
Evaluation of the Impact of Coherence Protocols and Cache
Sizes on Parallel Algorithms Through Simulations

Guilherme Dantas C. Fagundes, Matheus Alcântara Souza

Depto. de Ciência da Computação – Pontifı́cia Universidade Católica de Minas Gerais
Belo Horizonte – MG – Brasil

gdcfagundes@sga.pucminas.br, matheusalcantara@pucminas.br

Abstract. This article explores the intersection between parallel algorithms
and cache optimization, focusing on how different coherence protocols
and cache sizes impact the performance of parallel algorithms. Through
simulations, we evaluate the efficiency of parallel algorithms under various
cache configurations. Our goal is to understand the implications of these
configurations and identify optimal strategies for cache utilization. The
results of this study provide valuable insights for computational performance
optimization in the modern era of technology.

1. Introduction
With the knowledge developed throughout the 20th century, various technologies were
created to improve application runtime. One of them is cache memory, which leverages
the repetitive nature of many algorithms to optimize execution by keeping previously
accessed data in low-latency memory [Handy 1998]. Despite significant advances in
cache usage optimization and the implementation of parallel algorithms, there are still
gaps to be filled. The complexity and diversity of cache configurations, along with
the variety of algorithms and their respective resource demands, make optimization a
continuous challenge [Yavits et al. 2014].

Moreover, parallel algorithms behave differently on different architectures.
This behavior creates opportunities for analyses aimed at developing new algorithms
and their combinations with cache hierarchies [Rattanatranurak and Kittitornkun 2020,
Fang et al. 2017]. Therefore, the following question arises: How do different cache
configurations impact the performance of parallel algorithms, and what are the best
strategies to optimize cache usage in various scenarios?

In this context, this work proposes to investigate how cache configurations
interfere with the overall performance of an application. It presents scenarios that
vary in coherence protocols, cache size, and the number of cores to comparatively
analyze the resulting metrics, correlating them with the nature of the executed parallel
algorithms. We aim to evaluate the impact of different cache configurations on the
performance of parallel algorithms through simulations. The objective is to understand
how distinct configurations can influence application efficiency and identify the most
effective strategies for optimizing cache usage.

Using gem5 [Lowe-Power et al. 2020], one of the most widely used computer
architecture simulators, specific configurations will be presented. The gathered metrics
provides an understanding on how the simulated architectures responds to different
configurations using an workload developed using OpenMP.



The contributions to the state of the art are:

• Present comparative data between different cache configurations and their
correlations with parallel algorithms.

• Investigate the computational capacity provided by coherence protocols and their
benefits concerning non-shared data cache structures.

• Analyze the behavior of coherence protocols in the face of different numbers of
cores in multicore systems.

The rest of the work is organized as follows. Section 2 presents a literature review
and related work. Section 3 presents the methodology used, as well as the algorithms and
configurations. Section 4 presents the results we gathered. Finally, Section 5 presents the
conclusions.

2. Background
Cache memory has become a fundamental component of contemporary computing,
playing a crucial role in reducing the access time to data stored in main memory
whenever the processor issues a request. This operation is based on the locality principle,
which refers to the tendency of the processor to access data close to previously used
data or to access recently used data, characterized respectively as spatial and temporal
locality [Patterson and Hennessy 2013].

Given the needs that have arisen over time, new capabilities have been added
to cache memories. The hierarchical organization in multiple levels, up to the Last
Level Cache (LLC), allows more data to be stored in the cache at the cost of reduced
read and write times – although still faster than accessing primary memory. Another
advancement was the addition of replacement policies, which control which elements
saved in the cache will be replaced in case of address conflict. These policies can
consist of simple algorithms (FIFO, Random), or be based on access frequency or
recency [Patterson and Hennessy 2013].

Another important characteristic of available cache models is the policies for
coherence protocols. In multicore systems, each core has its own cache, which leads
to an inconsistency problem since one core can alter the values contained in its cache,
but these values are not updated in the other caches if there are multiple copies of these
values [Stallings 2010]. One of the protocols is MESI, in which the cache receives two
state bits that allow the definition of four states. Figure 1 shows an state transition diagram
for MESI protocol. MESI uses the following states:

• Modified: The line in this cache is different from the main memory and is
available only in this cache.

• Exclusive: The line in this cache is the same as in the main memory and is not
available in any other cache.

• Shared: The line in this cache is present in the main memory and may be present
in another cache.

• Invalid: The line in this cache is not valid, and the data must be fetched from the
main memory.

