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Abstract. On the one hand, Deep Neural Networks have emerged as a powerful
tool for solving complex problems in image and text analysis. On the other, they
are sophisticated learning machines that require deep programming and math
skills to be understood and implemented. Therefore, most researchers employ
toolboxes and frameworks to design and implement such architectures. This pa-
per performs an execution analysis of TensorFlow, one of the most used deep
network frameworks available, on a shared memory system. To do so, we chose
a text classification problem based on tweets sentiment analysis. The focus of
this work is to identify the best environment configuration for training neural
networks on a shared memory system. We set five different configurations us-
ing environment variables to modify the TensorFlow execution behavior. The
results on an Intel Xeon Platinum 8000 processors series show that the default
environment configuration of the TensorFlow can increase the speed up to 5.8.
But, fine-tuning this environment can improve the speedup at least 37%.

1. Introduction
Deep Neural Networks (DNN) has been showing a great differential in the solution of
complex problems, mainly text, image, and video analysis, and have positioned them-
selves as state-of-the-art for human language processing [1]. One of the major advantages
of deep networks lies in the flexibility of building architectures with multidimensional
tensors, allowing them to be customized for the most diverse types of applications. This
flexibility also allows problems to be solved in different ways and with a great capacity
for generalization and accuracy, even in problems with high numbers of dimensions and
quantities of data [1] [2].

The training of Neural Networks in large amounts of data, and with a large number
of layers and weights, requires large processing and memory capacities, which most of
the time brings as prerequisite the use of multiprocessor servers in shared and distributed
memory systems. Therefore, it is possible to affirm that the effective training of Neural
Networks only occurs through the effective employment of High-Performance Computing
(HPC). This work focuses on the analysis of the execution profile to identify the best
environment configuration for solving a text classification problem performed in a shared
memory system using specific mathematical libraries.

One of the most used libraries for the development of neural network algorithms
is TensorFlow [3]. This library offers several high-level methods that help to reduce the



development complexity and time. TensorFlow was implemented in C and has APIs for
C++, Go, Python, Java, Swift and JavaScript languages. Our focus here is on the Python
API. This specific API uses the Numpy [4] module for manipulating data structures and
for some matrix operations. This has greatly facilitated the diffusion of this library since
Python has been used on a large scale for the development of data analysis solutions.

The user sets up a series of parameters when compiling TensorFlow, defining what
will be the computational architecture to be used. It can be compiled for distributed mem-
ory systems using the MPI library [5]- [6], for shared memory systems using the OpenMP
standard [7], for processing in GPUs using CUDA [8] or for a hybrid model which in-
volves all of the above. Besides, the user can define the math operations library. The
standard TensorFlow library is Eigen [9], but the user can define others, such as Open-
Blas [10], LAPACK [11] or MKL [12]. Although it is possible to change the algorithms of
this DNN library, such as in [22] that presents a custom implementation of a DNN library,
or such as in [23] that evaluates the I/O performance of a DNN library using MPI, or such
as [24] that evaluates a DNN execution over the Titan supercomputer, on this paper we
performed a standard DNN library profile analysis compiled for a shared memory system
using Eigen and MKL mathematical libraries. So, TensorFlow operation can be presented
in three levels, the first level being closer to the user and the third closer to the machine:
Level 1 API for Python; Level 2 methods in C; and Level 3 routines of the mathematical
operations libraries.

DNN are explored in this paper for the classification of texts. Convolutional net-
works were used with feedforward layers, allowing the learning of input patterns with
a greater amount of aggregated information [13]- [14]. For example, with vector repre-
sentations for words and sentences, such as those generated by Word2Vector [13], it is
possible to represent texts as n × m tensors, where n is the word vector dimension and
m is the number of words in the text. It is also possible to generate p different represen-
tations, thus composing different learning channels, which generates three-dimensional
tensors for each sample.

