
A structural testing tool for MPI programs with loops

Silvia M. D. Diaz 1, Paulo S. L. de Souza 1, Simone do R. S. de Souza 1

1Institute of Mathematical and Computational Sciences
University of Sao Paulo, Sao Carlos - SP, Brazil.

smdiazdiaz@usp.br, {pssouza,srocio}@icmc.usp.br

Resumo. Há uma alta demanda por programas paralelos corretos, principal-
mente devido às arquiteturas paralelas atuais, como clusters e processadores
multi/many cores. O teste estrutural permite identificar defeitos pela cobertura
de estruturas internas de programas paralelos. O não determinismo em progra-
mas paralelos traz novos desafios ao teste estrutural. Ele requer ferramentas
e modelos de teste especı́ficos, capazes de cobrir primitivas de comunicação
e sincronização com comportamentos dinâmicos, tais como os presentes em
loops. Este artigo propõe uma nova ferramenta de software para o teste es-
trutural, com o objetivo de auxiliar testadores na revelação de defeitos desco-
nhecidos associados a comunicação e presentes em estruturas de repetição de
programas paralelos em C/MPI. Baseando-se na cobertura obtida, testadores
podem escolher casos de teste especı́ficos e avaliar o progresso da atividade de
teste. A ferramenta de teste proposta é validada com a ingestão de defeitos no
código de um programa, e com a análise do suporte dado pela ferramenta para
a geração de elementos requeridos e seleção de casos de teste. A ferramenta
proposta automatiza parte da atividade de teste, especificamente a geração de
elementos requeridos e guia a execução dos testes, reduzindo o tempo para a
aplicação da atividade de teste. Nossos resultados mostram que a ferramenta de
teste é capaz de revelar defeitos desconhecidos em primitivas de comunicação
presentes em iterações de loops.

Abstract. There is a growing demand for correct parallel programs, mainly due
to nowadays parallel architectures, such as clusters and multi/many-core pro-
cessors. Structural testing allows the identification of defects by covering in-
ternal structures of parallel programs. Nondeterminism in parallel programs
brings new challenges to the structural testing. It requires specific test model
and tools, capable to cover communication and synchronization primitives with
dynamic behaviors, such as those present inside of loops. This paper proposes a
novel software tool for the structural testing, aiming to help testers in revealing
defects associated to communication present in repetition structures of C/MPI
parallel programs. Based on the obtained coverage, testers can choose specific
test cases and evaluate the progress of the testing activity. We validate the pro-
posed testing software tool by injecting a defect in a program code, and analy-
zing the support for generation of required elements and selection of test cases.
ValiMPI tool automates part of the test activity, specifically the generation of
required elements to guide test case selection, reducing the application cost of
the testing activity. Our results demonstrate that the testing tool is capable to
reveal unknown defects from communication in different loop iterations.

1. Introduction
Parallel programming is widely employed to develop applications requiring high perfor-
mance, such as data analysis, climate modeling, energy research, bio-engineering pro-
cessing, and other real-world problems. Due to the features of these applications, perfor-
mance, reliability, and accuracy are highly required and, therefore, it is important ensuring
the quality of them [Alghamdi and Eassa 2019].

Software testing criteria and tools have been adapted to the context of parallel and
concurrent applications. During the testing activity, a challenge is to deal with the non-
determinism present in these applications. Because of the non-determinism, the execution
of a program with the same test input can generate different possible outputs, which must
be tested in order to verify if the expected behavior is obtained.

Structural testing is one of the techniques for the validation and verification of
concurrent programs [Delamaro et al. 2007, Ammann and Offutt 2008]. It allows reve-
aling defects associated to concurrent events by analyzing the structure of the program,
guiding the selection of test cases to cover required elements provided by testing crite-
ria. Testing criteria establishes rules to select test data to cover required elements based
on the control, data, communication and synchronization flows of concurrent programs.
Analyzing loop paths in concurrent programs is imperative, since possible sub-paths can
increase in number if not applying an adequate technique to select them. Another aspect
in this context is the complexity of the solution to find loop paths as it can reduce efficacy,
for example, implementing redundant mechanisms to select paths consuming extra com-
putational resources beyond the necessary for an effective solution. The implementation
of testing tools could diminish the risks and impact of threats caused by the insufficient
or lack of software quality, preventing additional and unnecessary efforts in the software
development process. On the other hand, the cost of test activity is high, as it requi-
res the generation of test cases, execution of the program and analysis of the outcomes.
Therefore, it is imperative to improve and automate the testing activity.

