
Upstream: Exposing Performance Information from Cloud
Providers to Tenants

Adriano Lange, Marcos Sfair Sunye, Luis Carlos Erpen de Bona

1Departamento de Informática – Universidade Federal do Paraná (UFPR)

{alange,sunye,bona}@inf.ufpr.br

Abstract. Infrastructure-as-a-Service (IaaS) is a widely adopted cloud comput-
ing paradigm due to its flexibility and competitive prices. To improve resource
efficiency, most IaaS providers consolidate several tenants in the same virtual-
ization server, which usually incurs variable performance experiences. In this
paper, we evaluate the CPU time received by tenants’ virtual machines (VMs).
We present a model that estimates the probability of a VM to receive, at least, a
determined fraction of CPU time using limited information about the host and
VMs running on it. We constructed this model using a series of experiments with
different numbers of CPU cores and co-located VMs.

1. Introduction

Infrastructure-as-a-Service (IaaS) is a widely adopted cloud computing paradigm, en-
abling both flexibility and low costs for computing resources. In order to improve effi-
ciency, and consequently achieve competitive prices, IaaS providers typically consolidate
several virtual machines (VMs or guests) from different customers (tenants) in the same
physical server (host).

Despite the apparent advantages, sharing computing resources has also brought
unwanted hurdles for both providers and tenants. The dualism between reservation and
proportional sharing of resources [14] has severe effects on the density of VMs per host
and, consequently, on the infrastructure costs. From the tenant perspective, on the other
hand, sharing resources with other unknown tenants with their respective unknown work-
loads in an unknown host has been synonymous of unpredictable performance.

Estimating the performance of applications in shared environments is challenging
due to a large number of possible interactions between them and the shared resources.
In recent years, substantial work has addressed this problem, analyzing the effects of
concurrent applications and proposing different mechanisms for monitoring the consumed
resources in order to support better scheduling and allocation decisions, e.g., [11, 9, 8]. A
comprehensive survey of this theme is presented by Aceto et al. [3]. Although significant
efforts have been addressed to support provider decisions, these authors recognize the lack
of mechanisms that permit an effective exchange of performance information between
IaaS providers and their respective tenants.

In this paper, we address the above problem of exposing more performance infor-
mation about the shared resources to the tenants. In virtualized environments, each VM
receives one or more virtual CPUs (VCPUs), which are scheduled by the host among the
physical CPU cores. The time received by each VCPU depends on the total number of



VCPUs, their demand for CPU, and the physical cores available. Using limited informa-
tion from the host and the co-located VMs, we implemented a model that estimates the
probability of a particular VM to receive a certain fraction of CPU time from the host.

CPU time is a critical resource for many computing-intensive applications, in-
cluding scientific high-performance computing (HPC) models, machine learning, com-
pression, encryption, and analytical databases. Its lack of predictability is a hindrance for
those applications when deployed in shared IaaS environments, compromising the accu-
racy of internal optimization mechanisms, the quality of service (QoS), and the scheduling
of tasks among horizontally scaled computing nodes [5, 13, 15]. Although reserving re-
sources and lowering the density of VMs per host are the most trivial solutions to improve
predictability, they certainly incur additional costs for both providers and tenants. By ex-
posing more information to the tenants, our model can improve application decisions
without having to pay for dedicated resources.

This paper is organized as follows. In Section 2, we describe the problem of
predicting the CPU time inside the guests for scenarios with multiple CPU cores and
multiple VMs. The setup and experiments used by our prediction model are presented in
Section 3, whereas its construction process is presented in Section 4. In Section 5, we
discuss the possible applications for this model, and we conclude this paper in Section 6.

2. Problem Statement

The main objective of this study is to estimate the probability of a particular VMi to
receive a specific fraction (x) of CPU time form the host by using general information
about the host itself and the other VMs running concurrently. We call this fraction as
potential VCPU time (Pi) for the VMi. In these terms, the probability (Pr) of achieving
Pi ≥ x is defined as:

Pr(Pi ≥ x|Ihost, IVMs) (1)

, where Ihost and IVMs represent sensitive information about the host and the running VMs.

