Enabling Time Synchronization with
Hardware-in-the-Loop Integration on a Data-Driven
Middleware for Autonomous Vehicles Simulations

Iliton Pfleger Junior, Leonardo Passig Horstmann, Antoénio A. Frohlich
Software/Hardware Integration Lab, Federal University of Santa Catarina
Floriandpolis, Santa Catarina, Brazil
{pfleger*, horstmann, guto}@lisha.ufsc.br

Abstract—Building reliable simulation scenarios and digital
twins is a keystone for the development process of critical systems
such as autonomous vehicles. In this sense, the ability to integrate
simulators with software-, hardware-, and even vehicles-in-the-
loop is fundamental for increasing the reliability of the simula-
tions. Nevertheless, guaranteeing time synchronization amongst
the different components of the system is a challenging task that
must consider the different capabilities regarding timing in each
device. In this work, we build upon a data-driven middleware
to provide transparent hardware-in-the-loop integration to an
autonomous vehicle simulation scenario and extend the original
implementation to account for time synchronization by taking
advantage of a high-precision time source provided by the
hardware components. We operate the middleware in Linux over
a NVIDIA Jetson Orin AGX, measuring an average deviation
of 6ms when compared to the high-precision hardware-in-the-
loop timestamps, with the deviation exceeding the established
safe margin over 69% of the observations. The attained results
corroborate the need for time synchronization on digital twins,
especially when considering the strict timing requirements of
critical systems such as autonomous vehicles.

Index Terms—digital-twins, hardware-in-the-loop, time syn-
chronization

I. INTRODUCTION

Simulation is a critical step in the design, implementation,
and deployment of critical systems, such as Autonomous Ve-
hicles (AV). Integrating simulators with software-, hardware-,
and even vehicles-in-the-loop is fundamental for increasing the
robustness in the verification of AV solutions [6]. Moreover,
many rely on simulation tools such as CARLA [3] and
Gazebo [8] to build digital twins solutions for validating
security and safety aspects for Al-based decision-making on
autonomous systems.

In this context, Hoffmann et al. [2], [5] introduced a data-
driven middleware to integrate Autonomous Systems simu-
lators and external tools. The middleware creates an inter-
mediary layer between the simulator and external tools by
modeling the inputs and outputs as SmartData [4], which
allows for accounting for timeliness, security, and commu-
nication. Their solution aims at easing the integration of the
autonomous system simulation with other tools as it abstracts
data sources as SmartData. Thus, replacing or introducing new

This work was partially supported by FUNDEP grants Rota 2030/Linha VI
29271.02.01/2022.01-00 and 29271.03.01/2023.04-00.

data sources is transparent to the application. Moreover, the
SmartData abstraction allows for the middleware to promote
time synchronization as timing is intrinsic to SmartData.

Time synchronization between Hardware-in-the-Loop (HIL)
components must consider devices have different capabilities
regarding timing. Some devices have no time source and thus
are not able to produce valid timestamps for each data sample.
Other devices can account for timing but must be synchronized
based on an external time source. At last, we have devices
that produce their own, reliable, time source as the Global
Navigation Satellite System (GNSS). Synchronizing timing
among simulation tools, HIL, and Software-in-the-Loop (SIL)
solutions is challenging when considering different notions of
timing on synchronous and asynchronous executions, different
representations of time, and different levels of precision.

In this work, we build upon the middleware presented by
Hoffmann et al. to provide transparent HIL integration to AV
simulation tools while addressing the problem of time syn-
chronization amongst simulation, SIL, and HIL components.
We take advantage of the high-precision time source of a HIL
GNSS device and the abstractions of the SmartData middle-
ware to synchronize time for the data being produced. Once
data introduced into the SmartData network is synchronized
in time, external tools in data transformation steps can operate
time according to user-level configuration, which determines
what processes, HIL, and SIL tools must account for time and
what not. By introducing time synchronization, we extend the
proposed middleware and provide the user with a solution for
building more reliable digital twins for the development, test,
and validation of Autonomous Vehicles.

The remainder of this paper is organized as follows: Sec-
tion II presents basic concepts on SmartData. Section III
describes the SmartData middleware proposed by Hoffmann
et al. [2], [5]. Section IV describes the HIL components
integrated and the time synchronization mechanism. Section V
presents a case study with results corroborating the need for
time synchronization mechanisms on a digital twin system.
Section VI ends this work with some final remarks.

II. SMARTDATA

SmartData was conceived to be the primary (if not the only)
abstraction used by application programmers to interact with

the physical world on a network of sensors and actuators. A
SmartData is a piece of data enriched with enough metadata
to make it self-contained regarding semantics, spatial location,
and timing [4]. The SmartData Interface is depicted by Fig-
ure 1.

defines UNIT

Transducer
SmartData L

+SmartData(dev, expiry, period, mode) o—
+SmartData(region, expiry, period, fuser) o-
+operator Value() : Value

+operator update() : Value
+location(): Coordinates
+time(): Time

+wait()

Fig. 1. The SmartData Interface [4].