To reduce the demand for tools to support the application of testing criteria in
message-passing parallel programs with loops, this paper presents ValiMPI for loops, a
software testing tool oriented to test sessions, which supports the testing criteria family,
introduced in [Diaz Diaz 2019]. A model that includes the main features of the parallel
programs (as synchronization, communication, parallelism and concurrency) was used to
support such testing criteria. ValiMPI has been designed to be independent of the en-
vironment. The test of any message-passing parallel program is possible. In fact, only
one module needs to be reconfigured, which deal with source-code. We implement a
new software testing tool for structural testing criteria, which considers the execution of
communication events inside loops. ValiMPI solves problems as the loop factor, since
structural testing is a static analysis-based technique, in the generation of required ele-
ments, and loop execution analysis, which is often seen from a dynamic perspective (the
number of loop iterations can be known only on-the-fly). ValiMPI for loops also considers
the possibility of nested loops, increasing the complexity in the testing activity.

The remaining of the paper is organized as follows. Section 2 introduces the
architecture and main functionalities of ValiMPI tool. Section (3) presents the structural
testing criteria contemplating execution of loops, that is implemented in ValiMPI. Section
4 presents the new version of ValiMPI, with implementation details. Section 5 describes

a case of study using the test model and the ValiMPI tool. Section 6 presents the related
work. Concluding remarks are presented in Section 7.

2. ValiMPI testing tool

ValiPar is a tool for the structural testing of concurrent programs, and it focuses on the
source code of a program. ValiMPI is a version of ValiPar tool for MPI/C parallel pro-
grams, which has the following testing criteria implemented [De Souza et al. 2005]:
All-nodes, All-edges, All-nodes-R, All-nodes-S, All-edges-S, All-C-uses, All-P-uses, and
All-S-P-uses. There are other versions of ValiPar besides ValiMPI for different languages
and memory paradigms, such as ValiPthreads [Sarmanho et al. 2008, Sarmanho 2009],
ValiBPEL [Endo et al. 2008], ValiErlang [Oliveira et al. 2016], and ValiPVM [Souza
et al. 2008a]. ValiMPI is an academic tool prototype that is capable of testing parallel
programs with complex communication and synchronization patterns, which are common
in real applications. Figure 1 shows the architecture of ValiMPI with its main modules.
An overview of the four main modules and functionalities of the tool, which are common
in all versions, are as follows [Ceolin Hausen 2005, Prado et al. 2015, De Souza et al.
2005]:

Figura 1. ValiMPI tool architecture

ValiInst

MPI source
code

Instrumented
source code

Data flow
information

Control Flow
Graphs ValiElem

Required
elements

Automaton
descriptor

files

Graphs­i and
reduced GFSs

Vali­cc

Instrumented
executable

file

ValiExec

Executed paths
(trace files)

Test cases
outcomes

Test data

ValiEval

Coverage and
evaluation
results

Selected
criteria

ValiInst: generates the PCFG by extracting static information. It receives as
an input the program’s source code and the output is the Parallel Control Flow Graph
(PCFG), information regarding the data flow, flow graphs with deviations, use and defi-
nition information and data about message exchange. The instrumentation of the code is
one of the essential functionalities in ValiInst. This module retrieves information from the
source code to provide inputs for the other modules. ValiInst implements the IDel [Simão
et al. 2003] instance for C to instrument the source code of the MPI parallel program,
creating an instrumented file where MPI functions are substituted by their correspondent
ValiMPI function, and each program code line is numbered. ValiInst generates a graph
description file, representing CFGs for each function and each process, building a PCFG.
A DOT file contains the control and data flows information. A script Vali-cc does the

compilation of the instrumented code to include ValiMPI libraries necessary for program
execution. The compiled program is used by ValiExec to run the program with test cases.