In this paper, we restrict our analysis to one VCPU per VM. We let the evaluation
of any number of VCPUs for future work. In our analysis, x may assume values between
0 (no CPU time) and 1 (all CPU time). Also note that, in the Function 1, we use Pi ≥ x
instead of Pi = x. With this formulation, we consider the probability of getting at least x
fraction of CPU time rather than getting precisely this value. Additionally, Pi ≥ x implies
that its probability has the form of a survival function, which is equivalent to one minus
the cumulative distribution of Pi = x. We approximated this function using a normal
distribution, which has the form of a sigmoid and can be calculated by Function 2.

f(x) =
c

1 + e−k(x−x0)
+ y0 (2)

From the Functions 1 and 2, this problem can be modeled by extracting the param-
eters x0, y0, c, and k from the information about the host (Ihost) and the VMs concurrently
running in the system (IVMs). In order to determine Ihost and IVMs, we evaluated many
aspects of the Linux kernel, and a tool responsible for extracting information from the



virtualization infrastructure [7, 8]. Table 1 summarizes the parameters and counters con-
sidered relevant for this problem formulation. Most of them can be either retrieved or
calculated from /sys and /proc pseudo filesystems. Additionally, we also used the libvirt
library for Python 3 to obtain information about the VMs running in the host.

Table 1. Main Parameters of the Performance Model

Parameter Description
M number of CPU cores in the host available for the VMs
N number of VMs running in the host
V number of VCPUs of all VMs (N = V )
Vi number of VCPUs of VMi (Vi = 1)
V ′i V ′i = V − Vi

Ti time of CPU consumed by the VMi

T total CPU time of all VMs (T =
∑N

i=1 Ti)
Si steal time of VMi

S total steal time of all VMs (S =
∑N

i=1 Si)
Di demand for VCPU of VMi (Di = Ti + Si)
D demand of all VMs in the host (D =

∑N
i=1Di)

D′i D′i = D −Di

The parameters M and N are the number of CPU cores available and the number
of VMs in the host, respectively. V represents the total VCPUs in the system, whereas Vi

denotes the number of VCPUs in a VMi. As mentioned previously, we assume V = N
and Vi = 1. The parameters M and N only refer to the resources available and potentially
consumed in the host by the VMs, but not their real use. The parameter Ti, in turn,
represents the portion of CPU time received by the VMi. The host only grants this time to
the VM if requested. For the host’s kernel, idle time is not accounted to any VM. On the
other hand, if the host can not provide all the time requested by a VM, its VCPU is put
in the ready queue of the host’s scheduler until it is possible to provide more CPU time.
This waiting time is computed as steal time (Si) for the VCPU.

We define Di the demand for CPU of a VMi and use the sum between the service
time (Ti) and the waiting time (Si) to calculate it. Although this sum may not be realis-
tic, once the time in the ready queue of a VCPU may be higher than the computing time
needed by the VM, we consider this difference negligible and, therefore, a good approxi-
mation of this demand. Finally, we respectively denote D′i and V ′i as the demand and the
number of VCPUs of all VMs in the host, except VMi.

Although all information described in Table 1 is accessible by the host, only Vi,
Ti, and Si can be retrieved inside the VMi. For example, in recent versions of the Linux
kernel, the host exposes this information to the guests by using model-specific registers
(MSRs) [6]. Inside the VMs, many performance tools (e.g., top and vmstat) read this
information from the /proc filesystem and display it to the users.

Without more information about the current availability of CPU in the host, the
most trivial alternative for a VM is to probe the host by demanding 100% of its VCPU
and measuring Si. However, this is a resource-consuming approach, which may incur in
performance degradation if several VMs perform this probe regularly in the same host.
Once one probe in a particular VM may potentially affect the others, the arbitrary use



of this approach in production environments may reduce the performance predictability
instead of increasing it.

In order to minimize the above problem, a better alternative is to provide guests
with more information about the usage of host resources or even provide more accurate
performance models about them. In this paper, we have followed this approach by imple-
menting two main programs in Python 3 [10]. The first one, named system, runs inside
the host and collects statistics about the physical CPUs and running VMs. Such informa-
tion is then compiled and shared with the VMs by using an in-memory filesystem. Each
VM received a separate directory in this filesystem to share information. The 9P protocol
performed the connection between these directories in the host and the respective VMs.
To avoid overexposing information, each VM can only see statistics about itself (includ-
ing Ti, Si, and Vi), the counters and a summary per CPU core, in addition to the totals V ,
T , and S.

