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Abstract. Along with the necessity of more computational power, CPUs are
evolving quickly. Companies are developing new generations of CPUs every
1-2 years, and many options compete for market share. Hence, researchers
and companies must develop a method to compare and select the best proces-
sor that fits their needs. This paper presents a simulation-driven alternative for
CPU Memory Hierarchy evaluation and comparison. Furthermore, this work
compares two rival processors engineered by Intel and AMD. The investigation
culminates in the observation that AMD'’s processor performs better with fewer
cores for several cases, while Intel’s equivalent exhibits enhanced results when
all available cores are used.

1. Introduction

Over the years, the demand for computational power has seen a significant surge, driven
by the increasing reliance of businesses on powerful computer systems to meet their
growing needs. This demand has given rise to the field of High-Performance Computing
(HPC), which entails using and applying parallel computers to solve scientific, engineer-
ing, and technical problems [Chavarria-Miranda et al., 2012]. In this context, the market
role of CPUs and GPUs becomes crucial.

In line with Moore’s Law, the industry is expected to release a new processor
approximately every 18 months. Moreover, numerous companies are dedicated to the
development of new processors. Therefore, there are numerous options for a researcher or
company to analyze. Itis not feasible for a team to acquire every new processor generation
and compare them to choose which to buy on a large scale.

To address the challenges imposed by the rapid evolution of processors and the
large number of available options, it becomes crucial to establish an approach to com-
pare and evaluate these solutions. In light of this dynamic environment, one can address
the following questions: How can individuals keep pace with this rapid evolution? How
can one effectively compare the newly launched solutions to determine the most suitable
option for their specific needs? Based on this, this paper contributes to the CPU perfor-
mance area by presenting a simulation-driven method for the CPU’s memory hierarchy
evaluation and comparing the newly launched CPUs developed by Intel and AMD.

This paper is organized as follows: Section 2 presents the related work, Section 3
presents the simulation details with a brief overview of the gem5 simulator since it was
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the simulator used in the paper, and follows with the details of the proposed architectures,
Section 4 presents the evaluation of the results, and Section 5 concludes the paper.

2. Related Work

As simulation is widely used in architectural research, many options can make it difficult
to choose one of them. Akram et al. [2019a] present a detailed survey of available com-
puter simulators, comparing and classifying them based on information such as the detail
of the simulation, scope of the target, and input needed. In the paper, there is no distinc-
tion between ISAs, therefore, it is a generic review of the simulators and each’s strengths.
Moreover, focused on X86, Akram et al. [2016] compare different simulators in detail.
They are gem5 [Binkert et al., 2011], Multi2sim [Ubal et al., 2007], PTLsim [Yourst,
2007] and Sniper [Carlson et al., 2011]. Making evident strong points and limitations
regarding flexibility, level of detail, user-friendliness, and simulation models. Finally, the
experimental error and speed are compared. The paper concludes that the Sniper simula-
tor is the better choice based on accuracy and simulation speed. However, Sniper does not
include detailed processor modeling, multi-ISA support, full-system simulation support,
and active development community, which are present in gem5. Consequently, this paper
chooses to use gemS. Umeike et al. [2023] profile gem5, aiming at answering questions
about how the simulator performance can be increased and the bottlenecks present in the
code. The thorough profiling reveals an increase in performance up to three times when
using processors with larger L1 cache and page sizes.

Vikas et al. [2014] measured cache misses, memory bandwidth, and system bus
throughput in a 2-level cache hierarchy system running with ARM and ALPHA proces-
sors, varying the L1 cache size from 16 kB to 64 kB. For this experiment, the authors
used the full-system gem5, which consists of the full emulation of a defined system using
a proper disk image and a precompiled kernel, and the Splash-2 benchmark.

According to Endo et al. [2014], in- and out-of-order ARM cores were imple-
mented and evaluated. In the paper, the gem5 simulated the Cortex-A8 and Cortex-A9
cores. Since the in-order ARM CPU was not implemented, the authors implemented it
based on the out-of-order(O3) model in gem5 and compared it against real machines us-
ing ten benchmarks. Both models had an absolute error of 7%, showing themselves above
the microarchitectural simulator’s mean of 15%.

GemS5 is a state-of-the-art computer simulator. Therefore, it is widely used for
experiments and research. Souza et al. [2017b] used full-system gem5 to assess differ-
ent multicore cluster architectures to identify the best configuration for energy efficiency.
They varied the number of cores, L2 cache size, and sharing strategies. Along with gemS5,
MCPAT and CACTI tools are used to estimate cache parameters. The results showed low-
performance improvement by simply varying L.2’s sharing strategy. They also concluded
that shared L2 multicore was more energy efficient than private L2 multicore. Moreover,
Souza et al. [2018] used full-system gemS5 to present a design space exploration over
NoC-based manycore processor architectures with distributed and shared caches. The
MPPA-256 processor was adopted as a reference point in the paper, considering its simi-
lar characteristics to their proposal. The tests varied the number of cores, and the size of
the L2 and used 12 types of NoC (Network-on-Chip) topologies. They presented a clus-
tered topology, which obtained performance gains of up to 30.56%, and reduced energy



consumption by up to 38.53%.