ValiElem: generates the required elements. Receives as input the CFG and other
information provided by ValiInst and returns descriptors, required elements and the graph
to establish use associations. A graph-i is constructed for all variables defined in a node
ni and the clear-definition paths from ni to a node nj , so nj will belong to a graph-i if and
only if there is no re-definition of the variable between ni and nj . Graphs-i do not contain
cycles, so in order to avoid infinite paths when generating the graph-i (caused by loops
in the program’s CFG), the path is interrupted when finding a second occurrence of the
node with the variable definition ni. Graphs-i establish associations for data flow criteria,
while the CFG structure obtained by reading DOT files determines the required elements
for control flow criteria. For each required element, ValiElem generates a Deterministic
Finite Automaton (DFA, or automaton, as we will refer in this work), which represents
a regular expression that describes the path that covers such required element. Automata
are implemented by descriptor files, which contains a string that describes the automata
states, number of states, transition function, and acceptance states. The pattern for regular
expressions is defined for required elements for each criterion, for example, the descriptor
for All-S-edges represents the DFA for the regular expression N∗ ni-pa nj-pb N∗, where
N is the set of nodes of CFGpb . The regular expression for All-nodes-R is N∗ ni-p N∗,
where we can observe the existence of one process involved. For each criterion there could
be one or two automata depending on the regular expression for the required elements.

ValiExec: executes the test cases, the input are the test data and the executable
program, generating as output the execution trace and the execution paths, number of pa-
rallel processes and synchronization sequences of them. The execution trace file contains
the intra-process paths and communication primitives exercised by each process, using
the pattern node-process to describe the executed node and the process. Each function
is instantiated in ValiExec for the generation of trace files, so a trace file of each process
function is created. After executing ValiExec, the user can see the outcome of the program
to verify its correctness.

ValiEval: evaluates coverage for criteria. The input are test criteria, its requi-
red elements and the executed paths, to return the evaluation of the code coverage. The
module’s input is the criterion to evaluate coverage. ValiEval implements the automata
using the descriptor file, with the description of states and transition functions of the DFA.
The number of automata described in automaton file for a criterion is determined by the
number of processes, since the DFA requires execution traces for processes pa and pb to
retrieve the required elements from both trace files. The implemented automaton reads
the trace files to find the required elements occurrences in the exercised paths, which
are represented by the automaton’s regular expression. The traces from all functions are
processed until an automaton recognizes the required element. Coverage percentage in
ValiEval is the relation of covered required items over the number of executed elements.
Therefore, the number of recognized automata determines how many required elements
were covered from the total generated for the criterion.

3. Structural testing model considering loop execution for parallel programs
The new ValiMPI for loops proposed in this paper gives the support for the test model,
considering C/MPI parallel programs, with point-to-point communication patterns and

both blocking or non-blocking primitives [Diaz Diaz 2019], coded inside loops (for, while,
do ... while) for C language. The main testing criteria proposed in [Diaz Diaz 2019] are
described as follow.

Control and communication flow structural criteria:

All events-s-loop: the test set must cover all sender nodes np where np ∈ Nsync-loop

for each itp iteration, such that 1 ≤ itp ≤ kd. Required elements are represented by np
itp

.
The set Nsync-loop represents all nodes with communication primitives inside loops.

All events-r-loop: the test set must cover all receiver nodes where np ∈ Nsync-loop

for each itp iteration, such that 1 ≤ itp ≤ kd. Required elements are represented by np
itp

.

All sync-events-loop: the test set must cover all inter-process edges (npa ,mpb
i) ∈

Es-loop for each itp iteration, such that 1 ≤ itp ≤ kd. Required elements are represented by
(npa

itp
,mpb

itp
). The set Es-loop represents all edges associated to communication primitives

inside loops.

Data and message passing flow structural criteria:

All s-uses-loop: the test set must execute paths that cover all s-use-loop associ-
ations for each ita, itb iterations, such that 1 ≤ ita, itb ≤ kd. Required elements are
represented by (npa

ita
, (mpa

ita
, wpb

itb
), x).

All defs-recv-loop: the test set must execute paths that cover all definitions in
receive primitives, where x ∈ def(np) and np ∈ Nsync-loop for each itp iteration such that
1 ≤ itp ≤ kd. Required elements are represented by np

itp
.

All s-c-uses-loop: the test set must execute paths that cover all s-c-use-loop as-
sociations for each ita, itb iterations, such that 1 ≤ ita, itb ≤ kd. Required elements are
represented by (npa

ita
, (mpb

ita
, wpb

itb
), vpbitb , x

pa , xpb).

All s-p-uses-loop: the test set must execute paths that cover all s-p-use-loop as-
sociations for each ita, itb iterations, such that 1 ≤ ita, itb ≤ kd. Required elements are
represented by (npa

ita
, (mpa

ita
, wpb

itb
), (vpbitb , z

pb
itb
), xpa , xpb).

