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Abstract. Performance and energy efficiency are now critical concerns in high per-
formance scientific computing. It is expected that requirements of the scientific prob-
lem should guide the orchestration of different techniques of energy saving, in order
to improve the balance between energy consumption and application performance.
To enable this balance, we propose the development of an autonomous framework to
make this orchestration and present the ongoing research to this development, more
specifically, focusing in the characterization of the scientific applications and the
performance modeling tasks using Machine Learning.

Resumo. Alcançar altos nı́veis de desempenho com eficiência energética se tornou
um grande desafio para a computação cientı́fica de alto desempenho. Para con-
tornar esse desafio, espera-se que os próprios requisitos do problema cientı́fico ori-
entem a orquestração de diferentes mecanismos de economia de energia, a fim de
melhorar o equilı́brio entre o consumo de energia e o desempenho das aplicações.
Para isso, é proposto o desenvolvimento de um framework autonômico para fazer
essa orquestração. Neste trabalho são apresentadas as pesquisas em andamento
para este desenvolvimento, mais especificamente, com foco na caracterização das
aplicações cientı́ficas e das tarefas de modelagem de desempenho e consumo de en-
ergia utilizando técnicas de Aprendizado de Máquina.

1. Introduction
One of the greatest barriers to make the new generation of supercomputers feasible is the ever-
growing energy consumption in these environments. Today’s expenses with electric energy
in petaflopic supercomputers already reach high values, making the effort to ensure that the
increase in energy consumption is not proportional to processing capacity even more impor-
tant [Silva et al. 2018]. However, balancing computing power and energy efficiency is not a
trivial task. Most of the time, there’s a direct trade-off between energy efficiency and process-
ing power where increasing one decreases the other. For example, the first supercomputer in
Green500 list of June 2019 1, is in the 469 position in the Top500. The major challenge for
the viability of exascale processing is to find a balance between these two factors and there-
fore different research projects, such as ECP 2, Mont-Blanc 3 and HPC4e 4, and works, such
as [Simon 2013], [Rajovic et al. 2013] and [Messina 2017], seek solutions on this aspect.

Studies point out that this next generation of supercomputers will need to be developed
using approaches where the requirements of the scientific problem guide computer architecture

1https://www.top500.org/green500/lists/2019/06/
2ECP - Exascale Computing Projections - https://www.exascaleproject.org/
3https://www.montblanc-project.eu/
4https://hpc4e.eu/



and system software design. In addition, these requirements should guide the orchestration of
different techniques and mechanisms of energy saving, in order to improve the balance be-
tween energy saving and application performance. For this, the use of autonomic techniques
that allow from the best application scheduling to the frequency sizing of processors and mem-
ories will be fundamental (energy aware).

To achieve this balance between performance and energy saving, we propose the de-
velopment of an autonomous framework to make the orchestration among applications, archi-
tectures and schedulers, based on the requirements of the scientific applications. However, to
reach this level of orchestration, there are challenging tasks to solve: (a) how to collect the
relevant parameters in those heterogeneous HPC environments; (b) understand HPC applica-
tions and environments and how they relate to energy consumption. There is a need to deepen
knowledge about the factors that limit application performance and interfere with power con-
sumption, and map the architectures that represent the current state of the art in HPC; (c)
performance and energy modeling.

In this paper we present all the steps to select the relevant parameters to predict the
runtime of an application in a given computational architecture and the obtained results.

2. Proposed Autonomous Framework

The proposed framework (Figure 1), currently in development, will allow the orchestration of
techniques to reach the balance of performance and power consumption of parallel applica-
tions. It depends on input data such as application characteristics, architectural parameters and
runtime node configuration. Based on these initial information, the characterization of the ap-
plication and architectures available for the job execution will be defined, like an signature of
it. This relationship leads to very specific conditions of performance and energy consumption,
as demonstrated in [Ferro 2015, Ferro et al. 2017a] and could figure out of the knowledge base
(KB) of the framework. This KB would be used by the scheduler to predict the runtime and en-
ergy consumption in order to choose the best architecture for the job and also the feasibility to
select the best frequency, using Dynamic and Frequency Voltage Scaling (DVFS) techniques.

Figure 1. Proposed autonomous framework.

To reach this level of orchestration a number of different techniques must be studied,
like: (a) how to access and collect performance counters and which are the relevant ones in
those heterogeneous HPC environments; (b) the understand and modeling of the applications



and computational architectures; (c) Performance and energy modeling; (d) scheduling ap-
proaches and (e) the use of DFVS techniques. In this work we are focusing on (a) to (c), that
comprises the blue part of the diagram on Figure 1.

