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Abstract—This research explores a vision-based vibration mon-
itoring algorithm that may be used to detect and measure
vibrations on a vehicle with an onboard camera. To achieve
this, we explored Optical Flow algorithms techniques such as
Lucas-Kanade, Horn-Schunck and Farneback to analyze pixel
motion between frames and relate it to vibrations. For testing
and validation, CARLA simulator was used to acquire the front
camera image and IMU data in scenarios where the vehicle drives
over road bumps and potholes. The visual vibration estimation
was compared with the z-axis acceleration data of an IMU and
the results shows that it is possible to use optical flow methods
to detect vibration on the vehicle.

Index Terms—optical flow, vehicle vibration, camera, computer
vision

I. INTRODUCTION

Traditional vibration detection methods used to rely on
sensors such as accelerometers, but these can be expensive
and challenging for automakers to install and maintain in
their customer vehicles. Using a camera with optical flow
techniques can reduce reliance on physical sensors like Inertial
Measurement Unit (IMU), as it enables the calculation of ve-
locity and acceleration using only the camera. This simplifies
the system, reducing costs and maintenance efforts. Therefore,
this paper proposes a vision-based vibration estimator that
uses an onboard camera to detect and measure vibrations on a
vehicle. By leveraging existing visual data, given the increased
rate of adoption of advanced driver assistance systems (ADAS)
and autonomous driving (AD) systems, this method offers a
cost-effective and scalable solution to vibration analysis in
real-time.

Several techniques are available to estimate vibration in
a sequence of frames, with Optical Flow algorithms being
among the most prominent. These algorithms, including the
Lucas-Kanade, Horn-Schunck, and Farneback methods, track
the movement of pixels between consecutive frames to es-
timate the flow of motion within an image [1] [2]. These
techniques provide tools for measuring scene dynamics, each
with its advantages and disadvantages, enabling accurate mo-
tion estimation for applications such as object tracking and
vibration analysis.

To test and validate the proposed vibration estimator, the
CARLA simulator was used to provide an environment to sim-
ulate various road conditions, including bumps and potholes.

Data was collected from both the vehicle’s frontal camera and
its IMU, allowing for a direct comparison between the visual
estimator and traditional sensor-based methods.

II. OPTICAL FLOW METHODS

Optical flow refers to the pattern of apparent motion of
objects, surfaces, edges or entire image pixels between two
frames, caused by the relative motion between an observer
and the scene [3].

In the context of vibration detection for vehicles, optical
flow algorithms are popular in this field due to their high
accuracy and computational efficiency. They are employed to
analyze pixel motion between successive frames captured by
an onboard camera [1] [2] [3] and by measuring these pixel
displacements, it is possible to infer vibrations and relate them
to the movement of the vehicle on the road [4].

Our interest with this method was to capturing detailed
pixel-level vibrations (e.g. small oscillations caused by road
texture, high amplitudes caused by bumps and changes in
the frequency-domain), and optical flow provides a dense
representation of the entire field of view for that, that may
be used in a wide range of road condition and predictive
maintenance applications.

Between the existent algorithms, this section focuses on
the three most used: Lucas-Kanade, Horn-Schunck, and
Farneback.

A. Lucas-Kanade Method

The Lucas-Kanade method is a widely adopted algorithm
to estimate the movement of key features between consecutive
images of a scene. It operates under the assumption that the
images are captured with a minimal time interval, ensuring
little displacement of objects, which makes it effective for
slow-moving subjects. The algorithm works best with textured
objects that exhibit smooth variations in gray shades and does
not utilize color information or search for exact pixel matches.
It utilizes spatial and temporal gradients of image intensity, set-
ting up equations that relate pixel intensity changes to motion.
A single pixel often lacks sufficient information to determine
motion reliably, but by considering surrounding pixels, the
algorithm gathers more contextual data, which mitigates the
effects of noise and improves gradient calculations. [5].



However, the algorithm has disadvantages, such as poor
performance in regions with little texture or weak intensity
gradients, which can lead to ill-conditioned matrices. Further-
more, its reliance on small time increments limits its ability
to capture rapid movements accurately, and the presence of
noise or outliers can affect the solution’s reliability.

B. Horn-Schunck Method

Unlike the Lucas-Kanade method, which focuses on lo-
cal motion estimation through small neighborhoods tracking
prominent points like corners, Horn-Schunck provides a global
approach that incorporates smoothness constraints across the
entire image to enhance robustness against noise and improve
estimation accuracy, but also under the assumption of bright-
ness constancy and the image gradients computation [6].

In brief, both methods share similar approaches, but Horn-
Schunck employs a global analysis, providing greater robust-
ness to noise and excelling in fast and complex motions. How-
ever, this advantage comes with an increased computational
complexity.