4. ValiMPI for message passing programs with loops

We implemented the new set of testing criteria presented in the previous section, which
is oriented to the execution of loops in parallel programs [Diaz Diaz 2019]. The source
code version of ValiMPI used is described in [Machado 2011]. The extensions in ValiMPI
considers a modular approach to minimize a) refactoring efforts, b) insertion of defects in
a functional software prototype testing tool, and c) regression test cost.

ValiInst module

ValiInst returns a file for each process, listing the nodes of each loop as li =
{n1, n2, ..., nj}, where i is a sequential identifier for the loops and j the total number of
loops in p. If a loop has nested loops, they are specified by their identifiers. See Table 1
for a practical case. The loop information files are used by ValiElem for the automated
generation of required elements.

ValiElem module

Tabela 1. L.function file structure

Loop identifier Nodes/Nested loops identifier

l1 2 3 4 10 l2 l3 14 17
l2 5 6 7 11 15
l3 21 23 22 24

For the generation of the required elements in ValiElem module we consider the
constant k, which establishes the number of replications of each required element depen-
ding on the depth d of the loop, whether there are nested loops or not. We contemplate the
following scenarios in the communication between two processes pa and pb: definition-
use pair paths in process pa and paths in pb, paths inside loops of each process and the
iterations of each loop. For the execution of ValiElem the k value has been added and is
given by:

vali elem 〈NP 〉 “functioni(pa, pb, ...)” “functionj(pc, pd, ...)” −k 〈k value〉
Where, besides the k parameter, NP is the number of processes and ”functioni(pa,

pb, ...)” is the function executed by processes pa, pb, and ”functionj(pc, pd, ...)” is the
function executed by processes pc, pd. Graphs-i [Ceolin Hausen 2005, C Hausen et al.
2019] is a method to identify loop paths so that the tool is able to recognize the associati-
ons required by our criteria. Graphs-i are generated for each node with variable definitions
in each CFG for data flow criteria in ValiMPI, creating definition-free paths for c-p and
s-uses. The paths in loops are unfolded when generating each sub-graph in a Graph-i,
however, the paths of the different iterations are not contemplated. We do not duplicate
the paths representing each loop iteration, to avoid generating too many sub-graphs. The
number of parent loops (nested loop with depth d) determines the number of times that a
communication event must be executed.Therefore, the number of iterations of a determi-
ned required element is determined by kd. The required elements for our criteria contain
the iteration number, having the pattern node-process-iteration that represents an event.
ValiMPI uses DFAs (Deterministic Finite Automata) that recognizes a regular expression
representing a required element, in order to evaluate its coverage. Since the description
of the automata depends on the criteria, ValiElem implements the DFA through descrip-
tor files containing its transition functions and states. The final state of an automaton
recognizes the string of a required element that is present in the trace file [Ceolin Hausen
2005].

One descriptor is used for all required k iterations of a required element. This new
approach, in relation to ValiMPI´s previous version, optimizes the process of reading the
automata descriptors, avoiding the re-interpretation of each event that must be covered
during the test activity. When a required element is inside a nested loop, we followed the
same pattern. A DFA representing an automaton is capable to interpret any number of
repetitions for a required element. Figure 2 presents an example of DFA for All-events-
s-loop criterion. The regular expression representing the required element recognized by
the automaton, corresponds to [N∗ n-p N∗ n-p N∗]k. It indicates that any node of
the program can be executed (excluding the node with the send primitive) followed by
the send node n-p, subsequently expecting the execution of any node from N . Another
occurrence of node n-p is required, considering the previously exposed pattern of the send
node. The regular expression allows to recognize all k iterations present in the trace file.

Figura 2. DFA for All-events-s-loop criterion

ValiEval module

ValiEval reads the automata descriptor files to create a structure representing the
states and transitions of an automaton. For the criteria proposed, ValiEval expects that
each line of the file contains the number of required iterations for each required element
in addition. This approach allows to recover the amount of loop iterations performed by a
process from the execution trace file. Through the recognition of automatons it is possible
to validate the number of occurrences of a required element and determine if it reached
the acceptance state of the automaton and the number of times, in order to obtain the
number of executed iterations and thus coverage percentage.