This paper brings a profile analysis of the TensorFlow library on a shared mem-
ory system for a deep neural network training task using different mathematical libraries
and modifying the behavior of the OpenMP runtime. Through the profile analysis, it is
possible to discover more efficient ways of performing the computations involved in the
network training process.

Some recent works propose to make a profile analysis of neural networks training
applications. [28] and [30] propose the profile analysis of Convolutional Neural Network
(CNN), which is a class of deep neural networks, training it on GPUs platforms. Our paper
differs from those on processing platforms. We propose to analyze a DNN library on a
shared memory system based on CPU. One other paper is [29]. The author in this paper
proposes the profile analysis of three different open-source neural networks frameworks:
TensorFlow, Deep Learning4j and H2O. They use the MNIST handwritten digit database
to perform their analysis on Intel Core i5-7200U, Intel Core i7-2700K, and NVIDIA Tesla
K40. The conclusion for the paper is that the Intel Core i7-2700K is better for the neural
network training using this data. Our paper proposes a deep analysis on a single CPU
series, Intel Xeon Platinum 8000, and for a single framework, TensorFlow, aiming the
best environment setting for the neural network training task.



The paper is organized as follows. Section 2 describes the deep neural network
architecture used, and Section 4 brings the profile analysis performed, together with the
research methodology and experimental results obtained. The paper is concluded in Sec-
tion 5 with a general discussion and perspectives for future research.

2. The Deep Neural Network Used
In this paper, we used a Convolutional Neural Network (CNN) to perform sentiment anal-
ysis [16]- [17] from tweets. CNNs are used with feedforward layers, allowing the learning
of input patterns with a greater amount of aggregated information [18]. The input data for
CNN was generated by vector representations of words and sentences with Word2Vector.
The texts were represented as n × m dimensional tensors, where n is the dimension of
the word vector present in a text, and m is the number of word vectors. We generated p
different arrays of representations, thus composing different learning channels with three-
dimensional tensors (n × m × p) for each text (tweet). A CNN with 7 layers was used
with the following architecture:

• Convolutional layer: This layer aims to reduce the dimensionality of the input
tensors and to combine word vectors. A 2 × n kernel was used, where two-by-
two word combinations were generated during the kernel’s stride. The number
of kernel columns coincides with the number of dimensions of the kernel vector
words, so the vectors are combined with the whole word;

• Max Pooling Layer: The most relevant features of the convolutional layer are
extracted from the Max Pooling layer;

• Feedfoward layers: A total of 5 feedforward layers were used to complete the
learning and progressively reduce the dimensionality of the tensors until the net-
work output. The output layer has one neuron for each class.

The activation functions used were all hyperbolic tangents and the input data were
normalized in the range [−1, 1]. The number n of tensor words is limited to 30 words.

3. TensorFlow Parallelism Levels and Environment Variables
In Section 1, we presented the TensorFlow library divided into three different levels. Just
to remember: Level 1 refers to API for Python, Level 2 refers to methods in C, and Level
3 refers to routines of the mathematical operations libraries. Each level has a parallelism
strategy. This section presents an overview of these strategies.

At the first level, the optimization is on the data locality. The Python API uses the
numpy module [4] to allocate and manipulate data structures. This module allocates the
data contiguously in memory aiming for better performance on data access. The second
level uses the OpenMP standard to perform the data manipulation since the TensorFlow
documentation does not give us details about the implementation. The third level of paral-
lelism strategy depends on the mathematical library used. The Intel Math Kernel Library
(MKL) uses OpenMP and low-level SIMD (Single Instruction Multiple Data) instruc-
tions. The Eigen library benefits from acceleration using heterogeneous hardware. In this
paper, we performed the tests using the OpenMP version of the Eigen.