The second program, named guestmodel, runs inside the VMs and reads the in-
formation produced by the first program to predict Pi. In order to determine the values
x0, y0, c, and k, we used Ihost = M , and IVMs = (N,D′i). In this paper, we omit Vi and V
from IVMs once Vi is always equal to 1 and V = N . The modelM represents a mapping
between the above parameters and the quadruple x0, y0, c, k:

(x0, y0, c, k) =M(M,N,D′i) (3)

We definedM by using a series of experiments with different values for M and
N . The data obtained by these experiments were used to construct different regression
models necessary to calculate the quadruple x0, y0, c, k. In the next section, we describe
these experiments, whereas the construction ofM is presented in Section 4.

3. Setup and Experiments
The experiments conducted in this study were performed on a computer with one Intel
i5-2400, containing four CPU cores, and 16GB of RAM DDR3. The operating system
(OS) used by the host was Ubuntu 16.04 LTS running with the version 4.4 of the Linux
kernel. We also used KVM as the virtualization infrastructure in addition to Qemu 2.5
and Libvirt 1.3.1.

To evaluate the performance interference between VMs, we used a set of 11 ex-
periments with different numbers of CPU cores and VMs. Considering the pair (M,N)
an experiment with M CPUs and N VMs, this set of experiments is {(2, 4), (2, 5), (2, 6),
(2, 7), (2, 8), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9)}. For M = 2, the experiments cover
a VM density varying from 2 to 4 times the number of CPU cores. For M = 3, this
density is between 1.33 and 3. We used a cpuset cgroup of the Linux kernel to control the
set of physical cores available to the VMs. Within this cpuset, we let the host schedule
VCPUs among physical cores without any prioritization of VMs. In order to reduce pos-
sible noises coming from outside the experiments, the other processes running in the host
were bound to the remaining CPU cores. The only exception was IRQ processing, which
remained in its default configuration.

In this work, we did not conduct experiments using one CPU core, once it is not
possible to migrate VCPUs between cores, nor using all CPU cores, once we reserved at



least one core to control the experiments. We leave the evaluation of more CPU cores,
especially the new manycore processors, for future work. All VMs used in the experi-
ments are clones of the same OS installation; in this case, Debian 9. The virtual hardware
assigned to each VM was 1 VCPU and 1GB of RAM.

In each experiment, our primary objective was assessing the CPU time (Ti) and
steal time (Si) of a particular VMi while the demand of the other VMs (D′i) varied. This
scenario requires a benchmark that can coordinate the CPU load of several VMs running
in the same host. We initially analyzed several commonly used benchmarks [1, 12, 2].
However, most of them were designed for assessing the performance of different CPU
features and other hardware characteristics, which do not adequately match with the ob-
jectives of this study.

Instead of using or extending any existing benchmark, we implemented two small
programs to generate and control the VM load [10]. The first one, named load, runs
inside each VM and consists of a closed-loop that reads a set of files and compresses
them using the zlib library. Between each compression, the load program sleeps for a
period determined by the second program, named loadcontrol, which resides on the host
and coordinates the experiments. In order to inform the sleep interval for each VM, this
program used the same shared folder described in the previous section.

Inside the VMs, each instance of the load program used a separated thread to read
the sleep interval. This second thread prevents the main thread from being unnecessarily
blocked while reading information from the shared folder. In each loop of the main thread,
the load program compressed a set of forty-four files with 5MB each. We produced these
files by extracting 220MB from Linux source code (.c and .h files). The extracted lines
of code were shuffled before splitting them into the 5MB files in order to homogenize the
compression time. In order to prevent unnecessary I/O operations, we used in-memory
filesystems to store these files in each VM.

In each experiment, we fixed the sleep time of the first VM to zero (D1 ≈ 1) and
varied the sleep time of the remaining VMs in order to produce different levels of D′1.
We progressively increase D′1 from 0 to V ′1 by setting their sleep time to -1 (Di ≈ 0)
and between 0.8 and 0. During the increase of D′1, different sleep times were randomly
assigned to these VMs.

Figure 1 depicts the measurements of the experiment with 3 CPUs and 6 VMs. In
this figure, the top-most graph represents the first VM (i = 1), whereas the other VMs are
sorted below. The horizontal axis of the figure represents the elapsed time in seconds. In
order to produce consistent performance behavior, we varied the elapsed time according
to the number of VMs in each experiment.