C. Farneback Method

The Farneback algorithm is a dense optical flow estima-
tion technique that computes flow by modeling pixel neigh-
borhoods using polynomial expansions. Unlike the Lucas-
Kanade and Horn-Schunck methods, which rely on deriva-
tives, Farneback generates dense flow by approximating local
neighborhoods of an image as quadratic polynomials [7]. This
enables the algorithm to estimate motion between frames in
a more detailed and nuanced manner ensuring smooth and
continuous flow estimation even in complex motions. Experi-
ments results from [8] [9] [10] shows that Farneback algorithm
outperforms in terms of execution time and capability.

For vibration detection, Farneback is especially advanta-
geous when a dense and accurate flow field is needed to
capture the minute displacements caused by road-induced
vibrations. By tracking pixel movements across the entire
image, the algorithm provides high-resolution flow data, which
can be analyzed to detect even slight changes in the vehicle’s
position due to vibrations.

III. TRANSLATING OPTICAL FLOW TO VIBRATION DATA

Once the optical flow is computed, the pixel displacements
must be translated into meaningful vibration data. This in-
volves analyzing the motion patterns over time to identify
recurring shifts in the image that correspond to the vehicle’s
oscillatory motion as it travels over uneven terrain or due to
mechanical component issues (e.g., car suspension). The key
steps in this process include:

1) Pixel Motion Conversion to Z-Axis Pixel Acceleration:
Once the optical flow algorithm is applied and the
displacement of the pixels is acquired, a conversion from
displacement to acceleration must be performed. The
algorithm below describes a straightforward method to
achieve this.

2) Time Domain Analysis: By examining the pixel z-
axis acceleration as it changes over time, focusing on
amplitude and duration, lower accelerations amplitudes
may indicate rough surfaces, while higher accelerations
amplitudes could suggest larger bump, road undulations
or potholes.

3) Frequency Domain Analysis: By examining the fre-
quency domain using techniques like the Fast Fourier
Transform (FFT). This helps identify dominant fre-
quencies and their amplitudes revealing the primary
frequencies of the vehicle’s vibrations.

4) Correlation with IMU Data: To validate the resultant
z-axis acceleration from the optical flow analysis, the
output can be compared to traditional inertial measure-
ment unit (IMU) data. The z-axis acceleration data from
the IMU can serve as a ground truth for the vehicle’s
vertical vibrations, and a strong correlation with the
optical flow data would confirm the effectiveness of the
visual estimator.

IV. VISUAL VEHICLE VIBRATION ESTIMATOR

A script was developed to process video data and estimate
the vertical (z-axis) acceleration of a vehicle using optical flow
analysis. The method involves defining a grid of points across
the image to track motion vectors at regular intervals within
the video frames. This grid provides a structured means of
sampling the motion across the entire field of view.

For each frame, the script calculates the optical flow be-
tween consecutive frames using the Farneback algorithm. In
this context, we focus on the vertical (y-axis) component of
the motion, which corresponds to the vehicle’s z-axis, or its
upward and downward movement.

At each point in the grid, the vertical component of the
optical flow vector is extracted and averaged across the entire
frame. This averaged displacement provides a measure of
the vertical motion between frames. To estimate the z-axis
acceleration of the vehicle, the velocity is calculated by taking
the first derivative of the vertical displacement, and the vertical
acceleration is subsequently obtained by computing the second
derivative of velocity (expressed in pixels/s2).

To further analyze the vibration characteristics, a Fast
Fourier Transform (FFT) is performed on the acceleration
data. The FFT allows for the identification of the dominant
frequency components within the signal, revealing the primary
frequencies of the vehicle’s vibrations. The most significant
frequency is identified by locating the peak in the magnitude
spectrum, which corresponds to the most significant vibration
frequency.

Algorithm 1 describes the steps implemented and the Fig. 1
illustrates the grid formation used in the optical flow analysis
for a single video frame.

V. EXPERIMENT AND RESULTS

To replicate the challenges faced in real-world driving
scenarios and provide a validation platform for our algorithm,
we introduced a test scenario using a customized map in



Algorithm 1 Optical Flow Vertical Acceleration Estimation
1: Input: Video frames I = [I1, I2, . . . , In]; Grid resolution
2: for k = 1 to n− 1 do
3: Step 1: Optical Flow Calculation
4: Compute the optical flow between frames Ik and Ik+1

using the Farneback algorithm
5: Extract the motion vectors V from the optical flow

result
6: for each point (i, j) in the grid do
7: Step 2: Vertical Component Extraction
8: Calculate the vertical component vyi,j

of the motion
vector V

9: end for
10: Step 3: Averaging Displacement
11: Compute the average vertical displacement Dk across

the grid
12: Append Dk to the array D
13: end for
14: Calculate the time interval: ∆t← 1

fps
15: Step 4: Velocity Calculation
16: for i = 1 to n− 1 do
17: vi ← di+1−di

∆t {Calculate velocity from displacement}
18: end for
19: Step 5: Acceleration Calculation
20: for i = 1 to n− 2 do
21: ai ← vi+1−vi

∆t {Calculate acceleration from velocity}
22: Append ai to the array Az

23: end for
24: Step 6: Frequency Analysis
25: Perform Fast Fourier Transform (FFT) on the acceleration

data Az

26: Identify the dominant frequency by locating the peak in
the magnitude spectrum

27: Output: Vertical acceleration data Az; Dominant vibra-
tion frequency =0

Fig. 1. Grid applied to a frame captured in CARLA.