Charles et al. [2018] analyzed the impact of directory memory traffic and different
cluster modes on NoC traffic and system performance. The authors employed full-system
gem5 and the GARNET?2.0 interconnection network model to make the simulations more
realistic. They showed how to model the LLC/directory to memory traffic and compared
different clusters and memory modes supported by CMPs. In addition, they demonstrated
the impact of the work on four different cache coherence protocols.

Akram et al. [2019b] validated the gem5 simulator against the x86 architecture,
more specifically the Core-17 Haswell microarchitecture. Through their study, they could
find various sources of inaccuracies in the x86 simulation and improve the mean error rate
from 136% to 6% by applying modifications to gem5’s source code.

Abudaqa et al. [2018] present a comparative study between ARM and x86 using
in-order and out-of-order models and compare them using five benchmarks: Basicmath,
Dijkstra, Qsort, Patricia, and Bitcount. The authors then compared consumed energy,
throughput, CPI, and L2 miss rate while varying the CPU model and the size of L1 and
L2 caches. The results show that, in most cases, ARM outperforms the x86 architecture.
However, x86 showed itself better when used with the out-of-order processor model.

Diverging from earlier studies, this research focuses on simulating two processors
sourced from distinct vendors. The primary goal is to present a method for CPU compar-
1son using simulation-driven experiments. We comprehensively assess and juxtapose the
processors’ outcome, thereby facilitating a more profound grasp of their computational
power, all achieved without the necessity of physical access, allowing the identification of
the most suitable option for specific computational needs of researchers and companies.

3. Simulation

Simulations benefit flexibility when choosing the specifications of the desired architec-
tures. However, at the same time, simulations present constraints, such as the real time
to solution. Furthermore, simulations are not perfect since they are not real hardware.
Therefore, there might be inaccuracies when simulating architectures in comparison with
the real world [Endo et al., 2014; Akram et al., 2019b].

The simulations performed in this paper attempted to be as close to reality as pos-
sible while adapting to constraints imposed by the simulator. In the following subsections,
the gem5 simulator and the computer architectures will be presented.

3.1. Gem5

Gem5 [Binkert et al., 2011] is a computer simulator framework that provides configu-
ration, multiple ISAs, and different models of CPUs. In this paper, we opted for the
O3CPU, which consists of a pipelined, out-of-order CPU. Using the O3CPU, we could
collect more accurately the simulation details, although performing a slower simulation.
Gem)S includes two system modes: System-Call Emulation(SE) and Full-System (FS). SE
mode is more straightforward. The framework emulates only the system calls the running
program makes, so it is unnecessary to worry about devices or OS-specific matters. FS is
more complex, and in this mode, an entire system is simulated, i.e., user and kernel-level
instructions are executed, and all devices are simulated. Therefore, for this mode, it is



necessary to provide a disk image and a pre-compiled kernel. After the machine boot, the
desired workload can be run using a terminal, or a script can be previously informed.

For this paper, the full-system (FS) mode had to be used since the workloads
were built with OpenMP, and gem5 does not natively support OpenMP system calls. The
workloads had to be statically compiled, and to run FS, a pre-compiled Linux kernel
version 5.4.49 and a disk image created using the QEMU tool were provided.

3.2. Proposed Simulated Architectures

The architectures used in this paper are based on two processors, the Intel Xeon w7-
3455 and AMD EPYC 9224. Both are newly launched processors and are mostly used
for servers’ workloads. Since the processors are not physically available, we chose to
simulate both. Some modifications had to be performed to fit our architectures into the
simulator limitations. The following paragraph introduces these modifications.

Related to cache size, the gemS imposes that caches should have a power of 2
size. Thus, Intel’s processor’s L1 and L3 caches had to be modified from 48kB to 32kB
and 67.5MB to 64MB. FS mode presents a limitation, and there can be only one thread
per core. Therefore, no SMT present on the original processors could be simulated. Both
architectures used the same disk image and kernel, and the main memory size in all tests
was 3GB. Table 1 summarizes the original architectures and the necessary modifications
to simulate the processors.