The first phase involves the selection of performance counters that will serve as the ba-
sis of all the following steps. These performance counters are selected based on the main com-
ponents of the hardware available and how their levels might impact the overall performance
of an application. We presented our developments about the item (a) in [Silva et al. 2018]
and [Ferro et al. 2017b] and in this work we are concerning only in, after enabling the collec-
tion, to define the relevant features to enable the performance and energy modeling.

At the second phase, a KB is built using the data collected during step one. At this
point, the elements are cross-referenced to understand how they relate to each other and to the
overall runtime to prepare the data to go through the prediction and scheduling phases. The
third phase is the performance and energy modeling task, the main focus of this work, whose
concepts are briefly discussed below.

2.1. Performance and Energy Modeling

Considering the different applications that are run on HPC environments and the complexity of
these mediums, the amount of features that have to be analysed grows exponentially, making
it the use of analytical approaches unfeasible. In this work, we used a promising approach
for empirical modeling, Machine Learning (ML) techniques, in order to predict the time an
application takes to complete its task (performance) and the energy consumed for it, from the
empirical data (sample set) collected from application runs in phase (a) – Figure 1.

This is an important and active area of research in HPC [Malakar et al. 2018]. But,
accurate performance and energy modeling are complex because of the unknown interaction
of the applications and system parameters in these complex systems. The input configuration,
from where we receive the parameters for the prediction consists of the application (such as
problem size, which can be multidimensional) and system parameters. The system parameters
could change by each architecture and generation. So, the hardware counters to measure the
performance and power consumption of an application, such as cache, cpu, IPMITool and so
on, may have different access mode or may not even be present.

As mentioned, the main objective is to use these results to build an autonomous frame-
work that will be used to predict and scale applications at runtime in order to keep a balance
between performance and resource consumption, using the data collected to further improve
the knowledge base without need for human interference or input in a truly autonomous man-
ner. Next we present some related works which have some similarity of our work.

3. Related Work
This section will be focused on works that make use of hardware counters and ML to predict
performance or energy.

Some works also tried to use ML models to predict and optimize applications based
on data collected by performance counters. In [Martı́nez et al. 2017], the authors propose a
specific ML approach tailored for stencil computation using Support Vector Machines and
collecting data from two established stencil kernels with help of PAPI and conclude that their
performance can be predicted with high precision due to the use of the appropriate hardware
counters. The work of [Bhimani et al. 2017] propose a tool using ML as its base to predict the
overall required time to complete multi-stage scientific data processing applications and using



the Linux kernel’s perf to collect hardware counters, presenting the effectiveness of using perf
as well as ML as their conclusion.

Other works use the approach to define an application signature, like ours, as important
to predict performance, such as [Carrington et al. 2013] and [Wong et al. 2015]. However,
they instrument the application for trace collection, which figure in significant effort spent on
code instrumentation and incurs in high overheads of time and space.

4. Experimental Evaluation
In this study the experiments were divided in two phases: The first phase (Section 4.1) was the
monitoring of the application, collecting the events described in the end of this Section. The
second phase (Section 4.2) was the study of the ML techniques to gain knowledge about the
hardware requirements and to define the relevant performance counters to enable the perfor-
mance and energy modeling. Figure 2 presents the flowchart for these phases.

Figure 2. Flowchart detailing the project’s workflow.

4.1. Experimental Setup - Monitoring Analysis
All data used in this work was collected in one of the nodes of the Beholder cluster at Com-
CiDis/LNCC 5. It houses two Intel Xeon X5650S Hexa core CPUs with max clock of 2.67GHz
and 24GB of RAM memory split in 6 sticks of 4096MB with 1333MHz speed. It also has three
levels of cache memory with the sizes of 64KB, 256KB and 12288KB respectively.

The experimental setup for this work is comprised of applications from the NAS Paral-
lel Benchmark suite: Block Tri-diagonal solver (BT), Lower-Upper Gauss-Seidel solver (LU)
and Scalar Penta-diagonal solver (SP) and the Rodinia Benchmark suite: Lower Upper Decom-
position (LUD) mapped from two Motif’s class (Dense Linear Algebra - DLA and Structured
Grid - SG). These Motifs’ classes represent applications with similar computational and com-
munication characteristics and its use should enable a better understanding of the scientific
applications [Mury et al. 2015]. For this study the input sizes chosen were A, B and C which
correspond to the 3D matrix sizes 64, 102 and 162, respectively. For the LUD application, the
2D matrix size chosen was 128. Additionally, every application was executed 30 times varying
the number of threads (1, 2, 4, 6, 8, 10, 12) in order to observe the difference in the execution
time to complete the task and how it impacts the performance counters collected by perf. The
collected data was done on a total of 2100 samples and it was used for the train and prediction
phase.

