In search of efficient scheduling heuristics from
simulations and Machine Learning

Lucas Rosa!, Alfredo Goldman'

! Institute of Mathematics and Statistics — Department of Computer Science
University of Sao Paulo (USP) — Sao Paulo, SP — Brazil

roses.lucas@usp.br, gold@ime.usp.br

Abstract. High Performance Computing (HPC) systems are used to solve a
number of complex issues in different fields of knowledge. However, these plat-
forms have been rapidly evolving in size and complexity; and ensuring efficiency
in managing applications (jobs) has become a challenge. Typically, this man-
agement involves scheduling heuristics that consist of functions to order the
jobs. In this work we evaluate the limits of regression methods for creating
scheduling heuristics. QOur results show that the simplest heuristic led to the
most efficient scheduling, while the more complex heuristics showed instabili-
ties due to multicollinearity.

1. Introduction

Covering different fields of science and technology (climate, health, economics, artificial
intelligence, efc.), High Performance Computing (HPC) has become essential to solve
complex problems and process the immense amount of data generated every day. The 59th
edition of the TOPS500 [Jack Dongarra and Erich Strohmaier 2022] — a list of the 500 most
powerful computer systems — revealed the Frontier system to be the first true exascale
machine with an HPL score (a parallel implementation of the Linkpack Benchmark) of
1,102 Exaflop/s.

At this scale, resource management is a critical issue that needs to be solved ef-
ficiently since HPC platforms usually consume huge amounts of energy. Resource man-
agement involves assigning when and where HPC applications (hereafter referred to as
jobs) will be processed in such platforms. Its users (research groups, companies, efc.)
submit their jobs to be processed at any given point, and limited information about the
jobs is available for decision-making. Both the applications and the platform resources
are managed by a Resources and Jobs Management System (RJMS) that is responsible
for the decision-making process, solving instances of a problem called online parallel job
scheduling.

Far from theoretical advances, online parallel job scheduling is in practice
solved with scheduling heuristics based on waiting queue sorting algorithms, with
backfilling mechanisms [Mu’alem and Feitelson 2001] using the simple First-Come-
First-Served (FCFS). A possible explanation for this phenomenon is the explain-
ability of scheduling heuristics, given by their simplicity. Regarding FCFS, this
high level of explainability, comes with the drawback of poor scheduling perfor-
mances [Carastan-Santos et al. 2019a].

Related works [Carastan-Santos and de Camargo 2017, Legrand et al. 2019] em-
ploy Machine Learning (ML) techniques to exploit simulation and platform workload

data (logs recorded by RIMS) to create scheduling heuristics. With this regard, regres-
sion methods [Carastan-Santos and de Camargo 2017] appear as a promising approach,
since we can express scheduling knowledge in the form of simple functional forms of the
jobs’ characteristics.

The main goal with this work was to enable the student to investigate the hy-
pothesis of a trade-off between simplicity/performance in learning HPC job scheduling
heuristics, starting from the premise that we may need to sacrifice simplicity in our mod-
els to obtain better scheduling performances. In this paper we restrict ourselves to only
show the main results, since the full work was submitted to the International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD 2022).

Our contributions indicate that we don’t need to sacrifice simplicity to obtain effi-
cient scheduling heuristics. A functional form constituted by a linear combination (simple
multilinear polynomial) of the jobs’ characteristics presented the best scheduling perfor-
mances. Whereas multicollinearity — a phenomenon intrinsic to regression methods —
may drastically degrade the scheduling performance of obtained scheduling heuristics
constituted by complex polynomials.

The remainder of this paper is organized as follows: in Section 2 we present some
preliminary definitions of online parallel job scheduling. We present our methodology in
Sections 3 and 4. Section 5 presents our experimental results. Lastly, in Section 6, we
present our concluding remarks and future works.

2. Online Parallel Job Scheduling

Given a set of n identical machines (processors) M that need to process parallel jobs
J1,J2, - - ., the online parallel job scheduling problem consists of deciding when and at
which machines the jobs will be processed, in a way to optimize a certain performance
metric. We assume that these machines are homogeneous (i.e., have the same processing
power), and are connected by any interconnection topology.