Intel Intel Simulated AMD AMD Simulated
# CPUS/ Threads 24/48 24/24 24/48 24/24
Clock Speed 2.5GHz 2.5GHz 2.5GHz 2.5GHz
L1 Cache 24x32 kB (Instructions) | 24x32 kB (Instructions) | 24x32 kB (Instructions) | 24x32 kB (Instructions)
24x48 kB (Data) 24x32 kB (Data) 24x32 kB (Data) 24x32 kB (Data)
L2 Cache 24x2MB 24x2MB 24x1MB 24x1MB
L3 Cache 67.5MB 64MB 2x32MB 2x32MB

Table 1. Original and Simulated Architectures

4. Result Evaluation
To evaluate the proposed architectures, the CAP Bench [Souza et al., 2017a] was used.

CAP Bench consists of seven parallel applications built with OpenMP. Each pro-
gram has five input sizes: tiny, small, default, large, and huge. For this paper’s purpose,
we selected only three programs: Friendly Numbers (FN), K-Means (KM), and Features
from accelerated segment test (FAST), with the tiny workload — due to time constraints.
We chose these applications since all present different parallel patterns, i.e., MapReduce,
Map, and Stencil, respectively, which could give us insights for future workload charac-
terization in this simulation context.

The FN kernel aims at comparing the abundancy of all numbers in a given interval.
For the tiny workload, this interval is 8 x 106+ 1 to 8 x 10° 422, KM implements the well-
known K-Means clustering algorithm. The data points are evenly and randomly created.
The tiny workload is 2'2? points and 256 centroids. Finally, FAST is a corner detection
method. The tiny workload uses a 2048 x 2048 pixels sized image. FAST and KM present
irregular task loads, which means that the input may vary the data but not its size, and FN
presents a regular task load.



The tests were split between a server with two Intel Xeon E5-2620 v2 processors
and 64 GB of RAM and a virtual machine from Google Cloud with 8 cores and 32 GB of
RAM. The experiments consisted of a strong scalability test using the tiny input set size
from CAP Bench, with 2, 4, 8, 16, and 24 threads.

Figure 1 presents the number of ticks simulated based on the number of CPUs
used. As we can see, both architectures scale well. Only when using 24 cores and running
the KM algorithm, the number of ticks is higher than expected. Both processors show
similar numbers, although Intel performs slightly better when using all the available cores,
except when running the FAST application. Both FAST and FN applications perform as
expected. A higher number of threads implies a smaller number of ticks. However, KM
escapes this analysis since it only scales for a maximum of 16 cores.
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Figure 1. Number of simulated Ticks

In Figure 2, we see the mean overall miss rate of the L1 cache separated into
Instruction and Data Cache for the FN application. Since the L1 caches for both archi-
tectures were private, we decided to show a mean of the value, in order to simplify. The
instruction cache miss increases until 16 cores but finds its lowest value using 24 cores
for both Intel and AMD. Intel again shows itself slightly better using all the cores, but this
time AMD performs better along the way, including in 16 cores. The data caches present
a linear progression. This demonstrates that the application’s scalability performs well on
our architecture and tends to increase performance according to the number of threads.

Figures 3 and 4 show the same information using the FAST and KM applications.
Both follow the same descending pattern based on the number of cores used. However,



the sharp drop in the miss rate in the L1 instruction caches shows that all instructions fit
the cache size when using at least 8 cores. Since these cores have private caches, the more
cores one uses, the more cache space is obtained. We see the same descending pattern
regarding the data cache, showing good scalability.
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Figure 2. Mean Miss Rate of L1 Cache with the Friendly Numbers application
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Figure 4. Mean Miss Rate of L1 Cache with the K-Means application

Figure 5 depicts the mean miss rate for L2 caches. Since both architectures have
private L2 caches, we calculate their mean miss rate, as with the L1 caches. All three
applications follow this same pattern and have a high rate of misses. The L2 is not used



intensively, based on the low absolute number of accesses presented. Therefore, most
misses refer to compulsory misses. However, AMD performs better with fewer cores,
while Intel performs better with all 24 cores.
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Figure 5. Mean Miss Rate of L2 Cache

5. Conclusion

The objective of this paper was to present a novel method for CPU comparison through
simulation-driven experiments, employing the gem5 simulator to contrast two proces-
sors’ memory hierarchies from the most prominent market companies, Intel and AMD.
Specifically, the processors were the Intel Xeon w7-3455 and AMD EPYC 9224. As ex-
pounded upon in Section 4, AMD’s hierarchy exhibits better performance when running
with a reduced number of cores, whereas Intel’s counterpart performs better when using
all available cores. The utilization of the simulation-driven experiment offers numerous
advantages, by employing it, we were able to circumvent the need for specific physi-
cal hardware, mitigating logistical challenges, empowering not only researchers but also
companies to invest in hardware more safely. At the same time, simulation presents down-
sides such as overhead when compared to real hardware, and presents only approximated
results.

In future work, we aim to go beyond CPU comparison. We would like to deeply
inspect individual processors, examining their microarchitecture and operation, compare
the results obtained in this paper with a real machine, measure how close to reality our
results are, and analyze other metrics that would be able to explain better the results
obtained and compare them to results obtained by similar papers. In addition, we intend
to characterize the CAP Bench workloads for these simulation purposes.
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