All the experiments performed in this study follow the same pattern depicted in
Fig. 1. While D′1 stayed very low, we observed T1 ≈ D1 and S1 ≈ 0. As D′1 increased,
the CPU demand of the other VMs forced the host’s scheduler to decrease T1, and, con-
sequently, increase S1. In order to prevent VM1 from dominating the host’s CPU, we
periodically set D1 to 0 for one second and again to 1 This behavior can be observed by
the vertical lines in the graph of VM1. In the next section, we analyze the pattern produced
by these experiments in more details.



0

1

0

1

0

1

0

1

0

1

0 500 1000 1500 2000 2500
experiment time (s)

0

1

time (Ti) steal time (Si) demand (Di)

Figure 1. Measurements of the experiment with 3 CPUs and 6 VMs.

4. Model Construction
In this section, we analyze the data obtained by the experiments described in Section 3.
From now on, we will only consider the behavior of VM1 as a function of D′1, i.e., the
CPU demand of all VMs except VM1. Due to space restrictions, we will not show all
the graphs produced from these experiments. These graphs are available in the project
repository [10].

The graphs in Figure 2 represent the data obtained by the experiments (2, 4), (3, 6),
and (3, 8), where (M,N) are the numbers of CPUs and VMs, respectively. These graphs
demonstrate how T1 is affected by D′1 in different scenarios. In all experiments, we con-
sidered only the data where D1 ≥ 0.98, which means that S1 is always close to 1 − T1.
Therefore, we will not show S1 in these graphs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
D'1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T1

data
p05

p50
p95

(a) M=2, N=4

0 1 2 3 4 5
D'1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T1

data
p05

p50
p95

(b) M=3, N=6

0 1 2 3 4 5 6 7
D'1

0.2

0.4

0.6

0.8

1.0

T1

data
p05

p50
p95

(c) M=3, N=8

Figure 2. Experiments Data.

In addition to the data, we also show in Fig. 2 the 5th (p05), 50th (p50), and 95th
(p95) percentiles. The graphs 2a and 2b represent two low-density scenarios of VMs per



CPU. In such conditions, VM1 can receive good performance most the time. On the other
hand, graph 2c depicts a high-density scenario, where VM1 may experience severe per-
formance degradation. We used the 5th and 95th percentiles as baselines to construct the
modelM(M,N,D′i). We define the upper function u(M,N,D′i) as an approximation
of the 95th percentile. Similarly, the lower function l(M,N,D′i) represents an approxi-
mation of the 5th percentile. Finally, we constructedM as a normal distribution between
l and u.

We also used sigmoids as the form of the functions l and u. Although other func-
tion types were also evaluated in this study, including polynomials, exponentials, and
inverses, sigmoids presented the best tradeoff between low- and high-density scenarios.
Both l and u were created by using reference points. These points are coordinates in the
space Ti × D′i and represent the main characteristics of each curve. For the function l,
we used four points: the initial (lini) and final (lfin) coordinates of the sigmoid, in addition
to two intermediate points (lmidT and lmidB) used to indicate the location of the inflection
point and the angle of the sigmoid at that point. We calculated these points from the
parameters M and N by combining both analytical and linear regression models1.

0 1 2 3 4 5 6 7
D'i

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ti

data
data fit
lower function
ref. points

Figure 3. Construction of the lower function l (M=3, N=8).

Figure 3 depicts the 5th percentile, a sigmoid generated by the curve fit2 function
using the 5th percentile, and the lower function with its reference points for the experiment
(3, 8). We divided l into two parts. The first one stays in the left of the initial point (lini),
where Ti is constant and close to 1 (0.99, to be more precisely, once we consider l < u).
The second part of l is between lini and lfin, which is represented by the sigmoid that
characterizes the decline of Ti.

Both the initial and final points of l have one trivial component each. For the initial
point, its Ti component is always equal to 0.99 (i.e., lini = (?, 0.99)), whereas lfin has the
component D′i always equal to V ′i (i.e., lfin = (V ′i , ?)). Therefore, we only had to estimate
D′i for lini and Ti for lfin. For this later, we defined the component Ti as dN/Me−1. When
D is equal to N , the CPU time tends to be equally distributed among the VCPUs (i.e.,
M/N ). However, if the number of VCPUs is not a multiple of M , some CPU cores may
receive more VCPUs than others.