Two factors are considered to evaluate the coverage of criteria: the number of
processes involved and the number of loop iterations for those processes. The number of
executed iterations by each process for each required element determines the number of
re-executed communication events. We compare the execution of communication events
in a loop (through the trace file) with the number of required iterations (from automa-
ton descriptor file), obtaining the coverage. The number of executed iterations by each
process for each required element determines the number of re-executed communication
events. In other words, if we have k = 2 where process pa is not in a nested loop with
d = 1 with kd = 21, and process pb has d = 2 with kd = 22, then there will be a total of
eight (8) required elements with the combinations between the iterations of each process.

5. Case of study and test model exemplification

This case study represents an test session execution in ValiMPI of a simple program. We
present the elements and sets generated by the tool, and illustrate how ValiMPI supports
the revelation of defects in loops in concurrent programs. For a more in depth analysis,
see [Diaz Diaz 2019]. Algorithms 1 and 2 exemplify the use of this new version of the
ValiMPI software testing tool, by presenting an implementation for the Greatest Common
Divisor - GCD [Dourado 2015]. The algorithms are important to associate the PCFG
with required elements, and to clarify the defect. The programs calculate the GCD for
three integers with three processes: a Master and two Slaves. The variable iter controls
the number of iterations, and result contains the algorithm’s outcome. The Master process
reads three values, sending the first and the second to Slave 1, and the second and third
to Slave 2. Each slave calculates the GCD of its two numbers and sends back the result
to the Master process. If one of the returned values in this first iteration equals to 1 (one)
it means that the GCD is 1 and the algorithm finishes; otherwise, both partial results are
re-sent to Slave 1 to calculate the final GCD with both the partial values. The Master
process finishes the execution when sending to both Slaves the value 0 (lines 39-42 in

Algorithm 1 and line 6 in Algorithm 2). An error related to synchronization events (and
labeled as an observability error according to [Delamaro et al. 2007]) can be injected
if values[0] in line 26 is replaced by values[1], making the Master to receive one of the
values to calculate the GCD rather than the result of a Slave process. A test case with
values {8, 3, 2} does not reveal this defect with just one iteration of the while in line 08 of
Algorithm 1, because the result for both Slaves is 1 and even with the injected defect, at
least one of them is enough to make the if() condition in line 30 true. However, if tester
is required to cover more iterations in loops with message-passing primitives, he/she may
choose a test case with values {3, 6, 2}, imposing the execution of the second iteration of
the loop in line 08 of Algorithm 1. With this new test case, the results of firstValue and
secondValue in the first iteration should be 3 and 2 or 2 and 3 (lines 24 and 26), depending
on synchronization. But with the defect in line 26, the results in the first iteration will be 3
and 2 or even 2 and 6, depending on synchronization. In such scenario, the output (GCD
result) will be 2 or 1 evidencing the observability defect, having a possible correct output
(GCD = 1) despite the error in the code. The execution of different iterations in the loop
-and thus, distinct paths- should reveal the defect. A different choice of test data could
not reveal the defect, but this is true for every structural testing criteria based on source
code coverage.

To illustrate the application of our proposed criteria we present the model exempli-
fication for the GCD algorithms, which generates required elements for all of the propo-
sed criteria, and illustrates with a practical and simple case the elements of our test model,
showing the sets, associations and required elements. Consider the PCFG for the CGD
program, with the relevant communication edges and definitions. ValiMPI generates the
GFC for each functions executed by processes and the required elements. We adapted
the PCFG in Figure 3 to: i. Illustrate the def-use associations that are pertinent for our
criteria, in order to avoid complex representations due to the size of the graph. ii. Focus
on the sections of the graph that are of our interest: loops with sender and receiver nodes,
nodes with definitions and communicational uses. iii. Present the PCFG in a legible form,
representing the elements of our test model.

Dashed lines in the graph (Figure 3) represent synchronization edges (s-edge),
and those ones having a communicational use are marked as s-use. Dots indicate that
there are other nodes and edges in the graph but they are not relevant here. We do not
include the non executable s-edges in the graph. The definition sets involved in our test
model are described in Table 2a. The def(260) = values is defined in a receive primi-
tive. Table 2b shows the elements for sets Lp, Nsync loop and Es loop defined in the test
model. Table 3 presents some of the required elements for our criteria, due to their exten-
sion. For All-s-p-uses-loop criterion the generated required elements are non executable,
because it considers associations between processes p1 and p2, which do not communi-
cate to each other. Recapitulating the error example described for GCD program, the
defect can be revealed by All-s-uses-loop and All-s-c-uses-loop criteria by covering re-
quired elements generated by ValiElem, executing the second iteration of the loop. Such
required elements are (1112, (1912, 2602), valuesp1), (1122, (1922, 2601), valuesp2), and
(1112, (1912, 26

0
2), 3002, valuesp1 , valuesp0). Thus, with the help of ValiMPI and the

guide in the selection of adequate test cases, we can reveal defects present in loops in
concurrent programs.