The events were collected using perf tool, a performance counter tool available in
the Linux Kernel since version 2.6.31: Instructions*, Cycles*, CPU Migrations, Branches*,
Branch Misses*, ContextSwitches*, Cache References*, Cache Misses, L1 dcache Stores*, L1
dcache Loads*, L1 dcache Load Misses, LLC Stores*, LLC Store Misses, LLC Loads, LLC
Load Misses, Page Faults, Minor Faults, Runtime*. The parameters with (*) were the ones
selected and used for the ML predictive task.

5www.lncc.br



4.2. Experimental Setup - Machine Learning

A suitable approach for empirical modeling is supervised ML. This approach models the rela-
tionship between the output variable, such as runtime or energy consumption and one or more
independent input variables (features) such as performance counters and application’s size.

The first step in the Preprocessing phase was to scale the data in order to prevent issues
with the difference in range between the features, which can lead to overfitting and underfitting
among other common issues when using the data to train a ML model. The main objective
when doing a scaling tasks such as this is to prevent performance issues and reduced accuracy
in ML models caused by wildly different range of the parameters, something present in all
of the collected data. When some features have different ranges in their values (for example,
the feature Instructions and CPU Migrations) will affect negatively algorithms because the
feature with bigger values will take more influence. In order to scale the features, the package
StandardScaler and MinMaxScaler from Scikit-learn 6 was used. It transforms all numeric
data in a scale by removing the mean and scaling to unit variance.

For the training and test step, the supervised ML model from scikit-learn’s, Decision
Tree Regressor, has been used. Popularly known as Regression Trees, they are a form of
Decision Trees, which are non-parametric supervised models that predict values of a target
feature by learning simple decision rules inferred from a dataset. The decision to use it was
based on the success of this model to learn over numerical values. Also, it is not sensible
to missing values, noise data and outliers. In addition, decision or regression trees are good
for feature selection, since the top nodes on which the tree is split are essentially the most
important variables within the dataset. Finally, the results are very intuitive and easy to explain,
which could help us to understand how the parameters are related with the runtime and energy
prediction.

A tree with the max depth between 3 and 8 was created and fitted using the train subsets
randomly split during the step describe in Section 5, which are comprised of 75% of all the
original data. Then, a prediction is generated using the test subsets. The metric used to measure
how close the predictions are to the observed value was the Mean Absolute Percentage Error.

5. Experiments and Results

In this work, the targets are the runtime and the energy consumption, and the essential goal is to
obtain knowledge that can be applied towards an equation that will allow to make a prediction
of a estimated value. This is a complex task as it involves the features selection that are generic
enough to allow accurate predictions and can be collected across different architectures. For
this reason, three Feature Selection was made: The Feature Selection 1 (FS1) was based on
the correlation analysis, the Feature Selection 2 (FS2) on the inclusion of the matrix workload
feature for the problem size performed and the Feature Selection 3 (FS3) including the feature
energy joules as a new target7. At this point, all features are numeric. Still, to reach knowledge
of the application requirements, a new column with the sample classification, that corresponds
to the Motif’ class application, was included in the Feature Selection 4 (FS4).

Performance prediction: Initially, all the features presented in Section 4.1 (FS1) were
used for the train and test phases, with its original scale and Decision Tree Regressor (DTR)
with maximum depth between 3 and 8 were trained. The RT with maximum depth of 5 trained

6https://scikit-learn.org/stable/
7All the results can be accessed at https://github.com/ViniciusPrataKloh/WSCAD_2019.



with FS1 features returned a MAPE of 12.854%, showing the importance of these features.
However, as too many rules had been created by the model, few samples were covered by
each leaf, indicating that even though the error is acceptable, the generalization wasn’t good
and the result offers no real practical use for this problem. The DTRs with the best sample
coverage were the ones with the maximum depth of 3 and 4 but their MAPE were far too high
at 718.525% and 693.462%. This indicates that the generalization was bad for this dataset.

In order to improve the precision and generalization capabilities, new experiments were
ran with the feature set FS2 to predict the performance and energy consumption an important
feature is the problem size. However, this a difficult feature to be defined as it may vary with
each type of problem (eg. text, arrays and pictures). In this work, the array’s size was used
provisionally as all applications executed involve some form of array. So, in this step, the
feature workload size was evidently important as it became the main feature used to split the
tree, reducing the MAPE in DTRs with maximum depth of 3 and 4 to 38.383% and 23.801%,
respectively, that is, a reduction of approximately 18.7x and 29x in error.