CARLA simulator. CARLA is built upon on Unreal Engine
4 and it is open-source, allowing the user to clone its source
repository, modify its assets and generate a new simulator
package.

A map was created with features such as speed bumps
and potholes (Fig. 2), that are intentionally placed within the

virtual environment to induce significant vertical accelerations
in the vehicle to acquire vibration data to evaluate the vehicle’s
response to uneven road surfaces.

The simulator uses Nvidia PhysX to model vehicle physics
in the virtual environment. Specifically, the PhysX Vehicle
SDX [11] depicts the vehicle as a system composed of
chassis/wheel/tires represented as rigid bodies connected by
a set of springs. This representation allows to accurately
simulate vehicle dynamics for a wide range of automobile
segments (sport cars, sedans, SUVs, wagons, trucks, etc.)
using parameters like vehicle mass, center of mass, moment
of inertia, wheel dimensions, suspension properties (natural
frequency, damping, stiffness), engine, steering and braking
characteristics to estimate forces and accelerations applied to
the vehicle and tires.

Fig. 2. Custom map in CARLA simulator.

The table below shows some parameters of the ego vehicle
used in the experiment, namely the vehicle model, sensor
poses and suspension properties. Positions are expressed rela-
tive to vehicle origin.

Simulation Parameters
CARLA Version 0.9.15

Simulation Frequency 10 Hz
Vehicle Type lincoln.mkz 2017
IMU Position x=0, y=0, z=0 [m]

Camera Position x=2.5, y=0, z=1.0 [m]
Mass 1920 kg

Center of mass x=0.1, y=0, z=-0.2 [m]
Suspension Force Offset 0.0 N
Suspension Max Raise 7.5 cm
Suspension Max Drop 7.5 cm

Suspension Natural Frequency 9.5 Hz
Suspension Damping Ratio 1.0

TABLE I
TABLE OF SIMULATION PARAMETERS

The vibration data from the simulation was compared to
data obtained from an IMU in the virtual vehicle and is shown
in Figures 3 and 4. By analyzing the correlation between the
simulated vibration data and the IMU data, we could assess the
performance of the IMU under different driving conditions.

Figure 3, a time-domain analysis, shows that the algorithm
is capable to capture the oscillation when the vehicle goes
over the pothole and speed bump. The graph also shows a
different curve and peaks behavior, that may be attributed
to the fact that the IMU and the camera were not aligned



Fig. 3. Estimated Vertical Acceleration

in the same physical location (Table I). Moreover, the result
shows a delay of approximately 0.2 seconds caused by the
data acquisition frequency. Since images are captured at a
frequency of 10 Hz, each image takes 0.1 seconds to acquire.
The algorithm requires at least two images to generate the first
estimate, creating an initial delay of 0.2 seconds. Additionally,
the algorithm’s processing time is added to this delay, further
increasing the total response time. This highlights the need for
further experiments to thoroughly examine not only the sensor
placement but also other potential factors that may contribute
to these differences and identify if refinements are necessary
for improved results.

Using FFT on the complete data, we can identify the
most significant frequency (or peak frequency) and calculate
the mean value of all peaks obtained throughout the entire
simulation. (Fig. 4).

Fig. 4. Mean value of all peaks from video (left) and from IMU (right).

The natural frequency of a vehicle’s vibration can be
identified as the peak in the frequency spectrum obtained
from the FFT analysis. This peak corresponds to the dominant
frequency at which the system (in this case, the vehicle’s
chassis or suspension) tends to oscillate naturally, especially
under steady-state conditions or without external forces. The
results show that, in the frequency domain, the data from IMU
and camera using the optical flow algorithm are also very
similar, 0.87 Hz and 0.80 Hz, respectively.

VI. CONCLUSION AND OUTLOOK

In this paper, we identified the possible methods used to ac-
quire motion from camera video data, implemented Farneback

optical flow algorithm and executed it in a virtual environment
for evaluation.

The obtained results have shown a strong correlation be-
tween the optical flow methods and IMU data, confirming that
it is feasible to detect vehicle vibrations using visual inputs
alone. This vision-based approach offers a promising basis for
future vehicle monitoring systems, especially in autonomous
driving applications where minimizing hardware complexity
is critical.

For future work, the conversion of the optical flow data from
pixels/s² to m/s² must be evaluated. Additional experiments are
needed to thoroughly examine sensor placement influence and
other potential factors that may contribute to the differences
detected in the data. Furthermore, machine learning algorithms
can be trained with the obtained data for road condition
monitoring, anomaly detection, and predictive maintenance
systems.
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