Algorithm 1 GCD Master
1: Define x, y, z, firstV alue, secondV alue, thirdV alue, sent, values[2], iter, result;
2: iter ← 2;
3: result← −1, sent← 0;
4: read(x, y, z);
5: firstV alue← x;
6: secondV alue← y;
7: thirdV alue← z;
8: while result = −1 do
9: while sent < iter do

10: if sent = 0 then
11: values[0]← firstV alue;
12: values[1]← secondV alue;
13: send(sent+ 1, values, 2);
14: else
15: values[0]← secondV alue;
16: values[1]← thirdV alue;
17: send(sent+ 1, values, 2);
18: end if
19: sent← sent+ 1;
20: end while
21: while sent > 0 do
22: receive(∗, values, 1);
23: if sent = 2 then
24: secondV alue← values[0];
25: else
26: firstV alue← values[0];
27: end if
28: sent← sent− 1;
29: end while
30: if iter = 2 AND (firstValue = 1 OR secondValue = 1) then
31: result← 1;
32: else
33: if iter = 1 then
34: result← firstV alue;
35: end if
36: end if
37: iter ← iter − 1;
38: end while
39: values[0]← 0;
40: values[1]← 0;
41: send(1, values, 2);
42: send(2, values, 2);
43: print(result);

Algorithm 2 GCD Slave
1: Define firstV alue, secondV alue, values[2], result;
2: while true do
3: receive(0, values, 2);
4: firstV alue← values[0];
5: secondV alue← values[1];
6: if firstV alue = 0 AND secondV alue = 0 then
7: break;
8: else
9: while firstV alue 6= secondV alue do

10: if firstV alue < secondV alue then
11: secondValue = secondValue - firstValue;
12: else
13: firstValue = firstValue - secondValue;
14: end if
15: end while
16: end if
17: values[0]← firstV alue;
18: send(0, values, 1);
19: end while

Figura 3. Parallel Control Flow Graph for GCD program

Tabela 2. Test model sets

(a) Number of required elements

def(111) = values def(112) = values
def(260) = values def(51) = values
def(52) = values

(b) Number of adequate test cases

q = 3

Pparallel = {p0, p1, p2}

Lp0 = {110, 160, 170, 200, 190, 220, 230, 190, 180, 150,

250, 260, 280, 300, 310, 320, 330, 290, 270}

Lp1 = {31, 41, 51, 71, 81, 91, 111, 121, 101, 141, 151,

171, 181, 191, 201, 161, 111, 191, 61}

Lp2 = {32, 42, 52, 72, 82, 92, 112, 122, 102, 142, 152,

172, 182, 192, 202, 162, 112, 192, 62}
Nsync loop = {191, 51, 192, 52, 200, 220, 260}
Es loop = {(200, 51), (220, 51), (200, 52), (220, 52),
(191, 260), (192, 260)}

6. Related work
There are different testing tools mentioned on concurrent software testing literature, for
both memory paradigms and for diverse programming languages. In this section we pre-
sent a compilation of such tools to compare and present their main features. We did not
find a previous related work where a testing tool implements structural testing criteria
for parallel programs considering the execution of loops. Dellapasta (Delaware Parallel
Software Testing Aid) is a tool developed to analyze concurrent paths for shared me-
mory programs [Delamaro et al. 2007]. This tool has been used to verify all-du-path
coverage criteria, but one of its limitation is that it is not suitable for distributed me-
mory programs [Souza et al. 2008b]. CHESS uses model checking to cover different
interleavings [Prado et al. 2015] for .Net parallel programs, while ConAn (Concurrency
Analyzer) is utilized for unit testing of concurrent programs [Delamaro et al. 2007] ba-
sing on model testing [Adhianto et al. 2010] as well. ConAn was implemented for a

Tabela 3. Required elements for structural testing loop criteria

Criteria Required elements

All-events-s-loop (2001), (2002), (2201), (2202), (1911), (1912), (1921), (1922)

All-events-r-loop (2601), (2602), (511), (512), (521), (522)

All-sync-events-loop (2001, 511), (2002, 5
1
2), (2001, 521), (2002, 522), (2201, 511), (2202, 512), (2201, 521), (2202, 522),...