A Transducer is a single interface to interact with both
Sensor and Actuator in SmartData. As depicted in Figure 1, a
SmartData is associated with a Transducer in the general case.
A Transducer comprises the definition of the UNIT that the
SmartData will consider. The data semantics is encapsulated
as a UNIT, a 32-bit type identifier designating either an S/
Physical Quantity or plain digital data, inspired by the Trans-
ducer Electronic Data Sheets in the IEEE 1451 standard [7].
From this attribute, we can extract the semantics of the data,
like the size and a range of valid values.

From the sensor perspective, Transducers can include in-
formation regarding sensing error, and sensing time and
value from the most up-to-date sample (accessed through
operator Value () and time ()).

Finally, the relationships amongst SmartData are modeled
in the form of Interests. An Interest encompasses definitions
like timing, security, criticality, and sampling modes. In this
sense, a SmartData A can be interested in a SmartData B
considering a period, expiry, and sampling mode. Thus, B
must adapt itself to attend to A requirements.

III. THE MIDDLEWARE

The SmartData-based data-driven Middleware for integrat-
ing Autonomous Vehicles Simulation tools was introduced by
Hoffmann et al. [2], [5]. Their solution assumes that Simu-
lators provide at least four interfaces, one for time synchro-
nization (read and write of internal simulation time), one for
describing the simulated scenario, one for reading sensor data,
and one for writing actuators data. The middleware models
the data used on a simulator and creates an intermediary layer
between the simulator and the external tools by defining their
respective inputs and outputs as SmartData. A message bus is
used for communication between SmartData following their
Interest relations. Messages are exchanged following a specific
protocol. Nevertheless, the architecture presented is agnostic
of protocol.

Figure 2 presents a component diagram of the proposed
architecture. For a simulator to be connected to the SmartData

middleware, the domain of the application must be decom-
posed into SmartData. The Simulator then connects to the
internal SmartData Network through a SmartData_Handler
implementing a Simulator_Wrapper able to access the control
interfaces and feed the SmartData Sensors. Any SmartData
connected to the bus can read this data. Transformational
SmartData can both read and write into the message bus.
Finally, Actuator SmartData can read from the message bus
and interact with the SmartData_Handler accordingly,
closing the control loop. Note that only the Sensor and
Actuators are connected to a Simulator. Thus, the solution
introduced by Hoffmann et al. allows one to create and cus-
tomize Transformer SmartData to promote additional function-
alities, interacting with the simulation by reading the Sensor
SmartData of Interest and sending the resulting data to the
Actuator SmartData, which will be sent back to the Simulator.

IV. HARDWARE-IN-THE-LOOP INTEGRATION AND TIME
SYNCHRONIZATION

In this section, we introduce each of the HIL components
integrated into the SmartData Framework, namely the OAD-
D Long Range (LR) Camera from Luxonis, a Velodyne
PUCK VLP-16 LiDAR (Light Detection and Ranging), and
a LPMS IG1P-CAN GNSS and IMU (Inertial Measurement
Unit) sensor. After presenting the HIL components, we finish
this section by describing the process for time synchronization.

A. Camera

Cameras play a vital role in the functionality of autonomous
vehicles, serving as the primary means for environmental
perception, decision-making, and recognition models. In this
case, the Luxonis OAK-D LR, a precise stereo depth sensor
equipped with a 4-TOPS processor capable of running any Al
model independent of host, has been integrated. The captured
data are converted into an Image SmartData with a Digital
UNIT. This camera model features an internal oscillator with
(S precision.

B. LiDAR

LiDARs are sensors that provide a perception of the environ-
ment based on the reflection of hundreds of laser beans. They
are often paired with cameras to enhance reliability and safety
in conditions where a regular camera may be compromised,
such as fog or rain. The chosen model for this work is the
Velodyne PUCK VLP-16. This hardware is equipped with 16
channels (16 vertical lasers) that cover a +15° vertical field
of view (FOV) and rotate 360° horizontally at a maximum
speed of 1300 RPM, providing up to 300,000 PPS. For this
work, the grabbed data by the LiDAR is represented by a Point
Cloud (PCD) SmartData, which represents an array of points
with (z,y, z,¢) information where x, y, and z are coordinates
of the reflection and ¢ its intensity. This LiDAR is equipped
with an internal oscillator that assigns a timestamp to each
PCD packet. This clock can be synchronized with an external
GNSS receiver or with the host by a serial port.

