data is kept in cache. Since this data
tends to be used in short time, less misses were triggered. Raytrace and barnes were the
ones with the highest relative reductions, around 82% when compared to Base.

It is worth noting that, if we compare the modified versions of MRU against
the Base results from LRU, we can obtain similar results. They are not better than the



unmodified LRU, however, two observations must be taken into account. First, MRU is
much simpler to implement than LRU. Second, the L1 cache replacement policy used in
our experiments was the unmodified LRU. This led to a problem called local replacement
hazard [Zahran 2007]. When an eviction is performed in L2, copies in L1 must be
invalidated, further increasing the number of L2 cache accesses in the near future. This
process is aggravated by the lack of synergy between cache levels, due to LRU blocks
being evicted in L2 (MRU), but without care if they are MRU blocks in L1 (LRU).

Figure 3c presents the miss rates in L2 for the NRU-based algorithms. For most
applications, low variation in rate is perceived in any approach. One exception is cholesky,
that deals with factorization of sparse matrices. This leads to unstructured data in caches
and NRU performs well in such situations. The NRU strategy evicts a not recently used
block, rather than the one which is least used. If we look at the other applications, all of
them were improved by using the Bit set strategy. Generally speaking, the worst strategy
was the static one with shared state as priority. The best reduction was 2.31% for radix
using the Dynamic state approach, when compared to Base.

The Random policy and its alternatives results are presented in Figure 3d. As
the name says, the algorithm choose random blocks for eviction. In cholesky, radiosity
and radix, the Dynamic state presented low improvements. This is due to a decrease in
the randomness of the algorithm when the dynamic state condition was established. On
the other hand, when modified replacement policies avoid to evict a block, they choose
to evict another random block. Indeed, there are few changes in miss rates when this
approach is used, regardless of the modified approaches.

To summarize the evaluation, we highlight that LRU using the Dynamic state can
lead to better results in terms of L2 cache miss rates. This extends the results obtained
in past works which used only the Random policy [Mounes-Toussi and Lilja 1998,
Agarwal 2015]. Furthermore, if the architect needs simpler way-replacement solutions
(e.g. with less hardware costs), a modified MRU version can be used over LRU.

4.3. Instructions per cycle

To understand the performance of our approaches, we measured the instruction per cycle
(IPC) when using each of them. Figure 4a shows the IPC for all applications we tested
with the LRU policies. Overall, IPC did not change much when we modified the strategy.
The Dynamic state strategy appears as the best in seven of eight results, followed by Bit
set. This was not the case for radiosity, which presented results slightly worst than the
baseline. It was possible to obtain up to 6.8% more IPC with cholesky using Dynamic
state. Still about cholesky, but using Bit set, more instructions were executed than in other
strategies, so that it was worse than Static state shared. Generally, the number of cycles
reduces when the cache miss is lower, even with more complexity added to the cache
replacement policy. However, in some cases the reduction in cache miss rate was not
sufficient to surpass this complexity (fft, raytrace).

Figure 4a shows the IPC bars for MRU based policies. The results are similar
in most cases. Our strategies achieved up to 3.5× more IPC (running lu). These results
are an effect of the cache miss improvements we mentioned in last section. If we reduce
the number of cache misses, the number of cache access also reduce, thus, less load and
store cycles are spent. For radiosity, we remember that it has the smallest dataset among



ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0

5

10

15

20

25

IP
C

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(a) LRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0

5

10

15

20

25

IP
C

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(b) MRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0

5

10

15

20

25

IP
C

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(c) NRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0

5

10

15

20

25

IP
C

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(d) RANDOM

Figure 4. Instructions per cycle

SPLASH-2 application, and further the smallest traffic rate (bytes/instructions). That is,
the cache miss reduction has less influence in IPC than in other applications.

The evaluations for NRU and Random policies with our approaches are similar
to the others. The results for them are in Figures 4c and 4d. Basically, when we have
less cache misses, there are less cycles being spent, and IPC increases. Specifically for
cholesky, a weird behavior is presented with all strategies. Furthermore, ocean presented
high cache miss values, and then poor IPC results. The used input size was not suitable for
the simulated architecture. Thus, we should readjust the architecture to better fit ocean, or
the application should be adapted. For those two applications, the use of cache coherence
based way-replacement approaches was not good.

4.4. Energy consumption
In this section, we present the energy consumption results we obtained form McPAT and
Sniper, measured in Joules. We present in Figure 5a the energy consumption when
LRU-based replacement policies were used. Most of the results did not vary much,
presenting less than 1% of variation when compared to Base. An exception was, again,
cholesky, which consumed up to 5.7% more energy when Modified static was used.
McPAT results showed that the power consumption (Watts) did not change much in all
cases. However, there is a trade-off between the energy consumption reduction when



ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0

50

100

150

200

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(a) LRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0

50

100

150

200

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(b) MRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0

50

100

150

200

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(c) NRU

ba
rn

es

ch
ole

sk
y fft lu

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

oc
ea

n
0

50

100

150

200

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Base
Dynamic state

Static state (M)
Static state (S)

Bit set

(d) RANDOM

Figure 5. Energy consumption

we have less cache misses, and the overhead cost of the cache coherence and bit-vector
update.

The same analysis is presented in Figures 5c and 5d, which show the energy
consumption for NRU and Random. For the other cases, most of them presented
energy consumption results that do not changed much (less than 1%) when we used our
way-replacement strategies. We also highlight the same observations from IPC evaluation
for ocean, which thus presented energy consumption in comparison to other applications.