All-defs-recv-loop (2601, valuesp0), (2602, valuesp0), (511, valuesp1), (511, valuesp1), (521, valuesp2), (522, valuesp2)

All-s-uses-loop (1111, (1911, 2601), valuesp1), (1111, (1911, 2602), valuesp1), (1112, (1912, 2601), valuesp1), ...
All-s-c-uses-loop (1111, (19

1
1, 26

0
1), 30

0
1, valuesp1 , valuesp0), (1111, (19

1
1, 26

0
2), 30

0
2, valuesp1 , valuesp0),

(1112, (19
1
2, 26

0
1), 30

0
1, valuesp1 , valuesp0), (1112, (19

1
2, 26

0
2), 30

0
2, valuesp1 , valuesp0), ...

All-s-p-uses-loop (1111, (19
1
1, 5

2
1), (7

2
1, 9

2
1), valuesp1 , valuesp2), (1111, (19

1
1, 5

2
2), (7

2
2, 9

2
2), valuesp1 , valuesp2),

(1111, (19
1
1, 5

2
1), (7

2
1, 8

2
1), valuesp1 , valuesp2),...

technique to test java interrupts in another study [Wildman et al. 2004]. The Automated
Concurrent Testing (AutoConTest) is a method to automatically generate and run concur-
rent tests for a given class [Terragni and Cheung 2016]. The generation of such tests bases
on the generation sequences of threads, joining them into multi-threaded tests. HAVE is
an atomicity checker for concurrent programs that integrates dynamic and static analy-
sis [Chen et al. 2009], since it found an issue when finding atomicity violations using
traditional testing methods. Authors present an architecture of tool, with a static analyzer,
code instrumenter and a dynamic monitor and speculator. The source code is translated
into Static Summary Trees, which represent different structures and occurrences of the
program. For loop execution, the study establishes that executing a loop twice is enough
to reveal atomicity violations, when every iteration executes the same access operations.
Some aspects of MPI programs can be verified statically: the syntax of the functions,
the types of data, and the number and type of arguments. However, to identify deadlock
situations it is required to be done dynamically. DeSouza et al. [DeSouza et al. 2005]
propose Intel Message Checker, a tool that verifies the correctness of programs in MPI.

7. Concluding Remarks
In the current literature, there is not a testing tool that implements structural testing criteria
for message-passing programs, that considers the execution of loops. Challenges must be
approached when implementing a test model that combines static analysis and dynamic
structures such as loops. Some considerations are the number of required loop iterations,
considerations on nested loops, parallel nondeterminism, and conceptual adaptations on
data and control flows and implications in the implementation for coverage. The criteria
implementation process allowed us to confirm that the complexity of analysis, design and
development for structural criteria increases when involving loop paths and events associ-
ation. We ran several tests (regression, functional and system) during and on development
completion to look for defects after our modifications, checking the expected results with
some programs of the benchmark. We had manually generated required elements for
such programs basing on the new criteria and comparing the expected results of each mo-
dule. The trace files provided the information of covered elements, allowing us to verify
the number of executed iterations (occurrences of required elements patterns in the file
string) to review the results of ValiEval regarding the shown covered required elements.
We implemented the proposed criteria in ValiMPI tool, for the automated generation of
required elements and coverage evaluation. We also contribute to the enhancement of

ValiMPI, which is the base for several investigations in our research group. We decide to
maintain the functionality of the previous criteria intact, incorporating proposed criteria
conforming the test model definitions. This work describes in a detailed form the previ-
ous and actual behavior of ValiMPI tool. The approaches, methods and design that we
followed helped us to improve the developed functionalities in ValiMPI for the proposed
criteria.

Referências
Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., and Tallent, N. R. (2010). HPCTOOLKIT: Tools

for performance analysis of optimized parallel programs. Concurrency Computation Practice and Experience, 22(6):685–701.

Alghamdi, A. and Eassa, F. (2019). Software testing techniques for parallel systems: A survey. 19:176–186.

Ammann, P. and Offutt, J. (2008). Introduction to Software Testing.

C Hausen, A., Vergilio, S., and Souza, S. (2019). A tool for structural testing of mpi programs.