In order to estimate the D′i component of lini, we evaluated several possible linear
and non-linear relationships between the initial decline of the 5th percentile of T1 and
the parameters of Table 1. As depicted in Figure 4, the best model obtained was a linear

1We used the sklearn package for linear regressions: www.scikit-learn.org.
2From scipy package: www.scipy.org.



regression between M , N , and V ′i−D′i. We observed the same pattern for the 50th and
95th percentiles. In Fig. 4, we also plot a projection of this model for M = 4, but we
leave the confirmation for future work.

0 2 4 6 8
N

0

2

4

6

8

V'
i -

 D
'i

data M=2
data M=3
fit M=2
fit M=3
projection M=4

Figure 4. Initial reference point of the lower function l (5th percentile).

The intermediate points lmidT and lmidB are used to determine the position of the
inflection point and the angle of l at that point. In Fig. 4, the point lmidT is to the right of lini,
whereas lmidB is to the left of lfin. Respectively, these points have the same Ti components
of lini and lfin, i.e., lmidT = (?, 0.99) and lmidB = (?, dN/Me−1). In order to calculate the
D′i components, we used the line tangent to the inflection point of the sigmoid generated
by the 5th percentile of the experiments (“data fit” in Fig. 4). The intersections of this
line with Ti = 0.99 and Ti = dN/Me−1 were used to fit linear regressions for lmidT and
lmidB. For lmidT, the best fit was using M , N , the D′i component of lini, and V ′i . For lmidB,
we used M , N , and the distance between lini and lfin in each component.

Figure 5 illustrates the construction of the upper function (u) for the experiment
(3, 8). This process was more straightforward than constructing l. For the function u, we
used the upper half of a sigmoid, which required only three reference points: uini, ufin,
and umidT. Similarly to lini, uini separates the regular part of u on the left (Ti = 1) from the
part where Ti begins to decline. Once ufin represents the inflection point of the sigmoid,
only one intermediate point (i.e., umidT) was necessary to calculate the angle of u at ufin.

0 1 2 3 4 5 6 7
D'i

0.5

0.6

0.7

0.8

0.9

1.0

Ti

data
data fit
upper function
ref. points

Figure 5. Construction of the upper function u (M=3, N=8).

All the reference points used to construct u have one predefined component: uini =
(?, 1), umidT = (?, 1), and ufin = (V ′i , ?). We applied the same method used in lini to
define the D′i component of uini. Figure 6 presents the linear regression between M , N ,
and V ′i−D′i for the initial decline of Ti in the 95th percentile. As in Fig. 4, we also plot
a probable projection for M = 4.

Similarly to lfin, we analytically defined the Ti component of ufin as bN/Mc−1.
For the function u, we use floor instead of ceil to indicate that, in case of imbalance,



0 2 4 6 8
N

0

1

2

3

4

5

6

V'
i -

 D
'i

data M=2
data M=3
fit M=2
fit M=3
projection M=4

Figure 6. Initial reference point of the upper function u (95th percentile).

the VCPU of a VMi may be scheduled for a CPU core with fewer VCPUs. Once uini

and ufin were established, we defined umidT by using a linear regression between: (a) the
D′i component of uini; (b,c) both components of ufin; and (d) the D′i component of the
intersection between Ti = 1 and the tangent line at the inflection point of the sigmoid
produced by the curve fit function using the experiment data (“data fit” in Fig. 6).

The graphs in Figure 7 show the upper and lower functions described above for
the same experiments as in Fig. 2. In most cases, l and u achieved good approximations
of the 5th and 95th percentiles, especially for high-density scenarios. The graph 7a also
shows an error in the initial decline of the upper function for the experiment (2, 4). We
can also observe this error in Fig. 6.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
D'1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T1

data
lower
upper

p05
p50
p95

(a) M=2, N=4

0 1 2 3 4 5
D'1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T1

data
lower
upper

p05
p50
p95

(b) M=3, N=6

0 1 2 3 4 5 6 7
D'1

0.2

0.4

0.6

0.8

1.0

T1

data
lower
upper

p05
p50
p95

(c) M=3, N=8

Figure 7. Lower (l) and Upper (u) Functions.