The RJMS has limited information about the jobs, and this information is only
available after the job’s submission. The main information available are notably (i) the
estimated job’s processing time (p;), normally informed by the user, (ii) the number of
processors required to process the job (g;), and (iii) the time when the job was submitted
in the platform (r;, also known as release time). Another important piece of information
that is only available after finishing a job j is its actual processing time (p;).

Many online scheduling problems aim to minimize objective functions related to
the time that the jobs spent in the system. On this basis, we adopt the average bounded
slowdown (AVGbsld) as the scheduling performance metric. Given a job j, its bounded
slowdown (bsld) value can be computed as follows

bsld; = max{ij) 1} (1)

max(p;,7)’

where w; is the time that a job waited for processing since its submission and 7 is a
constant that is typically set in the order of 10 seconds, that prevents small jobs from
having excessively large slowdown values. The average bounded slowdown takes into

account the slowdown average for a set of jobs J and is defined as

AVGbsld(J |Zm {wﬁpﬂ 1}.)

7
max
jeJ pj’)

3. Parallel Job Scheduling Simulations

Let S and () be two sets of jobs. We frame a proxy scheduling problem (similar as the
target one) as the scheduling of the jobs in (), in an HPC platform with m interconnected
processors where the jobs in .S are currently being processed. The job sets S and () are
generated in the following way: from a large enough job log file (also referred to as trace)
N, we randomly select a subtrace M C N with size |S| 4 |Q|. The first | S| jobs from M
belongs S and the remaining |@| jobs from M belongs ().

For each pair (S, Q) — also referred to as frials of () — we randomly sample per-
mutations * of the set () and simulate the scheduling of the jobs (S, Q*), following the
order that the jobs are present in Q*. With P being the set containing all sampled permu-
tations, when the scheduling simulation of all trials end, we compute and assign a score
for each job j € :

> 0rep(iomi) AVGDSIA(Q])

score(j) = ZQ;GP AVGbsld(Q%)

3)

The score represents the impact of scheduling a job 57 € @ first (represented by
Jo in Equation 3), in terms of the average bounded slowdown (Equation 2) of all jobs in
(2. Jobs with a low score represent a positive impact on the total average slowdown when
they are executed first. The set {score(j) | Vj € @} defines a score distribution of the
jobs of () given the initial state S.

The score(j) along with the characteristics p;, ¢; and r; are the central output of
the simulations. We conjecture that with an initial state represented by the scheduling of
the jobs in .S, sorting the jobs in () in increasing order of score(j) results in an efficient
schedule regarding the AV Gbsld(Q) (Equation 2).

We repeat the aforementioned simulation strategy with many samples of job set
pairs (S, Q). The idea is that each distinct pair (S, Q) represents a certain scheduling
situation, and the computed {score(j) | Vj € Q} represents a good scheduling strategy
for this scheduling situation.

4. Multiple Linear Regression

At the end of the simulation strategy, we have a data set with the information about the
jobs’ characteristics p;, ¢; and r;, and their computed score(j). Let J be all jobs present
in the data set with their compute score values, the problem consists in finding functions
f(pj,q;,r;) that provide a good approximation to the score values of all jobs j € J. For
that, we defined a function family JF, with parametrized functions of the form

f(0,x) =0"x 4)

where 6 is a parameter vector, and x is a vector of functional forms of the jobs’ charac-
teristics p, ¢ and r.

We create a function family containing four functions whose vectors x are pre-
sented by Table 1. Each element in the vectors (also referred to as basis functions) are
polynomials of the jobs’ characteristics, with degrees in the set {1,2, 3, 4}.

Table 1. Functional forms of the four parametrized functions used in multiple
linear regression.

Vector x
Lin Qdr Cub Qua
(1,p,q,7) v v v v

Vector components

(P*. ¢, 7%, pq) v oovov
(0%, ¢%. v p’q, pa®, (pq)?) v oY
(", ¢, v, p*q,pd®, (pq)?) v

The function Lin is just a linear combination of the jobs’ characteristics p, ¢ and
r. The others Sqg, Cub and Qua are functions that progressively increase the degree of
the basis functions, and with multiplicative factors related to pg, which is often referred
in the literature [Carastan-Santos et al. 2019b] as the area of the jobs.

