
SENSYNC: Instrumentalização de Plataforma

Veicular para Testes de Sincronização Multissensor

e Geração de Datasets

Alexsandro Ferreira Coelho, Abel G. Silva-Filho, Alef Gabryel Lorenco da Costa, Lucas Alves Barbosa

Centro de Informática

Universidade Federal de Pernambuco

Recife, Brasil

{afc7, agsf, aglc, lab10}@cin.ufpe.br

Abstract—Multimodal perception systems used in autonomous
vehicles rely on precise temporal synchronization between sensors
such as cameras, radars, and LiDAR. Small misalignments of
only a few milliseconds can compromise perception and decision-
making in dynamic scenarios. This work presents the SENSYNC
architecture, an entirely software-based solution built on ROS
2 for acquiring and synchronizing sensors in a Jeep Renegade
equipped with three cameras, three FMCW radars, and a VLP-
16 LiDAR. The platform is evaluated under real urban traffic
conditions, quantifying temporal offsets between sensors and the
robustness of multimodal recording. The results show average
offsets close to 1 ms for radar/camera pairs and typically below 25

ms for radar/LiDAR pairs, values suitable for multimodal fusion
in urban environments. Approximately 12 GB of multimodal data
were collected, with an average recording rate of 29 MB/s (1.74
GB/min). These results confirm the feasibility of achieving fully
software-based synchronization in real vehicles.

Index Terms—Synchronization, ROS 2, Sensors, Autonomous
Vehicles, Multimodal Perception

I. INTRODUÇÃO

Nas últimas décadas, veı́culos autônomos, juntamente com

os Advanced Driver Assistance Systems (ADAS) e Au-

tonomous Driving Systems (ADS), transformaram o setor

automotivo, oferecendo maior segurança, eficiência e conforto.

Para o correto funcionamento, esses sistemas dependem de

uma percepção espacial precisa, obtida pela integração de

múltiplos sensores como LiDAR, câmeras, radares, GPS e

IMUs, cada um fornecendo informações complementares para

a construção de uma representação consistente do ambiente

ao redor do veiculo [1]. Entretanto, a simples fusão desses

sensores não é suficiente se não houver alinhamento temporal

adequado. A literatura mostra que atrasos de apenas 50 ms

podem resultar em erros superiores a 1,4 m na estima-

tiva da posição de objetos a 100 km/h [2], evidenciando a

sincronização temporal como um requisito crı́tico em veı́culos

autônomos.

Nesse contexto, o Robot Operating System 2 (ROS 2) tem

sido amplamente adotado como middleware para integração

multimodal. Baseado no protocolo Data Distribution Ser-

vice (DDS), o ROS 2 fornece mecanismos de comunicação

assı́ncrona, polı́ticas configuráveis de Qualidade de Serviço

(QoS) e carimbos de tempo consistentes nos cabeçalhos das

mensagens [3]. Além disso, a biblioteca message_filters

disponibiliza o filtro ApproximateTime, que permite agru-

pamento de mensagens de sensores distintos com base na

proximidade temporal entre seus timestamps. Essa combinação

torna possı́vel implementar sincronização exclusivamente em

software, sem recorrer a módulos externos de temporização ou

interfaces dedicadas como PTP (IEEE 1588).

Apesar da existência de conjuntos de dados consolidados,

como nuScenes e KITTI [4], há escassez de datasets multi-

modais adquiridos em contextos brasileiros, cujas condições

urbanas, iluminação variável, vias estreitas, tráfego denso

e sinalização heterogênea, diferem substancialmente dos

cenários presentes nos principais bancos de dados globais [5].

Assim, arquiteturas reprodutı́veis para aquisição sincronizada

de dados em veı́culos reais são de grande relevância para a

comunidade cientı́fica nacional.

Neste trabalho, propõe-se uma arquitetura de sincronização

temporal baseada exclusivamente em software, utilizando

ROS 2 Humble, aplicada a um Jeep Renegade equipado com

câmeras, radares e um LiDAR. A principal contribuição é

mostrar que, mesmo sem temporização externa, é possı́vel

alcançar sincronização consistente em ambiente real e gerar

um dataset multimodal.

II. TRABALHOS RELACIONADOS

Em [6], o EverySync foi desenvolvido como um sistema de

sincronização temporal baseado em hardware para câmeras,

LiDARs, IMUs e GNSS/RTK, alcançando precisão inferior

a 1 ms. Comparado ao VersaVIS, reduziu em até 45% o

desvio temporal médio e melhorou 38% a precisão da trajetória

reconstruı́da. Em [7], o middleware SmartData integrou sim-

uladores de sistemas autônomos com GNSS, atingindo desvio

médio de 6 ms entre sensores, evidenciando a importância da

sincronização temporal.