Another existing protocol is MOESI, which is an extension of MESI, adding a
new state called Owned. This state aims to indicate that the associated block is owned by



Figure 1. MESI State Transition Diagram

that cache and is outdated in the memory. When a cache has a block in the Modified state,
in MOESI, it can be directly changed to the Owned state without writing back to the main
memory. Other caches maintain the Shared state. Owned indicates that the original cache
is the owner, and when a block is not in the cache, the owner provides it. If replaced in
the cache, it is written back to the memory [Patterson and Hennessy 1990].

2.1. Related Work
Previous studies have evaluated various aspects of cache to identify optimizations in cache
usage. For instance, there is an analysis of the applicability of coherence protocols in
emerging architectures, such as three-dimensional DRAMs and next-generation LLCs
(NG-LLC) [Zhu et al. 2021]. Based on the results, MOESI-based protocols show high
latency for new LLCs, outperforming other protocols, including the one introduced by
the authors, which performs 10% better than the others.

Furthermore, an evaluation of the impact of insertion policies (IP), replacement
policies (RP), and prefetchers (PF) was conducted [Backes and Jiménez 2019]. In the
case of IPs, there is a simplification of coherence protocols. With all data copies present
in the highest-level cache, coordination to ensure data consistency is centralized, reducing
the need for communication between caches of different levels. The authors evaluated
various policies and concluded that there is no superior configuration; each has its
benefits and drawbacks, and the other characteristics of the cache configuration should
be considered to determine the best policy for the presented context.

A group of extensions of the MSI and MESI protocols were implemented, called
Predictable Coherence Protocols [Kaushik et al. 2021]. The analysis of PMESI and PMSI
have average slowdowns of 1.46× and 1.45×, respectively, compared to conventional
protocols. However, they performed 4× better than cache bypass mechanisms that
prohibit the caching of shared data in the private caches of the cores.

Last, the impact of cache associativity in performance in multicore systems
was evaluated [Ramtake et al. 2020]. The scenario simulation was conducted using
the Multi2Sim simulator in a quad-core configuration. The merge-sort algorithm was
the workload. The best result obtained was with a 16-way associative cache, which
maximized cache hits, improving overall performance.

3. Methodology
This section presents the proposed simulations for collecting performance results.



3.1. Simulated Architecture

The simulations proposed in this work are based on the x86 architecture, which uses
a CISC instruction set. The x86 architecture allows for the analysis of configurations
present in the market, as Intel processors use this architecture.

Eight different cache architecture organizations were simulated. They vary in the
number of cores, cache size, and coherence protocols present in the cache. All of them
are structured in two-level hierarchies using LRU replacement policy. All cores share the
L2 cache and have a dedicated private L1 cache, which is divided into 64kB for data and
64kB for instructions. The configurations are detailed in Table 1.

3.2. Simulator

The simulator used was gem5, which operates using discrete events, meaning it has the
capability to simulate the passage of time in systems, enabling the generation of data at
the cycle and system level, such as TLB misses.

The simulation model used was the full system, with a Linux kernel version
4.4.186. The processor uses the out-of-order execution model with a 5-stage pipeline,
which, combined with the full system, provides high temporal accuracy during the
simulation.

The two coherence protocols used are based on the previous implementation by
gem5. Both the MESI and MOESI protocols were modified so that the cache sizes could
be configured as desired and the latencies were equalized in both protocols. The results
were extracted from the execution statistics generated by gem5.

3.3. Workload Used

The workload used aim to focus more directly on the computational resources that interact
with cache usage. The Pi estimation using Monte Carlo Algorithm has a low data reuse
and the evaluated values are random and non-continuous. It is based on generate random
points in a square with side length of 2r centered at (0,0) with a circle of radius r inside
it, count the points that fell inside the circle and then apply the following formulas:

When I represents the value of points inside the circle, and T represents the total
number of generated points, we have:

q =
I

T

π = 4× q

3.4. Configurations Used

The simulation setup is presented in Table 1. The configurations are identified by an ID,
where the first part represents the protocol and the following numbers correspond to the
core quantity, the L1 Cache Size and the L2 Cache Size, respectively.