We employ a weighted multiple linear regression [Carroll and Ruppert 1988] pro-
cedure, which minimizes the weighted sum of squared loss function:

Sur = Y [(pa5) - (F(6,%) = score())]. 5)

jedJ

The weight (p,q;) emphasizes that the approximation must perform a good esti-
mation of the score of large area jobs (i.e., jobs with p and ¢ large), as they can end up
blocking the execution of small jobs, degrading the overall scheduling performance.

After obtaining the coefficients 6/ from the multiple linear regression approxima-
tion for all functions f(6,x) € F, we can measure the approximation quality through the
Mean Absolute Error function (MAE, Equation 6).

MAE(f Z | £(6F, x) — score(5)|| (6)

jEJ

With these approximated functions we perform a simulation experimental cam-
paign to address how efficient these functions are when used as scheduling policies in an
online parallel scheduling scenario.

5. Experiments and Results

Following the methodology, we adjusted the functions Lin, Qdr, Cub and Qua to the
score distribution. The data set used in the multiple linear regression consists of 7168
jobs and their calculated score(j) values. The simulations were performed using the
SimGrid [Casanova et al. 2014] simulation framework, and we considered a synthetic ho-
mogeneous platform constituted by 256 processors. We defined the size of the sets S and
@ as 16 and 32, respectively. The jobs’ characteristics were obtained from a trace gener-
ated with the Lublin and Feitelson [Lublin and Feitelson 2003] workload model. Finally,
we decided to keep 256 thousand trials, as it showed to provide accurate calculations of
score(]).

Table 2. Scheduling policies used for comparison. Details about
WFP3, UNICEF and F2 policies can be found in [Tang et al. 2009],
and [Carastan-Santos and de Camargo 2017]

Policy name | Function
FCFS T
SPT Dj
SAF ﬁj ©qj
WEFP3 | —(w;/p;)” - g
UNICEF | —uy/(logy(q;) -)
F2 /Dy - 45+ 2.56 x 10" - log, ()

The full list of coefficients 6 obtained by regression approximation is illustrated
in Table 3. The functional forms showed instabilities in the coefficients between the
four obtained functions. We observe this instability by the change in the sign (e.g., from
positive to negative) of the coefficients of a specific functional form. The sign change,
in turn, carries a meaning for the schedule. For instance, while Lin prioritizes jobs with
small g, since Lin has a positive coefficient for ¢, function Qdr prioritizes jobs with large
q, since Qdr has a negative coefficient for q.

Table 3. Functional forms of the four parametrized functions used in multiple
linear regression, their adjusted coefficients, and their Variance Inflation

Factor (VIF).
Vector x Coefficients 0 VIF

Lin Qdr Cub Qua | Lin Qdr Cub Qua

1 3.16- 1072 3.86- 1072 3.02- 1072 4.58 - 1072 - - - -
p 1.24-1077 1.33-1007 3.92-1077 —208-1077| 13 37 123 40.8
q 3.10-107° —2.95-107° 1.37-107* —-2.64-107*| 1.3 94 373 104.1
r -1.62-1077 —3.63-1077 -5.72-1077 -756-1077| 12 50 199 56.5
p? - —210-107% —503-1072 —1.43.107" - 25 460 430.4
7* - 7.65-107% —1.04-107 1.65-1076 - 8.1 2674 28419
r? - 2.64-10712 7.44-10712 1.45-1071 - 40 728 623.1
Pq - 998-1070 449.107° = 2.20-10°8 - 38 1254 5443
p3 - - 417-107"7 2.56 - 10716 - - 260 1301.6
7 - - 2.76 -107° 8.72-10710 - - 1524 10583.4
r’ - - —=3.07-107' —1.26-1071¢ - - 31.6 1693.6
P’q - - —1.29-1071 5.57-1071 - 67.8 863.8
pq? - - —2.72-107"% —1.81-107% - 1745 2148.2
(pq)? - - 7.64-10716 1.27-10716 - - 882 1365.6
pt - - - —920-107%2 - - - 448.8
q* - - - —1.33-1071" - - — 35853
r - - - 4.15-1072 - - - 529.0
Plq - - - —1.75-10718 - - 109.9
g’ - - - 3.71-1078 - - 519.4
(pq)? - - - 217-107% - - 176.8