The MRU-based policies stand out again with expressive reductions in energy
consumption. Figure 5b shows the results for this strategy. For radiosity, recall that it
is not too much influenced by cache replacement alternatives, due to its lower traffic and
smaller dataset than other applications. About 69% of energy consumption improvements
can be obtained (the case for cholesky and fft). The Static shared approach was the best 3
times (barnes, cholesky and raytrace), tied with other approaches for lu, and with Bit set
for radix. For fft and radiosity, the Dynamic state approach was the best. Modified state
was the best for ocean, however, the energy consumption values were quite similar.



5. Conclusions
In this paper, we presented some way-replacement strategies for the eviction of blocks
in cache memories. In spite of devising new temporal based algorithms, we chose to
evaluate if the sharing state or the number of sharers of a cache block can be used to
improve the overall performance and energy consumption. To perform this evaluation,
we selected four well-known replacement policies: LRU, MRU, NRU and Random. We
adapted those policies to consider the cache block state, making the decision to evict or
not the block based on it. We also modified the policies to check if the cache block is
shared by more than half of the processors.

Using the Sniper simulator and applications from SPLASH-2 benchmark, our
results showed that such approaches should be considered in the next generation of
memory architectures that rely on cache coherence. The most used way-replacement
policy is LRU. Although our modifications in LRU achieved few performance gains,
other cache related algorithms could be further evaluated to increase this improvements.
Nevertheless, we highlight that using MRU with our strategies showed great results,
being 3.5× faster than the baseline, with cache miss reductions up to 82%. MRU is a
less complex algorithm, thus the replacement policy should be simpler and faster than
LRU-based ones. With those remarks, we conclude that the sharing state and the number
of sharers of a cache block are information that can, somehow, be used to enhance the
performance of cache way-replacement policies.

As future work, we intend to modify cache parameters, such as the number of
ways, the cache size, and the cache sharing strategy, to verify the suitability of our
approach in general. In the same way, to simulate more complex cache coherence
protocols is a future work (e.g. MESI and MOESI). Exploring novel state-of-the-art
way-replacement policies, modifying them, is a future goal as well. Furthermore, a fine
tune in the architecture parameters is an interesting future work, to verify the one which
fits better our strategy. Finally, we suggest to perform a deeper and more detailed power
and area evaluation.

Acknowledgment
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001. We also thank CNPq and FAPEMIG
for their partial support.

References
Agarwal, T. K. (2015). Cache coherence state based replacement policies. Master’s thesis.

Bang, D.-J., Kee, M.-K., Lim, H.-Y., and Park, G.-H. (2018). An adaptive cache
replacement policy based on fine-grain reusability monitor. IEICE Electronics Express,
15(2):20171099.

Bélády, L. A., Nelson, R. A., and Shedler, G. S. (1969). An anomaly in space-time
characteristics of certain programs running in a paging machine. Communications of
the ACM, 12(6):349–353.

Carlson, T. E., Heirman, W., Eyerman, S., Hur, I., and Eeckhout, L. (2014). An
evaluation of high-level mechanistic core models. ACM Trans. on Architecture and
Code Optimization (TACO).



Conti, C. J., Gibson, D. H., and Pitkowsky, S. H. (1968). Structural aspects of the
system/360 model 85, i: General organization. IBM Systems Journal, 7(1):2–14.

de Dinechin, B. D., Ayrignac, R., Beaucamps, P. E., Couvert, P., Ganne, B., de Massas,
P. G., Jacquet, F., Jones, S., Chaisemartin, N. M., Riss, F., and Strudel, T. (2013). A
clustered manycore processor architecture for embedded and accelerated applications.
In 2013 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6.

Hennessy, J. L. and Patterson, D. A. (2003). Computer architecture, a quantitative
approach, chapter 1.6, Quantitative Principles of Computer Design, pages 42–45.
Morgan Kaufmann Publisher, Inc.

Jaleel, A., Theobald, K. B., Steely, Jr., S. C., and Emer, J. (2010). High performance
cache replacement using re-reference interval prediction (RRIP). SIGARCH Comput.
Archit. News, 38(3):60–71.

Lathigara, P., Balachandran, S., and Singh, V. (2015). Application behavior aware
re-reference interval prediction for shared LLC. In IEEE International Conference
on Computer Design (ICCD), pages 172–179.

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi, N. P. (2009).
Mcpat: An integrated power, area, and timing modeling framework for multicore and
manycore architectures. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 469–480.

Mounes-Toussi, F. and Lilja, D. J. (1998). The effect of using state-based
priority information in a shared-memory multiprocessor cache replacement policy.
In Proceedings. 1998 International Conference on Parallel Processing (Cat.
No.98EX205), pages 217–224.

Pai, S., Singh, N., and Singh, V. (2018). AB-Aware: application behavior aware
management of shared last level caches. In Great Lakes Symposium on VLSI,
GLSVLSI ’18, pages 237–242, New York, NY, USA. ACM.

Rao, G. S. (1978). Performance analysis of cache memories. Journal of the ACM,
25(3):378–395.

Smith, A. J. (1978). A comparative study of set associative memory mapping algorithms
and their use for cache and main memory. IEEE Trans. on Software Engineering,
(2):121–130.

Tada, J. (2018). A cache replacement policy with considering global fluctuations of
priority values. In International Symposium on Computing and Networking Workshops
(CANDARW), pages 383–386. IEEE Computer Society.

Vakil-Ghahani, A., Mahdizadeh-Shahri, S., Lotfi-Namin, M., Bakhshalipour, M.,
Lotfi-Kamran, P., and Sarbazi-Azad, H. (2018). Cache replacement policy based on
expected hit count. IEEE Computer Architecture Letters, 17(1):64–67.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. (1995). The SPLASH-2
programs: Characterization and methodological considerations. SIGARCH Comput.
Archit. News, 23(2):24–36.

Zahran, M. (2007). Cache replacement policy revisited. WDDD held in conjunction with
ISCA, pages 1–8.