Using the functions l and u as approximations of the 5th and 95th percentiles, we
constructed a normal distribution between them and calculated the values for the model
M. Once both l and u are dependent on D′i, this model is also subject to the intervals
produced these functions. We used the norm class of the scipy library to generate the
normal distribution between l and u. Figure 8 illustrates the probability function Pr(Pi ≥
x|M = 3, N = 8, D′i = 5.5) generated by the sigmoid of Function 2 and the parameters
produced byM(3, 8, 5.5). In this figure, we also plot the survival function obtained from
the data of experiment (3, 8) with the same D′i. The intersections between D′i = 5.5 and
the functions l and u are also shown as reference (ref) points.



0.0 0.2 0.4 0.6 0.8 1.0
Pi >= x

0.0

0.2

0.4

0.6

0.8

1.0

Pr

Potential CPU time M=3, N=8, D'i=5.5
model
ref points
data D'1=5.5

Figure 8. Potential CPU time.

There are two exceptions to the use of normal distribution between l and u in
modelM. The first and most trivial case is when D′i ≤ lini. Once l and u are approxi-
mately 1, in this case, we return a constant function (x0). The second exception is when
lini < D′i < uini. Once u is limited to Ti ≤ 1, this function does not represent the 95th
percentile when D′i < uini. In this case, we projected u above this limit and then calcu-
lated the normal distribution. Figure 9 illustrates this projection of u for M = 3, N = 8,
and D′i = 2.5.

0.0 0.2 0.4 0.6 0.8 1.0
Pi >= x

0.0

0.2

0.4

0.6

0.8

1.0

Pr

Potential CPU time M=3, N=8, D'i=2.5

model
ref points
data D'1=2.5

Figure 9. Projection of function u outside its limit.

5. Discussion and Application
In this section, we discuss some characteristics and potential applications of our prediction
model. In order to exemplify its use, we implemented a simple performance monitor that
runs inside the guest and combines our model with a histogram of D′i. The following
textbox presents the output of this monitor:
Guest Usage : 50.4% Guest Steal : 49.5% Guest Demand : 100.0%
Total CPUs: : 3 Total VCPUs : 7 Other Demand : 99.9%
Scale (%) ------------ : 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Other Demand Histogram : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 55
Potential VCPU Time : 100 100 100 100 100 99 97 90 68 38 17 7 2 1 0 0 0 0 0 0 0

In the above example, the histogram represents historical information about D′i
normalized between 0 and 100%. From our prediction model, we generated a probability
matrix with the same number of rows and columns as the buckets of the histogram. Each
row corresponds to a probability function for each normalized D′i. In each iteration of the
performance monitor, it multiplies the histogram and the probability matrix in order to
estimate the potential CPU time for the VM.

Our prediction model is orthogonal to both the method used to determine D′i and
the performance model implemented by each application. Instead of using historical in-
formation about D′i, a possible improvement to the above example might be to use pre-
dictive methods to provide short- and long-term forecasts. These methods could be im-
plemented either in the host or in the guests. In any case, this implementation is beyond
the scope of this work.



Each application may exhibit distinct resource requirements and react differently
to their contentions. Another possible use for our model is combining it with domain-
specific performance models and orchestration mechanisms. For example, most dis-
tributed HPC applications need to coordinate their tasks among several computing nodes.
Lack of predictability in computing resources is one of the critical factors that prevent
many HPC applications from being deployed in shared environments. Although our
model was not designed to deliver more resources to these nodes, it can be used to improve
the accuracy of their coordination process.

Another relevant example of combining our model with domain-specific models is
in database systems. Although most of these systems implement their specific cost mod-
els for optimization, performance prediction is still a problematic matter in this field, even
for dedicated hardware [4, 16, 17]. Especially for CPU-intensive queries and in-memory
databases, sharing CPU time with other tenants may further impair the performance pre-
dictability in addition to compromise several administrative and tuning decisions. These
systems could use the estimations about the potential CPU time to improve the accuracy
of their models in shared environments.

6. Conclusion
In this paper, we have presented a model that estimates the probability of a particular VM
to receive at least a determined fraction of CPU time from the host. This model uses
limited information about the host and running VMs, which is forwarded to each VM
by using shared directories. We constructed this model based on a series of experiments
with different numbers of CPU cores and VMs. In each experiment, we evaluated the
CPU time received by a particular VM while the other VMs varied their CPU demand.
From these experiments, we applied different linear and non-linear regression models to
produce probability functions of CPU time.