Figure 3 presents the DTR with maximum depth of 3 and its regression rules. Each
node contains a MAE (Mean Absolute Error) value, which represents the mean of the differ-
ence between the actual and the predicted values, the number of samples covered in it and the
predicted value for that node.

It uses the feature workload size as the root, splitting in branches and L1-dcache-load-
misses. The ”False” path had a good generalization, covering 484, 437, 161 and 337 samples
(out of a total of 1575 samples) per leaf. On the other hand, the generalization on the ”True”
path wasn’t as good because of how the samples were distributed during training, meaning that
few samples in the dataset were covered in these nodes. New experiments are needed with a
larger range of workload sizes in order to attain better results.

Figure 3. Regression Tree for the Performance.

To evaluate the relevance of scaling the data, two more groups of experiments were ran,
one using StandardScaler and the other MinMaxScaler with a range between -1 and 1. The
MAPE in DTRs with maximum depth of 3 and 4 were 2.848% and 1.703% (StandardScaler),
2.401% and 1.18% (MinMaxScaler), respectively. A reduction of approximately 13.5x and
14x in error.

All the results for the runtime can be observed in left side of the Table 1 and for the
energy, int the right side. As can be seen, the MAPE was reduced with the increase of the
depth (from 3 to 8), and the MinMaxScaler presents the better results for the prediction.

Energy prediction: For the energy joules as the target (FS3), the MAPE for the DTRs with



maximum depth of 3 and 4 without scaling the data was 6663.895% and 5626.854%. After
scaling, the MAPE went down to 79.8% and 85.212% and 11.135% and 3.605% after applying
the StandardScaler and MinMaxScaler (with a range of -1 and 1), respectively.

The DTR selected different features from that used to predict the runtime, with
context-switches, L1-dcache-loads, caches-misses, LLC-load-misses, L1-dcache-stores, cpu-
migrations being its main rules. This shows the complexity of reaching a set of generic features
for accurately modeling and predicting performance and energy consumption.

Runtime Energy
No Scaling StandardScaler MinMaxScaler No Scaling StandardScaler MinMaxScaler

MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2
3 38.383 0.977 2.848 0.977 2.401 0.959 3 6663.895 0.915 79.8 0.915 11.135 0.915
4 23.801 0.991 1.703 0.991 1.18 0.973 4 5626.854 0.96 85.212 0.961 3.605 0.96
5 12.759 0.999 0.708 0.999 0.49 0.98 5 4603.152 0.964 51.688 0.965 2.761 0.939
6 6.766 0.999 0.425 0.999 0.395 0.981 6 4402.886 0.974 18.152 0.975 1.512 0.974
7 3.668 0.981 0.284 0.999 0.297 0.981 7 3179.646 0.975 19.906 0.975 1.335 0.975
8 2.146 0.999 0.366 0.999 0.38 0.981 8 2669.094 0.972 19.264 0.972 1.318 0.972

Table 1. Regression Metrics.

Application classification: For the Application Classification, a new featured (target) called
”Classes” was added to represent the classes DLA and SG. The Confusion Matrix generated
by the test data was [ 371 0

0 154 ], representing 100% of accuracy in the test phase.

The features L1-dcache-load-misses, branch-misses and context-switches were also se-
lected in the Regression Tree at maximum depth of 4, for runtime prediction. This shows the
importance of these features in the composition of an application’s signature, in the perfor-
mance prediction and to classify them according to their hardware requirements.

According to the domain expert, the features used in the DTC are not sufficient to
clearly classify new data. This was confirmed in the validation stage, as only approximately
59% of correct answers were obtained, showing that the generalization process needs to be
improved. Still, it is well known that the application classes used, even the CPU intensive DLA
class, uses a large amount of memory [Ferro 2015]. Even though there is an overfitting in the
classification, the attributes selected by the tree still comply with the classes’ requirements.

6. Final considerations
This paper proposes a empirical modeling to predict the performance and energy consumption,
and to classify the application according to the hardware requirements, presenting all the steps
to select the relevant parameters. This work contributes with the importance of the feature
selection and data scaling, as the error metrics had significant reductions in the trained models.

Also, the performance counters were proven to be effective feature in the proposed
prediction and classification problems. As observed, each application class had a different
impact on hardware usage, but in general, features related to cache were present in all tests,
following the computational requirements of the selected application classes.

In future works, new experiments will be carried out with a larger range of applications,
classes and performance counters in order to improve the model’s generalization capabilities
and better understanding of these features.
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