Besides, OpenMP is an API specification [25], it also defines the thread model,
memory model and runtime behavior of the threads. For the latter one, it uses environ-
ment variables, which is a dynamic-named value that can affect the way running threads



will behave on a computer. Hereby, we used four environment variables to control the
OpenMP runtime and MKL behavior. These are the variables:

• KMP BLOCKTIME: sets the time that a thread should wait before sleeping after
completing the execution of a parallel region;

• MKL NUM THREADS: sets the number of threads to MKL execution;
• MKL DYNAMIC: enables Intel MKL to dynamically change the number of threads.
• OMP NUM THREADS: sets the number of threads on OpenMP runtime;
• OMP NESTED: enables multiple levels of thread generation;
• OMP MAX ACTIVE LEVELS: sets the maximum number of nested parallel re-

gions;

4. TensorFlow Profile Analysis
To analyze the TensorFlow execution profile, we created five different environments. The
environments were created using the Anaconda, which is self-denominated as ”a package
manager, an environment manager, a Python/R data science distribution, and a collection
of over 1,500+ open source packages. Anaconda is free and easy to install, and it offers
free community support.” [21]. The environments description are:

• serial: default installation of Python, intelpython3 full, via Intel repository. To
mimic a serial execution environment, we set OMP NUM THREADS = 1,
MKL DYNAMIC = false and MKL NUM THREADS = 1. This is the baseline
environment.

• default: default installation of Python, intelpython3 full, via Intel repository. This
environment uses the MKL library. No environment variables was changed;

• eigen: default Python installation via conda-forge repository. This environment
uses the Eigen library. No environment variables was changed. This Python in-
stallation uses GNU OpenMP runtime;

• blocktime 0: the KMP BLOCKTIME variable was set to 0 within the default en-
vironment;

• blocktime 30: variable KMP BLOCKTIME was set to 30 within the default envi-
ronment. This configuration will be analyzed, because it is described as the best
configuration for high performance [20];

The algorithm was executed 5 times in each environment and the results to be
presented are the processing time average.

4.1. Dataset and Computational Environment
The dataset used was obtained by collecting several distinct themes in Tweeter for over
6 months. We are not particularly concerned with the accuracy, instead, the emphasis
is given to composing a sufficiently large dataset to run the performance analyzes. The
collected database consists of 223, 050 data objects extracted from tweets.

The purpose of these experiments is to achieve the best performance of a shared
memory system using Intel Xeon Platinum 8000 Series. The chosen system was a single
compute-node composed of two Intel Xeon 8160 @ 2.10 GHz processors, each with 24
physical cores (48 logical) and 33 MB cache memory, 190GB RAM, two Intel S3520
SERIES SSDs with 1.2 TB and 240 GB capacity and CentOS 7 operating system with
kernel version 3.10.0-693.21.1.3l7.x86 64.



4.2. Results and Analysis: simple setup
This section presents the results and analysis of a simple setup. All five environment was
used during this evaluation: serial, default, eigen, blocktime 0 and blocktime 30. This
evaluation is important due to the explanation about high performance DNN using the
KMP BLOCKTIME variable [20].

Fig. 1 shows the total execution time of each environment. The x axis presents
the execution time and the y axis presents the environment.

Figure 1. Total execution time in a simple setup

Looking at Fig. 1 we see that the execution time is: serial: 4003.29; default:
680.11; eigen: 612.38; blocktime 0: 511.07; blocktime 30: 571.85.

Fig. 2 shows that the highest speedup is 7.83 for the blocktime 0 environment and
the lowest performance is 5.89 for the default environment, using the serial environment
as baseline.

Figure 2. Speedup using a simple setup, as explained in [20]

When analyzing the default, blocktime 0 and blocktime 30 environments, which
have the same parallelism technique, we observe the importance of setting the environ-
ment. When we set KMP BLOCKTIME=0, there is a reduction of 169.04 seconds; when
we set KMP BLOCKTIME=30 there is a reduction of 108.26 seconds. This indicates
a reduction in the total execution time of approximately 15.92% for the blocktime 30
environment and approximately 24.85% for the blocktime 0 environment in relation to
the default environment. This variation in runtime is explained by the OpenMP runtime
thread management policy implemented by Intel.