In our experiments, we evaluated only two and three CPU cores and only one
VCPU per VM. A future direction of this work is to consider more CPU cores in the
host and allocate more VCPUs per VM. However, one potential concern with increasing
the number of VCPUs per VM is the increased complexity of our model if the host’s
scheduler does not consider these VCPUs independently. Besides the number of CPU
cores, hyperthreading and NUMA architectures are other relevant hardware scenarios for
further investigations.

Another future research direction is to automate the construction of this model.
Although we have evaluated different combinations of CPU cores and VMs, the accuracy
of our model may vary according to the virtualization infrastructure and the version of
the Linux kernel running on the host. Therefore, one possible solution is to implement
mechanisms that validate the accuracy of the existent model and recreate it if necessary.
Furthermore, many cloud datacentres have a large number of identical hosts. In such
cases, the automated mechanism could recreate the prediction model only once and repli-
cate it to all equivalent machines.

References
[1] SPEC - Standard Performance Evaluation Corporation, . URL http://www.

spec.org/.



[2] Stress-ng, . URL http://kernel.ubuntu.com/{˜}cking/stress-ng.
[3] G. Aceto, A. Botta, W. de Donato, and A. Pescapè. Cloud monitoring: A survey.

Computer Networks, 57(9):2093–2115, 2013. doi: 10.1016/j.comnet.2013.04.001.
[4] M. Ahmad, S. Duan, A. Aboulnaga, and S. Babu. Predicting completion times of

batch query workloads using interaction-aware models and simulation. In Inter-
national Conference on Extending Database Technology (EDBT/ICDT), page 449,
Uppsala, Sweden, 2011. ACM Press. doi: 10.1145/1951365.1951419.

[5] M. Armbrust. Above the Clouds: A Berkeley View of Cloud Computing. Technical
Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley,
2009.

[6] G. Costa. KVM-specific MSRs. URL https://github.com/torvalds/
linux/blob/master/Documentation/virtual/kvm/msr.txt.

[7] C. B. Hauser. Kvmtop. URL https://github.com/cha87de/kvmtop.
[8] C. B. Hauser and S. Wesner. Reviewing Cloud Monitoring: Towards Cloud Re-

source Profiling. In IEEE 11th International Conference on Cloud Computing
(CLOUD), pages 678–685, 2018. doi: 10.1109/CLOUD.2018.00093.

[9] C. B. Hauser, J. Domaschka, and S. Wesner. Predictability of Resource Intensive
Big Data and HPC Jobs in Cloud Data Centres. In IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C), pages 358–365,
2018. doi: 10.1109/QRS-C.2018.00069.

[10] A. Lange. Upstream Repository. URL https://github.com/alange0001/
upstream.

[11] F. Licht, B. Schulze, L. C. E. Bona, and A. R. Mury. Analysis of parallelized li-
braries and interference effects in concurrent environments. Computers & Electrical
Engineering, 66:435–453, 2018. doi: 10.1016/j.compeleceng.2017.08.028.

[12] NASA. NAS Parallel Benchmarks. URL https://www.nas.nasa.gov/
publications/npb.html.

[13] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime Measurements in the Cloud:
Observing, Analyzing, and Reducing Variance. Proc. VLDB Endow., 3(1-2):460–
471, 2010. doi: 10.14778/1920841.1920902.

[14] I. Stoica, H. Abdel-wahab, and K. Jeffay. On the Duality between Resource Reser-
vation and Proportional Share Resource Allocation. In In Proc. of Multimedia Com-
puting and Networking, pages 207–214, 1997.

[15] F. Wu, Q. Wu, and Y. Tan. Workflow scheduling in cloud: a survey. The Journal of
Supercomputing, 71(9):3373–3418, 2015. doi: 10.1007/s11227-015-1438-4.

[16] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. Predicting
Query Execution Time: Are Optimizer Cost Models Really Unusable? In Inter-
national Conference on Data Engineering (ICDE), pages 1081–1092, 2013. doi:
10.1109/ICDE.2013.6544899.

[17] W. Wu, X. Wu, H. Hacigümüs, and J. F. Naughton. Uncertainty Aware Query
Execution Time Prediction. Proc. VLDB Endow., 7(14):1857–1868, 2014. doi:
10.14778/2733085.2733092.