4. Results
This section presents the results obtained from the simulations of the proposed
architectures for the workload. Figure 2 shows the comparison of IPCs between each



ID Protocol Core Quantity L1 Cache Size L2 Cache Size
mesi-4-64-512 MESI 4 64 KB 512 KB
mesi-8-64-512 MESI 8 64 KB 512 KB

moesi-4-64-512 MOESI 4 64 KB 512 KB
moesi-8-64-512 MOESI 8 64 KB 512 KB

mesi-4-128-1024 MESI 4 128 KB 1024 KB
mesi-8-128-1024 MESI 8 128 KB 1024 KB

moesi-4-128-1024 MOESI 4 128 KB 1024 KB
moesi-8-128-1024 MOESI 8 128 KB 1024 KB

Table 1: Simulation setup

architecture, where IPC (Instructions Per Cycle) is a metric that indicates how many
instructions a processor can execute in a single clock cycle. It can be observed that,
overall, architectures with 8 cores performed better than those with 4 cores. However,
the architectures mesi-4-128-1024 and moesi-4-128-1024 performed only 10% worse
compared to mesi-8-128-1024, highlighting the fact that simply increasing the size of
the L1 and L2 caches can compensate for the disparity in computational power. This
result comes from reduced main memory communication, saving cycles.

Regarding execution time, it is observed that when the cache has a larger size, the
other characteristics become less impactful on the final result. This occurs because, even
with an IPC close to the average, the delay caused by primary memory access directly
impacts execution time. However, with smaller caches, MOESI performs better than
MESI in configurations that differ only in protocol as shown in Figure 3. This can be
observed when comparing configurations such as mesi-4-64-512 with moesi-4-64-512
and mesi-8-64-512 with moesi-8-64-512.

Figure 2. IPC Comparison Figure 3. Exec. Time Comparison

Furthermore, mesi-4-128-1024 performed 65% better than mesi-4-64-512, while
all other architectures performed at least 86% better when compared to the same
configuration. The lower speedup is also correlated with the cache size and reduced
number of cores. However, even with the least powerful configuration, it performed
considerably better due to the MOESI protocol.

Figure 4 shows the results related to the L1 cache. L1 cache is divided into two
types: data cache and instruction cache. It is observed that, in general, the most important
factor is the cache size. The larger the cache capacity, the fewer cache misses occur,
leading to improved overall performance.

The reduction in cache misses is almost linear for instructions and non-linear for
data because, as the cache size increases, it can store more frequently accessed data and
instructions, reducing the need to fetch from slower main memory. This can be observed
when configurations moesi-8-64-512 and moesi-8-128-1024 are compared. Both have the



Figure 4. L1 Cache Miss Comparison

same configuration and protocol, but moesi-8-128-1024 has double the cache size and
performs 52% better when analizing the cache miss in L1I.

For the same configurations, the performance of moesi-8-128-1024 is 20% better
then moesi-4-128-1024 when the L1D cache miss is analyzed. This behavior is the same
for all configurations when the comparison is based in cache size.

Regardless of cache size and the number of cores, the MOESI (Modified,
Owner, Exclusive, Shared, Invalid) protocol tends to perform better compared to the
MESI (Modified, Exclusive, Shared, Invalid) protocol. moesi-8-64-512 performs 21%
better than moesi-8-64-512 when the L1I cache miss is analyzed and 8% better when
the L1D cache miss is analyzed. The behavior remains consistent when comparing
moesi-8-128-1024 and moesi-8-64-512, where the performance gain in the L1I is 19%
and 4% in the L1D. The larger difference in the L1I is due to the workload used, which is
based on repeating the same calculations but on different data, leading to a greater reuse
of instructions than data.

For larger cache sizes, the reduction in cache misses becomes even more
significant. This indicates a more efficient use of the available storage capacity, as larger
caches can better exploit temporal and spatial locality.

The superior performance of MOESI compared to MESI is maintained when
analyzing the L2 cache, which results are presented in Figure 5. However, as the L2 cache
size increases, the advantage of MOESI over MESI diminishes. This can be observed
when comparing configurations mesi-4-64-512 and moesi-4-64-512, where the gain is
8%, while the gain between mesi-4-128-1024 and moesi-4-128-1024 is only 1%. This
pattern holds for other cases where the comparison is made between configurations that
differ only in protocol, such as mesi-8-64-512 with mesi-8-64-512 and mesi-8-128-1024
withmoesi-8-128-1024.

This occurs because, with a larger L2 cache, the probability of cache conflicts
decreases, and the additional benefits of the ‘Owned’ state in MOESI become less
significant. In a shared L2 cache, which is accessed by all cores, a larger cache size
means it can hold a more comprehensive set of data and instructions from multiple cores.
This reduces the likelihood of cache misses and evictions, thereby minimizing the need
for the advanced features of the MOESI protocol to manage coherence.