According to this explanation [26], by default, each thread remains active for
200ms in spinlock after the completion of its task. As a result, the computational feature



remains locked, preventing other tasks from being scaled for processing that resource.
This behavior directly impacts the execution of MKL, since the scheduling of its tasks
is dynamic. Therefore, the runtime has to wait for the release of the resource to stagger
another task block for processing. To understand this behavior, we analyzed two environ-
ments at VTune, which is an Intel toolkit to profile execution. The profiling results are
shown in Fig. 3. The main metrics presented are the effective time, spin time, and over-
head time. Effective time is the CPU time spent in the user code, which does not include
spin and overhead time. Spin time is the wait time during which the CPU is busy [27].
This often occurs when a synchronization API causes the CPU to poll while the soft-
ware thread is waiting. Some spin time may be preferable to the alternative of increased
thread context switches. Too much spin time, however, can reflect the lost opportunity for
productive work. The overhead time is CPU time spent on the overhead of known syn-
chronization and threading libraries, such as system synchronization APIs (e.g. system
calls and OpenMP directives).

(a) default environment

(b) blocktime 0 environment

Figure 3. Spin time analysis using Intel VTune Amplifier profiling tool.

Looking at Fig. 3 we see that the effective time increases 79.65%, the spin time
decreases 82.29% and the overhead time increases 2.74%. This result indicates that when
we define KMP BLOCKTIME=0 there is a 79.65% increase in the algorithm efficiency.

When we compare the total execution time of the default and eigen environments,
we see that the eigen environment executes the algorithm 67.73 seconds faster. When
we compare the total execution time of the eigen and blocktime 0 environments, we see
that the latter executes the algorithm 101.30 seconds faster. In this case, we are evaluat-
ing different OpenMP runtimes. The default and blocktime 0 environments run over the



OpenMP runtime implemented by Intel and the eigen environment runs over the OpenMP
runtime implemented by GNU.

In order not to do an unfair analysis, it is necessary to define under what as-
pects our analysis is being done. Within the GNU runtime, there is a behavior pol-
icy of the threads lifecycle that resembles behavior within the Intel runtime. This be-
havior is defined by the OMP WAIT POLICY variable, which defines how the threads
will behave after the completion of their task. Thus, when this variable is defined as
OMP WAIT POLICY=active, the runtime keeps the thread running in a loop without op-
erations (spinlock) while the parallel region is active while keeping the computational
resource locked. When this variable is set to OMP WAIT POLICY=passive, the runtime
”deactivates” the execution of the thread even though there is an execution of the par-
allel region to which it belongs, releasing the computational resource to other threads.
For this, we can associate the OMP WAIT POLICY variable behavior of the GNU run-
time with the variable KMP BLOCKTIME of the Intel runtime, having the following
relation: OMP WAIT POLICY=active is equivalent to KMP BLOCKTIME=infinite and
OMP WAIT POLICY=passive is equivalent to KMP BLOCKTIME=0. Therefore, we can
say that the MKL routines have a better computational performance comparing to the
Eigen library routines when considering the operations involving the execution of this
neural network architecture for this database.

4.3. Results and Analysis: fine tuning

This section presents the results and analysis of a fine-tuning setup on Intel’s Python
distribution. We analyze the total execution time setting up the environment variables
KMP BLOCKTIME, OMP NUM THREADS, MKL NUM THREADS, MKL DYNAMIC
and OMP NESTED.

