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Abstract—This study addresses the impact of adverse weather,
specifically fog, on the perception systems of autonomous vehicles,
which are critical for detecting and responding to traffic scenar-
ios. Using over 10,000 images, an object recognition model was
developed with Roboflow and YOLOv8, while fog disturbances
were generated with GANs. The research simulates various traffic
scenarios, comparing system performance under clear and foggy
conditions. Results show that training models with a wider range
of conditions enhances accuracy, highlighting the importance of
diverse training for safe autonomous vehicle operation. This work
offers insights for improving perception systems in autonomous
vehicles.

Index Terms—Autonomous Vehicles; Perception System; Ad-
verse Weather Conditions; Object Recognition; Generative Ad-
versarial Networks (GAN)

I. INTRODUCTION

In recent years, autonomous vehicles have emerged as a
transformative technology with the potential to revolution-
ize the way we move and transport. With advancements
in artificial intelligence, sensor technology, and connectivity,
autonomous vehicles promise to increase road safety, reduce
congestion, and enhance mobility for everyone [1, 13]. How-
ever, to fully realize the potential benefits of autonomous
vehicles, ensuring their safety under various environmental
conditions becomes paramount [7, 8, 14].

A critical aspect that requires meticulous attention is the
detection and adaptation to adverse weather conditions, such
as fog. Foggy weather presents significant challenges for
autonomous vehicles, as it dramatically affects visibility and
introduces uncertainties that can compromise the safe opera-
tion of these vehicles [9, 11, 12]. Therefore, establishing robust
and reliable methods to detect and respond to fog conditions
is crucial to ensure the safety of autonomous vehicles and the
passengers, pedestrians, and infrastructure around them [2].

The adoption of autonomous vehicles has immense po-
tential to mitigate traffic accidents caused by human errors,
improve transportation efficiency, and reduce environmental
impact. However, widespread acceptance and integration of
autonomous vehicles into our daily lives require ensuring their
ability to navigate safely through various weather conditions.

Fog, being a common occurrence in many regions, represents a
significant challenge for the reliable operation of autonomous
vehicles. [1, 6]

II. RELATED WORK

The impact of adverse weather conditions on autonomous
vehicle (AV) perception systems has been widely studied,
with a particular focus on object detection challenges. Prior
research highlights the detrimental effects of fog on visibility
and AV performance, driving the need for adaptive solutions.
For example, Appiah and Mensah (2024) examine object de-
tection challenges in poor weather, presenting approaches for
enhanced accuracy in low-visibility conditions [2]. Similarly,
Liu et al. (2023) introduced GCANet, a model leveraging
feature fusion to improve detection accuracy under fog, sug-
gesting that specialized network architectures can better handle
adverse weather disturbances [11].

III. METHODOLOGY

The study aims to demonstrate how such adverse conditions
can negatively affect the accuracy of object detection, which
is essential for the safe operation of autonomous vehicles.

A. Data Preparation

BDD100K, developed by the Berkeley DeepDrive Center
at UC Berkeley, is one of the most comprehensive datasets
available for advancing research in autonomous driving. It
includes 100,000 videos recorded under diverse geographical,
climatic, and temporal conditions, providing a rich variety of
real-world driving scenarios [15]. The dataset features detailed
annotations for tasks such as object detection, semantic seg-
mentation, and traffic condition assessment, covering essential
categories like vehicles, pedestrians, traffic signs, and traffic
lights, along with driving conditions like road type, weather,
and time of day [15].

To manage and process this data, Roboflow was chosen for
its user-friendly interface and powerful pre-processing tools,
despite its limitation of processing up to 10,000 images for free
[4]. Given this constraint, a reduced version of BDD100K was



used, consisting of 9,900 images, with 7,892 for training and
2,008 for validation [3]. These images represent traffic scenar-
ios with varying lighting and weather conditions and contain
a total of 185,995 annotations, averaging 18.6 annotations per
image.

The images in the dataset have a resolution of 1280x720
pixels, chosen to provide sufficient visual detail for accurate
analysis while maintaining efficient storage and processing re-
quirements. This resolution is widely recognized for balancing
clarity and performance in computer vision applications.

B. Foggy Image Generation

This research involves generating foggy images to assess the
performance of computer vision algorithms in adverse weather
conditions. The Foggy-CycleGAN project was utilized, em-
ploying a machine learning approach to transform clear images
into foggy ones. In Figure 1, a comparison is shown, with the
original clear urban scene on the left and the foggy version
on the right, illustrating the effectiveness of the CycleGAN
algorithm in simulating foggy conditions.

Fig. 1. On the left, we have the original image and on the right, we have the
image with the application of the Foggy-Cycle-GAN algorithm transforming
it into a foggy image. Source: BDD100K Dataset.