In smaller L2 caches, the ‘Owner’ state in the MOESI protocol is beneficial as it
allows modified data to be transferred directly between caches without involving the main
memory. This state reduces latency and coherence traffic, which is crucial when cache



Figure 5. L2 Cache Miss

resources are limited and more frequent conflicts occur. However, as the L2 cache size
increases, these conflicts become less frequent, and the necessity for direct cache-to-cache
transfers diminishes.

5. Conclusion

This paper presented an analysis of cache coherence protocols in multicore systems. It
demonstrated that both cache size and the choice of coherence protocol significantly
impact system performance. For L1 caches, larger sizes lead to fewer cache misses
and improved performance, with the MOESI protocol generally outperforming the MESI
protocol due to its reduced coherence traffic and faster cache-to-cache transfers. The
advantages of the MOESI protocol are especially evident in scenarios with smaller caches
and higher conflict rates.

However, as we transition to analyzing the shared L2 cache, the performance gap
between MOESI and MESI diminishes with increasing cache size. This is because larger
L2 caches reduce the probability of cache conflicts, making the additional benefits of the
‘Owner’ state in MOESI less significant. The shared nature of the L2 cache means it can
more effectively serve multiple cores as its size increases, reducing the need for advanced
coherence mechanisms to manage data consistency.

In conclusion, the performance of cache coherence protocols in multicore systems
is highly dependent on cache size and architecture. While MOESI offers advantages in
smaller, private caches by reducing latency and coherence traffic, these benefits become
less pronounced in larger, shared caches. This underscores the need for a balanced
approach in multicore CPU design, considering both the cache architecture and coherence
protocol to achieve optimal performance and power efficiency. As the number of cores
in multicore CPUs continues to grow, the importance of efficient cache architectures and
coherence protocols will only increase, making this an essential area of study for future
processor designs.

In future research, it is important to explore how coherence protocols handle
different workloads with varying characteristics, such as memory access patterns, storage
requirements, and other specific needs. Additionally, examining the energy efficiency
of these protocols on architectures designed for mobile devices is vital given the



rising computational demands and the need for low energy consumption. Additionally,
This comprehensive evaluation will provide valuable insights into optimizing coherence
protocols for diverse and demanding applications.

References
Backes, L. and Jiménez, D. A. (2019). The impact of cache inclusion policies on

cache management techniques. In Proceedings of the Int. Symp. on Memory Systems,
MEMSYS ’19, page 428–438, New York, NY, USA. ACM.

Fang, J. et al. (2017). Performance optimization by dynamically altering cache
replacement algorithm in cpu-gpu heterogeneous multi-core architecture. In
IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, pages 723–726.

Handy, J. (1998). The cache memory book (2nd ed.): the authoritative reference on cache
design. Academic Press, Inc., USA.

Kaushik, A. M., Hassan, M., and Patel, H. (2021). Designing predictable cache coherence
protocols for multi-core real-time systems. IEEE Transactions on Computers,
70(12):2098–2111.

Lowe-Power, J. et al. (2020). The gem5 simulator: Version 20.0+.

Patterson, D. A. and Hennessy, J. L. (1990). Computer architecture: a quantitative
approach. MK Publishers Inc., San Francisco, CA, USA.

Patterson, D. A. and Hennessy, J. L. (2013). Computer Organization and Design: The
Hardware/Software Interface. MK Publishers Inc., San Francisco, CA, USA.

Ramtake, D., Singh, N., Kumar, S., and Patle, V. K. (2020). Cache associativity analysis
of multicore systems. In Int. Conf. on Comp. Science, Eng. & Applications, pages 1–4.

Rattanatranurak, A. and Kittitornkun, S. (2020). A parallel triple-pivot sorting (ptpsort)
algorithm: Preliminary results. In 17th Int. Conf. on Electrical Eng./Electronics,
Computer, Telecom. and I.T., pages 59–62.

Stallings, W. (2010). Computer Organization and Architecture: Designing for
Performance. Prentice Hall.

Yavits, L., Morad, A., and Ginosar, R. (2014). Cache hierarchy optimization. IEEE
Computer Architecture Letters, 13(2):69–72.

Zhu, M., Shahab, A., Katsarakis, A., and Grot, B. (2021). Invalidate or update? revisiting
coherence for tomorrow’s cache hierarchies. In 30th International Conference on
Parallel Architectures and Compilation Techniques, pages 226–241.