SmartData Sensors

1
. Data . ! \ Data
o : Hs s [s)
1
1
TPy 1
& (3 |
|

SmartData
Handler

Control Data

Simulator

|
1
1
1
1
' SmartData Actuators
1
1
1
1

Control Data '
[s:[s] [o]
' AN
-

SmartData Services

(2]

: ERER
s ormational

E SmartData

)

=

1
1
|
[
1 Transft
1
T
1
1
1

Transformed
Data

Legend
——> Secure Protocol
——> Shared Memory

Fig. 2. Overview of the integration of the SmartData and Simulators.

C. IMU and GNSS

IMUs provide a wide range of basic physical quantities for
a particle. For this project, we only used a 3-axis acceleration,
gyroscope, and orientation heading (magnetometer) from all
the collected data. Furthermore, GNSSs are also crucial to this
integration because they provide geo-referencing information
about the vehicle, which includes longitude, latitude, altitude,
velocity and precise timestamps. These timestamps came with
nanosecond precision, which we will use to synchronize all
other sensors. To collect all this data we use an LPMS IG1P-
CAN sensor and encapsulate it into 11 (eleven) SmartData one
for each reading unit.

D. Integration to the SmartData Middleware and Time Syn-
chronization

As mentioned in Section III, the SmartData middleware
expects a handler to be defined implementing four interfaces,
one for time synchronization, one for reading and replace
readings of sensors, one for the description of simulation
scenarios, and one for writing actuation data. To integrate the
HIL components into the SmartData middleware, one must
change the SmartData handler so that, instead of collecting all
data from the simulation tool, we use the HIL components to
collect the data they produce.

In this way, we first implemented wrappers that provide the
interface for reading data on each HIL component following
the implementation of a SmartData transducer as depicted in
Figure 1. In other words, each wrapper provides an implemen-
tation of the operator Value() so that the SmartData object can
read the data produced by each HIL component.

For time synchronization to be possible, we changed the
wrapper for the IMU and GNSS so that we would also capture
the timestamp linked to every sampling. In specific, a GNSS-
provided nanosecond-precision timestamp.

The HIL timestamp is formatted to match system-level timer
resolution. The middleware then performs time synchroniza-
tion whenever an application-level threshold is exceeded. The
data produced from other HIL, SIL, and the simulator are
then tagged with the synchronized timestamp. Therefore, the

SmartData entering the middleware is temporally aligned and
correctly timestamped.

The changes to the original SmartData middleware are high-
lighted in red, with dotted lines representing new concepts,
like the HIL and time-synchronized data, and continuous lines
representing changes to a component included in the original
version, i.e., the SmartData Handler. Finally, considering the
fact the middleware proposed by Hoffmann et al. [2], [5] is
able to account for timing due to the inherent SmartData prop-
erties, the synchronized time can be propagated and operated
by data transformations (Transformational SmartData) such as
other HIL, SIL, AI models, and so on, up to the actuation
stage.

V. CASE-STUDY

To corroborate the need for a time synchronization mecha-
nism on a digital twin system, we replicated the experiments
conducted by Hoffmann et al. in [5]. They extended an Immi-
tation Learning application originally proposed by Codevilla
et al. [1] over the CARLA simulator [3].

In their experiments, Hoffmann et al. implemented the
SmartData_Handler through the CARLA Client API, which
enables simulation customizations during execution. For in-
stance, one could add sensors, add vehicles, collect informa-
tion, and alter parameters. This integration allowed for con-
necting the Simulator and Simulator_Wrapper functionalities
and promoting the marshaling between CARLA complaint
Sensor/Control Data into SmartData, and vice-versa.

In this way, the integration of the simulation with the
SmartData middleware consists of intercepting data read by
the Python Client and feeding them to SmartData Services
for the respective SmartData Sensors via shared memory.
Each processing algorithm, SIL, and HIL that operates over
the observed data is then modeled as a Transformational
SmartData Service. Control data is then modeled as SmartData
Actuators Services that collect necessary data for actuation.
The communication between different SmartData Services is
conducted through a shared message bus. Finally, control
data is returned to the simulator by the SmartData_Handler

via the Client API. Check Figure 1 for a depiction of this
infrastructure.

As described in Section IV, to simulate a digital twin
scenario, we adapted the SmartData handler implementation
to account for the HIL data sources instead of capturing it
from the simulator, in this case, CARLA. Furthermore, the
SmartData framework was configured to operate over Linux
in a NVIDIA Jetson AGX Orin with 2048 NVIDIA® CUDA®
cores and 64 tensor cores, 12-core Arm Cortex-A78AE v8.2,
64-bit CPU, 3MB L2, and 6MB L3. To enable the SmartData
framework to control time synchronization, we disabled the
Linux clock synchronization feature.