Six different experiments were conducted by re-training
the model with distinct combinations of training and val-
idation sets, each representing different weather scenarios.
The Clear/Clear experiment serves as the baseline, offering
a reference point to evaluate the model’s performance under
altered weather conditions.

IV. RESULTS AND DISCUSSION

The number of epochs was chosen as 10 and 100 in
the experiments to observe the model’s performance across
both shorter and longer training durations, allowing for a
comparison of how quickly the model converges and whether
additional training improves or plateaus the results.

A. For 10 epochs

The results of different tests using the Foggy-CycleGAN
method are shown respectively for IoU (Intersection over
Union) of 0.5 and for 10 epochs with a batch size of 16.
The average execution time of each experiment was 1 hour.

Exp. # Car Pedestrian Traffic Light Traffic Signs

Clear/Clear 77.5% 55.4% 53.5% 62.7%
Clear/Fog 23.1% 15.3% 0.29% 1.13%
Fog/Fog 61.5% 32.5% 34.7% 36%

Fog/Clear 38.9% 27.1% 0.66% 2.84%
Fog + Clear/Clear 75.9% 51.4% 49.9% 57.9%
Fog + Clear/Fog 56.7% 30.6% 29.5% 32.6%

TABLE I
EXPERIMENT RESULTS (BY CLASS) FOR 10 EPOCHS

The Table I details the mAP-0.5 metrics for different object
classes: Cars, Pedestrians, Traffic Lights, and Traffic Signs.

• Cars: Detected with high precision in most experiments,
with Experiment Clear/Clear showing the best result
(77.5%) and Experiment Fog/Clear the worst (38.9%).

• Pedestrians: Detection was moderately successful, with
the best result in Experiment Clear/Clear (55.4%) and the
worst in Experiment Clear/Fog (15.3%).

• Traffic Lights: Results vary significantly, from 0.29%
in Experiment Clear/Fog to 53.5% in Experiment
Clear/Clear, possibly indicating some inconsistency in the
model or data quality.

• Traffic Signs: Show considerable variation but less dras-
tic than traffic lights, with the best result in Experi-
ment Clear/Clear (62.7%) and the worst in Experiment
Clear/Fog (1.13%).

B. For 100 epochs

The results of different tests using the FoggyCycle GAN
method are shown respectively for IoU (Intersection over
Union) of 0.5 and for 100 epochs with a batch size of 16.
The average execution time of each experiment was 13 hours.

Exp. # Car Pedestrian Traffic Light Traffic Signs

Clear/Clear 81% 60.6% 62.2% 67.4%
Clear/Fog 24.7% 18.5% 0.5% 1.73%
Fog/Fog 68.7% 39.1% 46% 45.1%

Fog/Clear 38.2% 33.8% 1.61% 4.78%
Fog + Clear/Clear 80% 58.3% 60.1% 65.1%
Fog + Clear/Fog 66.9% 38.9% 42.9% 43%

TABLE II
EXPERIMENT RESULTS

The Table II details the mAP-0.5 metrics for different object
classes: Cars, Pedestrians, Traffic Lights, and Traffic Signs.

• Clear/Clear: High performance across all categories;
Cars had the highest accuracy (81%), indicating effective
car detection under ideal conditions. Pedestrians (60.6%),
Traffic Lights (62.2%), and Traffic Signs (67.4%) also
performed well.

• Clear/Fog: Significant drop in accuracy for all categories
in foggy conditions; Traffic Lights (0.5%) and Traffic
Signs (1.73%) were especially low, highlighting the im-
pact of fog on detecting smaller or detailed objects.

• Fog/Fog: Improvement in all categories under foggy
conditions compared to Experiment Clear/Fog, but still
moderate to low results; Cars (68.7%) had the highest



accuracy, followed by Traffic Lights (46%), Traffic Signs
(45.1%), and Pedestrians (39.1%).

• Fog/Clear: Low accuracy across all categories when
trained in fog and validated in clear weather; notably poor
performance for Traffic Lights (1.61%) and Traffic Signs
(4.78%), suggesting that adverse condition training does
not well prepare the model for ideal conditions.

• Fog + Clear/Clear: High performance for Cars (80%)
and good results for other categories when trained with
mixed data (Clear + Fog) and validated in clear condi-
tions; Pedestrians (58.3%), Traffic Lights (60.1%), and
Traffic Signs (65.1%).

• Fog + Clear/Fog: Decrease in accuracy for all categories
when validated in foggy conditions, using the same
dataset as Experiment Fog + Clear/Clear; Cars (66.9%)
had the highest accuracy, followed by Traffic Lights
(42.9%) and Traffic Signs (43%). Pedestrians were at
38.9%, showing the challenges of detecting people in fog.