A proposta de [8] consistiu em uma solução de software

utilizando o ROS para sincronização de câmeras ZED, LiDAR

Velodyne e GNSS/RTK, com erro abaixo de 30 ms e precisão

de 1 cm, mostrando eficácia a baixo custo. Já [4] desenvolveu

o dataset nuScenes, com câmeras, LiDARs, radares, GPS e

IMUs sincronizados por disparos sı́ncronos (erro máximo 1



ms), melhorando a qualidade dos dados para algoritmos de

percepção em veı́culos autônomos. Este trabalho se diferen-

cia ao implementar uma lógica adaptativa de sincronização

utilizando o ROS 2, baseada em filas temporais dinâmicas e

limites flexı́veis para diferenças de timestamps, otimizando o

agrupamento de mensagens periódicas.

III. IMPLEMENTAÇÃO DA ARQUITETURA

Esta seção apresenta a arquitetura de aquisição e

sincronização temporal dos sensores multimodais, descrevendo

a infraestrutura embarcada, o fluxo de comunicação e o

mecanismo de sincronização no ROS 2.

A. Infraestrutura Embarcada

Para validar a proposta, um Jeep Renegade foi equipado

com três câmeras Intelbras VHDM 3105 G3, três radares Con-

tinental ARS408-21 e um LiDAR Velodyne VLP-16. Todos os

sensores foram integrados à NVIDIA Jetson Orin, responsável

pela centralização, sincronização e armazenamento dos dados,

utilizando comunicação via Ethernet. A Jetson Orin foi escol-

hida pelo suporte à aceleração por GPU e pela compatibilidade

com o ROS 2. A Fig. 1 apresenta o setup instalado na parte

traseira do veı́culo.

Fig. 1. Setup instalado no Jeep Renegade

B. Aquisição de Dados

A aquisição de dados foi estruturada de forma modular

na arquitetura de nós do ROS 2, em que cada nó opera

como um processo independente em Python ou C++. Os nós

de leitura dos sensores se comunicam entre si por meio de

tópicos, serviços ou ações da DDS, atuando como publishers

e subscribers para garantir a captura eficiente dos dados de

cada sensor conforme Fig. 2.

Fig. 2. Representação simplificada da comunicação entre nós no ROS 2

1) Câmeras: As câmeras VHDM 3105 G3 foram configu-

radas para 1280×720 pixels, ajustável até 30 FPS e suporte a

Wide Dynamic Range (WDR), garantindo bom equilı́brio entre

qualidade de imagem, largura de banda e robustez em cenários

urbanos. Elas foram instaladas na parte superior do veı́culo

(Fig. 3), em suportes metálicos com isolamento antivibração,

preservando o alinhamento óptico e proporcionando cobertura

visual de até 180
◦, com sobreposição parcial entre campos

de visão. As imagens são publicadas no ROS 2 por meio de

um nó baseado no pacote image_transport, que realiza

a compressão em formato JPEG.

Fig. 3. Disposição das câmeras VHDM 3105 G3 no veı́culo

2) Radares: O subsistema de detecção por radar, utiliza três

ARS-408 21, operando em 77 GHz, amplamente empregados

em sistemas ADAS pela capacidade de detectar veı́culos,

pedestres e obstáculos sob diferentes condições climáticas.

Para garantir cobertura eficiente, os dispositivos foram instal-

ados em suportes 3D nas regiões frontal e laterais do veı́culo,

com alinhamento horizontal.

Os sensores transmitem dados nos modos objeto e cluster

via barramento CAN. A interface Vector VN8912 atua como

gateway, convertendo as mensagens CAN em pacotes TCP

e enviando-as via sockets para a Jetson Orin, onde são con-

vertidas para o formato PointCloud2 no ROS 2. A Fig. 4

mostra a visualização dos clusters no software RadarVisual,

utilizado durante os testes. Além da aquisição dos pacotes, a

infraestrutura registra taxa de mensagens, variações de latência

e perdas no barramento.

Fig. 4. Visualização dos clusters de radar no software RadarVisual

3) LiDAR: O LiDAR Velodyne VLP-16 foi utilizado para

aquisição tridimensional do entorno, operando a aproximada-

mente 20 Hz, com 16 canais de varredura, taxa de até 300.000



pontos por segundo e alcance de 100 m. Seu campo de visão

de 360
◦ (horizontal) e 20

◦ (vertical) fornece ampla cobertura

espacial para percepção multimodal. O sensor foi montado

em suporte impresso em 3D com isolamento antivibração,

garantindo estabilidade da varredura e alinhamento com as

câmeras.

