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Abstract—Understanding driver behavior is crucial for enhanc-
ing road safety and improving fuel efficiency. However, collecting
data on these behaviors in real-world settings is challenging due
to vehicle complexity and high instrumentation costs. Driving
simulators offer a viable alternative by creating environments
that replicate real-life situations. This study explores the use
of digital twins in simulated environments, specifically in Euro
Truck Simulator 2 (ETS2), to infer driver behavior using virtual
sensors. A case study was conducted where a driver simulated
routes under two driving conditions: cautious and aggressive. The
telemetry data collected during these simulations were analyzed
to identify behavioral patterns and assess fuel consumption
efficiency. The results demonstrated that digital twins enable real-
time capture of driver behavior information, revealing significant
differences between driving styles. Analysis of the accumulated
data and the radar area soft sensor indicated that cautious
driving practices are associated with greater fuel efficiency.

Index Terms—driver behavior analysis, digital twins, simulated
environments, virtual sensors, and fuel efficiency.

I. INTRODUCTION

The automotive sector has undergone significant transfor-
mations driven by technological advancements in areas such
as the Internet of Things (IoT), artificial intelligence (AI), and,
more recently, the concept of digital twins [1]. Digital twins,
which are dynamic virtual representations of physical systems,
enable real-time monitoring, simulation, and prediction of the
behavior of objects or processes [2]. In the automotive context,
they have shown great promise for vehicle optimization, safety
enhancement, and detailed driver behavior analysis [3].

Understanding driver behavior is crucial for road safety,
fuel efficiency, and vehicle wear [4]. For example, aggres-
sive acceleration, abrupt braking, and inconsistent speed can
indicate reckless or inefficient driving [5]. However, collecting
behavioral data in real-world scenarios is challenging due to
system complexity and high costs [6]. Driving simulators offer
a practical alternative by creating virtual environments that
replicate realistic scenarios. These simulations allow for the
precise recording of interactions, facilitating detailed studies
without the risks and expenses of real-world testing.

In this context, soft sensors—virtual sensors—are tools for
estimating variables that are not easily measurable directly
[7]. Combining data from physical sensors with computational
models and machine learning algorithms can infer latent
variables such as the driver’s emotional state or propensity for
risky behaviors [8]. In simulated environments, these sensors

can monitor driving style in real-time, offering analyses of
factors like stress, fatigue, and reaction patterns to different
traffic scenarios [9]. Therefore, integrating soft sensors with
simulated data enables the inference of driver profiles and
enhances the understanding of how variables such as road con-
ditions and vehicle characteristics affect the driver’s interaction
with the environment [10].

To facilitate these analyses, the Euro Truck Simulator 2
(ETS2)1 stands out as a simulation platform that allows for the
collection of detailed real-time driving data [11]. These data,
processed and analyzed using Python, serve as a foundation
for building models capable of inferring behavioral patterns.

In this article, we explore the use of digital twins in simu-
lated environments to infer driver behavior using soft sensors
within ETS2. The collected data enabled the identification of
driving profiles based on two distinct behavioral patterns. The
results demonstrate that it is feasible not only to infer driver
behavior but also to highlight the benefits of using simulators
as tools for data collection and improving safety and efficiency
in transportation. Moreover, the simulated environment offers
an effective method for testing and validating technologies
aimed at vehicle data analysis.

II. RELATED WORKS

Several studies have explored using simulators to collect and
analyze vehicle data, shedding light on recent advancements
and highlighting specific gaps that warrant further investiga-
tion.

In the work by [12], the challenges faced by commercial
drivers are examined, particularly the need to maintain high
levels of attention and quick reactions under adverse condi-
tions like fatigue and sleep deprivation. Utilizing Euro Truck
Simulator 2 alongside the Varjo VR system equipped with eye-
tracking technology, the study analyzes how drivers’ attention
spans fluctuate over time in fatigue-inducing situations. The re-
sults indicate that as fatigue intensifies, drivers are more likely
to avert their gaze from the road and neglect the vehicle’s
instruments, thereby increasing the risk of incidents. However,
this research does not investigate how these attention-related
behaviors correlate with different driving styles, such as ag-
gressive or moderate driving.

1https://eurotrucksimulator2.com/

https://eurotrucksimulator2.com/


Expanding on simulation for vehicular studies, [13] uses
the Simulation of Urban Mobility (SUMO) to model urban
traffic, highlighting its effectiveness for testing vehicular data
architectures while reducing real-world risks. However, it does
not develop virtual sensors for detailed vehicle dynamics.