The data suggests that training with a combination of
conditions (Clear + Fog) tends to provide better generalization,
but foggy conditions consistently lower detection accuracy
across all classes, with Traffic Lights and Traffic Signs being
the most affected.

C. For 10 and 100 epochs

The results of different tests using the FoggyCycle GAN
method are shown respectively for IoU (Intersection over
Union) of 0.5 and for 10 epochs and 100 epochs with a
batch size of 16 for both. The average execution time for each
experiment was 1 hour and 13 hours, respectively.

Exp. # Training
Data

Validation
Data

mAP-0.5

10 epochs 100 epochs

Clear/Clear Clear Clear 62.3% 67.8%
Clear/Fog Clear Fog 9.97% 11.4%
Fog/Fog Fog Fog 41.2% 49.7%

Fog/Clear Fog Clear 17.4% 19.6%
Fog + Clear/Clear Fog + Clear Clear 58.8% 65.9%
Fog + Clear/Fog Fog + Clear Fog 37.4% 47.9%

TABLE III
COMPARISON BETWEEN 10 EPOCHS AND 100 EPOCHS

Table III compares the performance of object detection
models under different training and validation conditions,
evaluated by the global mAP-0.5 metric after 10 and 100
epochs. The mAP-0.5 metric represents the average precision
for an Intersection over Union (IoU) of 0.5. Analyzing the
improvement of mAP-0.5 from 10 to 100 epochs for each
experiment:

• Clear/Clear: There was an improvement of 5.5 percent-
age points, from 62.3% to 67.8%, indicating that the
model benefits from a higher number of training epochs
under consistent clear image conditions.

• Clear/Fog: The improvement was only 1.47 percentage
points, from 9.97% to 11.4%, suggesting that training

under clear conditions has limited transfer to validation
under foggy conditions, even with more training epochs.

• Fog/Fog: There was an increase of 8.5 percentage points,
from 41.2% to 49.7%, showing that training and valida-
tion under consistent foggy conditions benefit from more
training epochs.

• Fog/Clear: The increment was 2.2 percentage points,
from 17.4% to 19.6%. This modest increase suggests that
training only in fog does not generalize well to clear
conditions, even with more training.

• Fog + Clear/Clear: The mAP-0.5 increased by 7.1
percentage points, from 58.8% to 65.9%, indicating that
a diverse training dataset improves generalization to clear
conditions when the model is trained for longer.

• Fog + Clear/Fog: An improvement of 10.5 percentage
points, from 37.4% to 47.9%, was seen here, suggesting
that a diverse training dataset also improves detection
under foggy conditions with more training epochs.

Increasing training epochs usually enhances model per-
formance, but the benefit depends on training conditions.
Exposure to diverse conditions during training helps models
generalize better, improving their robustness with additional
epochs.

Currently, the model performs adequately under certain
weather scenarios but falls short for reliable deployment in
autonomous vehicles operating across different weather condi-
tions. Nonetheless, the data and methods applied in this study
lay a strong foundation for future enhancements. Incorporating
more diverse data and advanced modeling techniques could
help improve the model’s reliability across a broader spectrum
of conditions.

Though the study has not fully achieved its intended goal,
the results point to a viable path forward. The research data
and methods provide critical insights necessary for model
refinement, ultimately working toward ensuring safe and ef-
fective operation under diverse weather conditions.

To be considered safe for use in autonomous vehicles, a
computer vision model generally needs to achieve a mini-
mum mAP of 85-90% under representative testing conditions
[5, 10]. Additionally, practical implementation must include
redundancies, rigorous validations, and comply with specific
regulatory standards to ensure the safety and reliability of the
system.

V. CONCLUSION

Evaluating the Foggy-CycleGAN method over 10 and 100
epochs provides insights into performance under various
conditions. While 10 epochs showed variability, with Cars
achieving the highest accuracy and Traffic Lights showing
inconsistency, extending to 100 epochs improved accuracy
across all categories. This highlights the benefits of longer
training, although foggy conditions remained challenging.

Training with diverse data, covering both clear and foggy
conditions, is essential for robust performance. Models trained
with mixed conditions generalized better and achieved higher



accuracy in both scenarios, emphasizing the value of varied
training data to enhance model robustness.

Despite improvements, the model’s performance in foggy
conditions is still suboptimal, highlighting the need for
more data augmentation and methodological advances. For
autonomous vehicle applications, the model should ideally
achieve an mAP of 85-90% under representative conditions.
Achieving this will require continued investment in diverse
data, advanced modeling, and strict safety standards to ensure
reliable real-world operation.
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