Fig. 4 presents the total execution time. The magenta bars present the results for
OMP NUM THREADS = 1, 12, 24, 48, 96, MKL NUM THREADS = 1 and MKL DYNAMIC
= false; the blue bars present the results for OMP NUM THREADS = MKL NUM THREADS
= 1, 12, 24, 48, 96 and MKL DYNAMIC = false; the orange bars present the results for
OMP NUM THREADS = 1, 12, 24, 48, 96, KMP NUM THREADS = 96 and MKL DYNAMIC
= false; yellow bars present the results for the default environment as mentioned on pre-
vious section. For all experiments, the KMP BLOCKTIME is equal to 0, OMP NESTED
is equal to true and OMP MAX ACTIVE LEVELS is equal to 2 less than the default en-
vironment that KMP BLOCKTIME is equal to 200 and OMP NESTED is equal to false.

Looking at Fig. 4, we conclude that the best execution time is 495.18 seconds
for OMP NUM THREAD = KMP NUM THREADS = 1 and the worst execution time is
4003.29 seconds for OMP NUM THREAD = KMP NUM THREADS = 96.

Analyzing Fig. 4 we see that when we increase only OMP NUM THREADS the
variation on the total execution time is not significant. However, when we increase both
OMP NUM THREADS and MKL NUM THREADS there is a significant variation. This
behavior can be explained by the mathematical operations that a neural network training
involves. This observation can be corroborated by the result of OMP NUM THREADS
= 1 and the MKL NUM THREADS = 96. There was a decrease of 1.92 times on exe-
cution time. Therefore, we can conclude that the increase in the number of threads for
the mathematical library is more important than increasing the number of threads for the



Figure 4. Total execution time after fine tunning

TensorFlow operations.

Comparing the total execution time of the default environment with the others fine
settings, we see that from the OMP NUM THREADS = 12 and KMP NUM TREADS =
96 we have gain in performance. Fig. 5 presents these gains in performance considering
KMP NUM THREAD = 96 for all cases.

Figure 5. Speedup after fine tuning

Looking at Fig. 5 we see a minimum gain of 1.11 times for OMP NUM THEADS
= 12 and a maximum gain of 1.37 times for OMP NUM THREADS = 96.

In a complementary result visualization, Table 1 presents the total time reduction
in seconds (second column) and percents (third column). This table presents a minimum
time reduction of 67.10 seconds and a maximum time reduction of 184.93 seconds, rep-
resenting, respectively, 10 and 27 percents of time reduction.

By the results presented in this section, we conclude that worth it the time spent
in fine-tuning.

5. Conclusions and Future Trends
The application of Deep Neural Networks (DNN) is highly dependent on the use of frame-
works to facilitate the implementation and deploy of algorithms. Also, such architectures
are very computationally intensive and the use of parallel processing may be the only



OMP NUM THREADS Time reduction (seconds) Time reduction (%)
12 67.98 10
24 136.15 20.02
48 168.73 24.81
96 184.93 27.19

Table 1. Total execution time reduction

feasible alternative in some cases. Therefore, this paper brought a profile analysis of
Tensorflow on five different computing environments in a text classification application.
The results obtained lead to a better understanding of the execution patterns of a convo-
lutional neural network and, thus, allow us to obtain more efficient forms of training such
networks.

The results show that default environment had a time reduction of 83.01%, eigen
environment had a time reduction of 84.70%, blocktime 30 environment had a time re-
duction of 85.72% and blocktime 0 had a time reduction of 87.23%. Therefore, the most
efficient environment was the blocktime 0 considering this shared memory processing
system and this dataset.

Those results shows that the fine tuning effort worth for the Intel Xeon Platinum
8000 Series. We have improved the performance in 1.37 times when use blocktime 0
environment and we set MKL DYNAMIC = false, OMP NUM THREAD =
KMP NUM THREADS = 96.

As future investigations, it is possible to highlight that, one of the most important
features of the Skylake architecture is the Intel Advanced Vectors Extensions 512 (AVX-
512). This set of instructions and registers allows the processors to operate over vectors
of 512 bits at a single time. As future work, we propose to investigate the influence of the
AVX-512 on the MKL, OpenBLAS/LAPACK, and Eigen mathematical libraries.
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