Similarly, [14] employs SUMO to analyze vehicle emissions
from fuels like ethanol and gasoline, offering a controlled
environment for consistent results. Yet, this study also lacks
focus on data collection integration and real-time predic-
tive models. These studies underscore SUMO’s potential in
vehicular research while pointing to areas needing further
exploration.

While these works significantly contribute to the field by
demonstrating the utility of simulations in vehicular data anal-
ysis, specific gaps remain unaddressed. Notably, there is a lack
of integration between driving simulators and data collection
platforms to infer driver behavior through soft sensors. The
present work aims to bridge these gaps by integrating Euro
Truck Simulator 2 with vehicular data collection platforms
and developing virtual sensors to infer driver profiles. This
approach enhances the understanding of driver behavior and
advances the application of simulated environments in auto-
motive research.

III. PROPOSED APPROACH

This section presents the proposed methodology for collect-
ing and inferring driver behavior within a simulation environ-
ment. As illustrated in Figure 1, the approach comprises five
stages, each elaborated upon in the subsequent subsections.

Fig. 1. Overview of proposed Approach.

A. Truck Data Collection

To collect data on driving behavior, we utilized the Euro
Truck Simulator 2 (ETS2), which accurately replicates truck
driving conditions, including acceleration, braking, fuel con-
sumption, and interactions with traffic. The simulator pro-
vides telemetry data such as speed, revolutions per minute
(RPM), and acceleration. This rich dataset enables assessing
the driver’s efficiency in maintaining appropriate speeds and
evaluating the impact on fuel consumption.

B. Telemetry Web Server

Extracting data from the simulator required the installation
of the ETS2 Telemetry Web Server2. This open-source teleme-
try server is developed in C# and leverages WebSockets and
REST APIs.

2https://github.com/Funbit/ets2-telemetry-server

The ETS2 Telemetry Web Server facilitates data collection
from the simulator by decoding information and making it ac-
cessible via a REST API. This functionality ensures seamless
integration between the simulator and applications requiring
telemetry data, streamlining the data acquisition process.

C. Python Code to Request Data

We developed a custom application to consume the data
generated and stored by the Telemetry Web Server. Python
was chosen for this purpose due to its versatility and extensive
library support for data manipulation, API integration, and
statistical analysis.

The Python application sends requests to the telemetry
server’s REST API at one-second intervals, extracting real-
time data. This information enables detailed analyses of driver
behavior and facilitates the creation of graphical visualizations
and reports, aiding in interpreting the collected data.

D. Computing Radar Area

Complementing the Python code, we calculated the radar
area using speed, RPM, throttle position, and fuel consumption
variables. This metric serves as an indicator to infer driver
behavior under various driving conditions.

In the study by [7], sensors for speed, RPM, throttle
position, and engine load were utilized to calculate the radar
area. However, since ETS2 does not provide engine load data,
we selected fuel consumption as the fourth axis.

This substitution is appropriate because fuel consumption
is directly related to the driver’s driving style; more aggres-
sive driving results in higher consumption, thereby increasing
the radar area. Consequently, fuel consumption becomes a
valuable indicator for identifying behaviors such as harsh
acceleration and improper use of pedals, directly reflecting
the driver behavior metric.

We calculated the corresponding radar area after receiv-
ing telemetry data from the simulator via the REST API.
Normalization was necessary to ensure that the variables are
on comparable scales. For the RPM variable, we used the
engine’s maximum RPM value available in the simulator.
For speed, we implemented a limiter of 90 km/h to prevent
the truck from exceeding this maximum speed, aligning with
common regulatory limits. The simulator provides the throttle
position as a value between 0 and 1, requiring no additional
normalization.

Finally, Equation 1 illustrates how the radar area is calcu-
lated:

Area = 0.5
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n
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Given that the number of variables n is 4, when i = 4, the
term x4 · x5 is undefined since only four sensors are used. To
address this, we employed the roll operation, allowing x5

to be the same as x1. This adjustment enables the calculation
to proceed and effectively closes the polygon formed by the
normalized variables.

https://github.com/Funbit/ets2-telemetry-server


E. Data Analysis

In the final data analysis stage, we accessed server-stored
data to infer driving behaviors by extracting and interpreting
telemetry information to identify patterns and trends. We
conducted a comparative analysis of driver performance across
scenarios using radar area values obtained every second,
providing valuable insights for enhancing driving practices and
optimizing vehicle performance.