In order to evaluate the scheduling performance of the four candidate policies,
online scheduling experiments were performed. Throughout this section, we refer to the
term online scheduling experiment as being multiple simulations of the online scheduling
of jobs, whose information are obtained from a certain workload log (trace) or model.
For each experiment, we choose a function from Tables 1 and 2 and perform the job
scheduling using it as a scheduling heuristic.

In the first experiment, the jobs were generated from the Lubin & Feitelson’s
synthetic workload model (considering an HPC platform constituted by 256 processors).
Figure 1 shows the average bounded slowdown for fifty dynamic scheduling experiments
executed for each heuristic with the above configuration. The results show that the Qdr,

Cub and Qua functions — the most complex — actually did not perform as well as schedul-
ing policies, presenting the worst results. Although the MAE values remained very close
for almost all functions (Lin =4.48 x 1073, 0dr =4.66 x 1073, Cub =10.5 x 1073, and
Qua = 6.42 x 10~3), the performance of the most complex functions showed to be as inef-
ficient as FCFS, thus reinforcing the negative effects of its coefficients. The L.in function
showed better results, being comparable to SAF, which is known to be quite efficient.

FCFS WFP3UNICEF SPT SAF F2 LN QDR CUB QUA
Scheduling policies

Figure 1. Scheduling performance comparison of each obtained function.

Table 4. Real workload traces used for evaluation of the scheduling policies.

Name Year | # CPUs # Jobs Duration
Curie 2011 | 93,312 | 312,826 | 20 Months
ANL Interpid | 2009 | 163,840 | 68,936 | 8 Months
SDSC Blue 2000 1,152 | 243,306 | 32 Months

This instability in the coefficients of Qdr, Cub and Qua indicates that these func-
tions suffer from the phenomenon of multicollinearity [Alin 2010], that happens when the
functional forms are highly correlated between each other. At this light, multicollinearity
may be happening when we add derivative functional forms in conjunction to the jobs’
characteristics p, ¢ and r (e.g., ¢%, ¢°, ¢*).

To verify this multicollinearity hypothesis, we calculated the Variance Inflation
Factor [Garcia et al. 2022] (VIF, see Table 3) for the functional forms present in the func-
tions Lin, Qdr, Cub and Qua. The Qdr function displays VIF values greater than 5
(moderate correlation) as in ¢, 7, ¢°. Furthermore, the higher degree functions (Cub and
Qua) presented very high values, reaching values greater than 10 thousand (extremely
high correlation) as in the term ¢> of the function Qua. We conjecture therefore that
adding more derivative functional forms will result to larger VIFs, and the multicollinear-
ity effect will be present.

We then measure the ability of Lin (the function with the lowest level of multi-
collinearity) to generalize for different types of workloads, with jobs obtained from real
workload traces of large scale HPC platforms, comparing it with the policies presented
in Table 2. The used traces (see Table 4) are publicly available at Parallel Workloads
Archive [Feitelson et al. 2014]. Moreover, we performed online scheduling experiments
taking into account two situations, (i) scheduling using perfect information about the jobs
processing time p, (ii) scheduling using jobs’ processing time estimates p.

The results of the experiments are illustrated in Figure 2. The linear form pre-
sented low average bounded slowdown for the different workloads. In addition, the dis-

2500

£ 1500
Zio00] .
| .
500 P
= y N .
e .
of o e i
a3 o

FCFS WFP3 UNICEF SPT s/ 3
9

FCFS WFP3 UNICEF SPT SAF 3 LN
nnnnnnnnn g policies

nnnnnnnnnnnnnnnnn

g
£ 3000

b
Average bounded slowdown
age bounded slo

< 1000

sssssssssssssssss

Figure 2. Figures (a), (b) and (c) illustrate the scheduling performance results
using actual processing time for jobs from Curie, ANL Interpid and SDSC
Blue platform workload logs, respectively. Following the same order, Fig-
ures (d), (e) and (f) illustrate the results using the estimated processing
time.