Ceolin Hausen, A. (2005). Valimpi : uma ferramenta de teste estrutural para programas paralelos em ambiente de passagem de
mensagem. Master’s thesis, Universidade Federal do Paraná, page 92.

Chen, Q., Wang, L., Yang, Z., and Stoller, S. (2009). HAVE: Integrated Dynamic and Static Analysis for Atomicity Violations. 12th
Int. Conf. on Fundamental Approaches to Software Engineering (FASE).

De Souza, S., Vergilio, S. R., De Souza, P. S. L., Da Silva Simão, A., Gonçalves, T. B., De Melo Lima, A., and Hausen, A. C.
(2005). ValiPar: A testing tool for message-passing parallel programs. 17th Int. Conf. on Software Engineering and Knowledge
Engineering, SEKE 2005, (November 2015):386–391.

Delamaro, M., Maldonado, J., and Jino, M. (2007). Introdução ao teste de software. CAMPUS - RJ.

DeSouza, J., Kuhn, B., de Supinski, B. R., Samofalov, V., Zheltov, S., and Bratanov, S. (2005). Automated, scalable debugging of
mpi programs with intel® message checker. In Proceedings of the Second International Workshop on Software Engineering
for High Performance Computing System Applications, SE-HPCS ’05, pages 78–82, New York, NY, USA. ACM.

Diaz Diaz, S. M. (2019). Structural testing criteria for concurrent programs considering loop executions. Master’s dissertation,
Instituto de Ciências Matemáticas e de Computação da Universidade de São Paulo.

Dourado, G. G. M. (2015). Contribuindo para a Avaliação do Teste de Programas Concorrentes : uma abordagem usando benchmarks.
Master’s thesis, Instituto de Ciências Matemáticas e de Computação da Universidade de São Paulo.

Endo, A. T., d. S. Simão, A., d. R. S. d. Souza, S., and d. Souza, P. S. L. (2008). Web services composition testing: A strategy based
on structural testing of parallel programs. In Testing: Academic Industrial Conference - Practice and Research Techniques (taic
part), pages 3–12.

Machado, M. C. C. (2011). Estudo e definição de mecanismos para redução do custo de aplicação do teste de programas concorrentes.
Master’s thesis, USP, page 92.

Oliveira, A., Lopes de Souza, P., and Souza, S. (2016). Valierlang: A structural testing tool for erlang programs. pages 1–10.

Prado, R. R., Souza, P. S. L., Dourado, G. G. M., Souza, S. R. S., Estrella, J. C., Bruschi, S. M., and Lourenco, J. (2015). Extracting
static and dynamic structural information from java concurrent programs for coverage testing. In CLEI 2015, pages 1–8.

Sarmanho, F. S. (2009). Teste de programas concorrentes com memória compartilhada. Master’s thesis, USP, page 92.

Sarmanho, F. S., Souza, P. S. L., Souza, S. R. S., and Simão, A. S. (2008). Structural testing for semaphore-based multithread
programs. In Bubak, M., van Albada, G. D., Dongarra, J., and Sloot, P. M. A., editors, Computational Science – ICCS 2008, pages
337–346, Berlin, Heidelberg. Springer Berlin Heidelberg.

Simão, A., Maldonado, J., Vincenzi, A., and Santana, A. (2003). A language for the description of program instrumentation and
automatic generation of instrumenters. CLEI Electron. J., 6.

Souza, P. L., Sawabe, E. T., Silva Simão, A., Vergilio, S. R., and Rocio Senger De Souza, S. (2008a). Valipvm - a graphical tool for
structural testing of pvm programs. In Proceedings of the 15th European PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface, pages 257–264, Berlin, Heidelberg. Springer-Verlag.

Souza, S. c., Vergilio, R., Souza, P., Simao, S., and Hausen, A. (2008b). Structural testing criteria for message-passing parallel
programs. Concurrency Computation Practice and Experience, 20(16):1893–1916.

Terragni, V. and Cheung, S.-C. (2016). Coverage-driven Test Code Generation for Concurrent Classes. In Proceedings of the 38th Int.
Conf. on Software Engineering, ICSE ’16, pages 1121–1132, New York, NY, USA. ACM.

Wildman, L., Long, B., and Strooper, P. (2004). Testing Java interrupts and timed waits. In Software Engineering Conference, 2004.
11th Asia-Pacific, pages 438–447.