IV. CASE STUDY

The present case study aims to evaluate the proposed
methodology, addressing the following research questions:(1)
Can it identify driver behavior patterns in different driving
styles? (2) How can the driving style inform practical recom-
mendations that optimize fuel consumption?

A. Preparation

To ensure the consistency and validity of the collected data,
several preparatory steps were established: Truck Selection:
a standard truck within the simulator was chosen to main-
tain data consistency across all tests; Route Definition: a
predetermined route was established, which would be used
in both driving conditions to ensure comparability; Driver
Consistency: the same driver was responsible for both driving
scenarios to minimize the effects of human variability. Figure
2 shows the external view of the truck within the simulation
environment, depicting the rear of the vehicle and the sur-
rounding area.

Fig. 2. External view of the truck within the ETS2.

B. Execution

For this study, the predefined route was traversed under
two distinct driving conditions, allowing for a direct com-
parison between cautious and aggressive driving styles, both
of which significantly impact fuel consumption and vehicle
performance. Cautious Driving - Scenario 1: The driver
focused on fuel economy, adhering to speed limits, avoiding
abrupt accelerations, and employing smooth techniques to
minimize fuel consumption and reduce vehicle wear. Aggres-
sive Driving - Scenario 2: The driver repeated the route
with an aggressive style, characterized by rapid accelerations
and frequent speed limit violations, leading to increased fuel
consumption and stress on the vehicle.

V. RESULTS AND DISCUSSION

The results address the research questions by revealing
distinct patterns in driver behavior and their implications for
fuel consumption.

A. Identification of Driver Behavior Patterns

Figure 3 illustrates the radar area time series for both driving
scenarios. In the cautious driving scenario (A), the radar
area exhibits smooth variations, indicating a stable, controlled
driving style prioritizing safety. In contrast, the aggressive
driving scenario (B) shows sharp peaks and troughs, reflecting
sudden maneuvers and less predictable driving patterns. This
contrast confirms that the radar area metric can identify
different driving styles.

Fig. 3. Time series of radar area for cautious (A) and aggressive (B) driving
scenarios.

Figure 4 presents the density distribution of the radar area.
Scenario A is characterized by a higher density at lower radar
area values, indicating that the driver spent most of the time
in safer conditions. Conversely, scenario B shows a broader
distribution with significant occurrences at higher radar area
values, suggesting more time spent in riskier situations. These
findings demonstrate the radar area’s effectiveness in distin-
guishing between different driver behaviors.

Fig. 4. Density distribution of radar area for both driving scenarios.

B. Recommendations for Optimizing Fuel Consumption

Figure 5 compares the average radar area between the
two scenarios. The aggressive driving scenario (B) exhibits
a significantly larger radar area, indicating a more intense
driving style with frequent adjustments and reactive maneu-
vers. Although this increased activity is typically associated
with higher fuel consumption due to frequent accelerations



and decelerations, further analysis may be needed to confirm
the exact impact on fuel efficiency, as the data does not
consistently reflect this correlation.

Fig. 5. Average radar area for cautious (A) and aggressive (B) driving
scenarios.

Figure 6 shows the cumulative sum of the radar area
over time. In scenario A, the cumulative radar area increases
gradually, reflecting consistent and efficient driving practices
that optimize fuel usage. In contrast, scenario B exhibits a
steeper cumulative increase, indicative of driving behaviors
that lead to higher fuel consumption and increased risk.

Fig. 6. Cumulative sum of radar area over time for both driving scenarios.

These results suggest that adopting a cautious driving style
that maintains constant speeds and avoids abrupt maneuvers
can optimize fuel consumption and enhance safety. The radar
area metric effectively captures these differences, providing a
valuable tool for driver behavior analysis.

VI. CONCLUSION

This study explored the use of digital twins in simulated
environments, specifically utilizing Euro Truck Simulator 2
(ETS2) to infer driver behavior through virtual sensors. The
application of digital twins demonstrated significant potential
in providing real-time information on driving patterns without
the need for physical vehicles. The radar area metric effec-
tively distinguished between cautious and aggressive driving
styles, though it revealed that ETS2’s fuel consumption model
might lack sensitivity to key engine demand parameters,
suggesting a possible simplification in the simulation.

The case study results addressed the proposed research
questions and offered insights into how different driving styles

impact efficiency and safety. Although increased activity is
typically linked to higher fuel consumption, the consistent fuel
consumption values suggest that the impact of driving behavior
on efficiency may need further investigation. Future work will
focus on developing machine learning algorithms to analyze
driving data and predict behaviors in real time and evaluating
the proposed approach across various types of vehicles and
routes to generalize the findings.
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