persion of the data was small in almost all cases, ensuring greater stability and predictabil-
ity. Unlike experiments (a), (b) and (c) — in which the actual processing time was used
— experiments (d), (e) and (f) showed performance degradation. This is expected, since
the estimated values are usually rough and inaccurate estimates. Finally, the Lin func-
tion showed one of the three best results for all experiments. Even though each workload
trace was different, the linear function as a scheduling policy proved to be able to be
generalized for different types of tasks.

6. Conclusions and Future Work

In this work, we explored a multiple regression method to understand the trade-offs be-
tween the simplicity and the performance of ML-obtained scheduling heuristics. We first
created a data set of scheduling observations by performing scheduling simulations of
different scheduling situations. We observed multicollinearity effect when using multiple
linear regression that increased the instability in the coefficients of the obtained schedul-
ing policies and resulted in poorly performing scheduling policies. We then evaluate the
performance of the Lin policy and show that it presents good scheduling performances in
the majority of the evaluated scenarios.

For future work, we intend to expand the scope of our investigations. First, we
will look for more sophisticated methodologies to create scheduling heuristics, avoiding
problems such as multicollinearity. Symbolic Regression, Neural Networks and Principal
Component Analysis (PCA) are some candidates. Other possibility is to use platform-
related features (e.g., platform utilization, remaining time of the processing jobs, etc.)
and external factors (e.g., time of the day) in addition to p, ¢ and 7.

References

Alin, A. (2010). Multicollinearity: Multicollinearity. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(3):370-374.

Carastan-Santos, D. and de Camargo, R. Y. (2017). Obtaining dynamic scheduling poli-
cies with simulation and machine learning. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pages
1-13, Denver Colorado. ACM.

Carastan-Santos, D., De Camargo, R. Y., Trystram, D., and Zrigui, S. (2019a). One
Can Only Gain by Replacing EASY Backfilling: A Simple Scheduling Policies Case
Study. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 1-10, Larnaca, Cyprus. IEEE.

Carastan-Santos, D., De Camargo, R. Y., Trystram, D., and Zrigui, S. (2019b). One can
only gain by replacing easy backfilling: A simple scheduling policies case study. In
2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGRID), pages 1-10.

Carroll, R. J. and Ruppert, D. (1988). Transformation and weighting in regression. Mono-
graphs on statistics and applied probability. Chapman and Hall, New York.

Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter, F. (2014). Versatile,
scalable, and accurate simulation of distributed applications and platforms. Journal of
Parallel and Distributed Computing, 74(10):2899-2917.

Feitelson, D. G., Tsafrir, D., and Krakov, D. (2014). Experience with using the Parallel
Workloads Archive. Journal of Parallel and Distributed Computing, 74(10):2967—
2982.

Garcia, C. G., Gémez, R. S., and Pérez, J. G. (2022). A review of ridge parameter se-
lection: minimization of the mean squared error vs. mitigation of multicollinearity.
Communications in Statistics - Simulation and Computation, 0(0):1-13.

Jack Dongarra and Erich Strohmaier (2022). TOP500 Supercomputer Sites.

Legrand, A., Trystram, D., and Zrigui, S. (2019). Adapting Batch Scheduling to Workload
Characteristics: What Can We Expect From Online Learning? In 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 686695, Rio
de Janeiro, Brazil. IEEE.

Lublin, U. and Feitelson, D. G. (2003). The workload on parallel supercomputers: mod-
eling the characteristics of rigid jobs. Journal of Parallel and Distributed Computing,
63(11):1105-1122.

Mu’alem, A. and Feitelson, D. (2001). Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions on
Parallel and Distributed Systems, 12(6):529-543.

Tang, W., Lan, Z., Desai, N., and Buettner, D. (2009). Fault-aware, utility-based job
scheduling on BlueGene/P systems. In Cluster Computing and Workshops, 2009.
CLUSTER 09. IEEE International Conference on, pages 1-10. IEEE.