The experiment conducted in this work focused on measur-
ing the deviation of the Linux timer for each sample collected
from the GNSS HIL component. To do so, we collected two
thousand (2000) samples on a loop that collects the Linux
timestamp every time the GNSS gets a fix (i.e., the HIL
returns data for the IMU and GNSS, alongside the respective
timestamp). This strategy yielded a sampling with period
equivalent to 1 second with 0.02 seconds standard deviation.
To properly compare GNSS timestamp to Linux timestamp,
we formatted GNSS timestamp from ns to ps. The threshold
for synchronization was set to 500us, representing half of the
next order of magnitude for precision (i.e., ms).

A. Results

Considering the experiment described, Figure 3 presents a
histogram for the deviation amongst Linux timestamp and
GNSS timestamp. The line in red represents the configured
threshold (i.e., 500xs). The presented histogram suggests high
variance amongst the values observed for timestamp deviation.

104

10° M |

I

| ‘i‘ “‘HJH,\H’]M !

=
o
N

Timestamp Difference (us)
=
o

iy
o
=)

2000

O+

250 500 750 1000

Samples

1250 1500 1750

Fig. 3. Average Deviation from the SmartData Middleware over Linux to
GNSS timestamp.

This notion of high variance is corroborated by the results
presented in Table I. The high variability is demonstrated
by the fact the average jitter, which represents the average
difference between a singular deviation and the average of
deviations, represents 96.98% of the average deviation itself.
This, alongside an average deviation of approximately 6ms,
raises the need for time synchronization, especially when
considering timing requirements for critical applications.

TABLE I
TIME SYNCHRONIZATION SUMMARY

Metric Result In Perspective
Average Deviation 6025.58 ps | 0.6% of the 1s interval
Average Jitter 5843.89 us 96.98% of avg.
Number of Actuations 1383 69.15% frequency

Finally, the number of actuations, representing the number
of times the Linux timestamp was synchronized to the HIL
timestamp, around 69.15% of the total number of verifications,
also demonstrates the necessity for time synchronization for
building relevant digital twin scenarios that support critical
operations.

VI. FINAL REMARKS

This work built upon a SmartData-based data-driven mid-
dleware to provide transparent HIL integration to an au-
tonomous vehicle simulation environment. We extended the
original implementation to address the problem of time syn-
chronization on digital twins by taking advantage of a high-
precision time source provided by a GNSS hardware sensor
attached to an IMU.

Experiments were conducted operating the middleware in a
Linux-based Operating System, measuring an average devia-
tion of 6ms when compared to the high-precision hardware-
in-the-loop timestamps, with the deviation exceeding the es-
tablished safe margin over 69% of the observations.

Future works include conducting more experiments with
different hardware and software configurations to provide a
more comprehensive analysis of the results obtained. More-
over, an in-depth investigation of the state-of-the-art in time-
synchronization approaches for digital twins is necessary to
provide relevant comparisons in terms of methods and overall
performance.

REFERENCES

[1] Felipe Codevilla, Matthias Miiller, Antonio Lépez, Vladlen Koltun, and
Alexey Dosovitskiy. End-to-end driving via conditional imitation learn-
ing. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 4693—4700, 2018.

[2] José Luis Conradi Hoffmann, Leonardo Passig Horstmann, and
Antonio Augusto Frohlich. Transparent integration of autonomous vehi-
cles simulation tools with a data-centric middleware. Design Automation
for Embedded Systems, 28(1):45-66, January 2024.

[3] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. CARLA: An open urban driving simulator. In
Proceedings of the 1st Annual Conference on Robot Learning, pages 1—
16, 2017.

[4] Antonio Augusto Frohlich. SmartData: an IoT-ready API for sensor
networks. International Journal of Sensor Networks, 28(3):202, 2018.

[5] Jose Luis Conradi Hoffmann, Leonardo Passig Horstmann, and Anto-
nio Augusto Frohlich. Integrating autonomous vehicle simulation tools
using smartdata. In 2022 XII Brazilian Symposium on Computing Systems
Engineering (SBESC), page 1-8. IEEE, November 2022.

[6] WuLing Huang, Kunfeng Wang, Yisheng Lv, and FengHua Zhu. Au-
tonomous vehicles testing methods review. In 2016 IEEE 19th Inter-
national Conference on Intelligent Transportation Systems (ITSC), pages
163-168, 2016.

[7] IEEE Instrumentation and Measurement Society. Ieee standard for a
smart transducer interface for sensors and actuators - common functions,
communication protocols, and transducer electronic data sheet (teds)
formats. IEEE Std 1451.0-2007, pages 1-335, 2007.

[8] Open Robotics. Gazebo.