A comunicação com a Jetson Orin ocorre via Ether-

net, com pacotes UDP de aproximadamente 1.2 – 1.4 kB

cada, garantindo largura de banda suficiente para transmissão

contı́nua. No ROS 2, o pacote velodyne_driver interpreta

os pacotes e os converte em mensagens PointCloud2,

integrando o LiDAR ao restante da arquitetura.

C. Estratégia de Sincronização

A lógica de sincronização foi integrada à infraestrutura de

software, utilizando recursos nativos do ROS 2 para alinhar

fluxos multimodais. Para a comunicação em tópicos, são

usadas sensor messages, que possuem campos especı́ficos úteis

para esse propósito: stamp, marcando o tempo referente

àquela mensagem, e frame_id, onde é possı́vel colocar uma

string (texto) para identificação. O radar, com frequência mais

estável em 13 Hz, foi adotado como referência temporal para

os demais sensores.

1) Agrupamento Temporal: Utiliza-se o componente de

filtro de tempo aproximado (ApproximateTime) do próprio

framework ROS 2. Ele emprega um subscriber que agrupa

mensagens, retornando em um callback aquelas que possuem

tempos próximos, o que indica que pertencem ao mesmo

grupo. Essa estratégia resultou em atrasos máximos de ape-

nas algumas dezenas de milissegundos, viabilizando análises

consistentes em percepção multimodal sem exigir hardware

adicional de temporização.

2) Marcação Semântica: Para organizar os dados durante o

armazenamento, a infraestrutura embarcada realiza a marcação

semântica das mensagens. Para identificar os conjuntos sin-

cronizados, insere-se no campo frame_id uma string iden-

tificadora seguindo o padrão GRUPO:ORDEM. O componente

“GRUPO” refere-se ao radar utilizado como referência, en-

quanto “ORDEM” é um valor incremental que estabelece

uma sequência temporal. A cada nova varredura detectada,

o sistema aciona o callback que é gerado pelo filtro de tempo

aproximado e copia o identificador do radar para os demais

sensores temporalmente alinhados.

As câmeras seguem um agrupamento direto, com cada

unidade associada a um radar especı́fico. Já o LiDAR é sin-

cronizado com todos os radares, copiando os grupos de todas

as mensagens de radar que coincidirem com sua varredura.

A lógica do programa pode ser vista na Figura 5. Os nós

responsáveis por coletar os dados dos sensores publicam as

mensagens em tópicos; outros nós sincronizadores agrupam

essas mensagens e as republicam com seus identificadores,

para depois serem armazenadas em um banco de dados SQL

e extraı́das para o dataset.

Todas as mensagens dos radares são preservadas, mesmo

aquelas que não se alinham com outros sensores, assegu-

rando a completude do dataset. A Fig. 5 ilustra o fluxo

de sincronização e marcação semântica entre os sensores na

arquitetura SenSync, destacando os nós de agrupamento, os

canais de republicação e o armazenamento centralizado em

banco SQL.

Fig. 5. Fluxo de sincronização e marcação semântica na arquitetura SenSync

IV. RESULTADOS

Nesta seção são apresentados os resultados obtidos

com a plataforma SENSYNC, destacando a avaliação da

sincronização entre sensores, o desempenho da infraestrutura.

A. Ambiente de Coleta

Os testes iniciais foram realizados nas dependências da

Universidade Federal de Pernambuco (UFPE) e em suas prox-

imidades, sendo posteriormente estendidos para vias urbanas

do Recife-PE. Essa abordagem garantiu a coleta de dados em

diferentes tipos de ambientes, aumentando a diversidade dos

cenários avaliados [9].

B. Taxa de Aquisição e Volume de Dados

Durante as gravações, a plataforma manteve estabilidade

mesmo com múltiplos fluxos simultâneos. No total, foram co-

letados aproximadamente 12.4 GB de dados, valor correspon-

dente à soma dos volumes individuais por sensor conforme são

apresentados na Tab. I. A taxa média de gravação observada foi

de cerca de 29 MB/s, o que corresponde a aproximadamente

1.74 GB por minuto.

TABLE I
FREQUÊNCIA DE AQUISIÇÃO E VOLUME DE DADOS POR SENSOR

Sensor Frequência Volume Formato

Câmeras até 30 Hz 10.4 GB Total JPEG

Radares ∼13 Hz 18 MB Total PCD

LiDAR até 20 Hz 2 GB Total PCD

Esses valores reforçam a capacidade da infraestrutura de

rede e armazenamento da SENSYNC para lidar com cargas

multimodais contı́nuas.

C. Análise de Defasagem Temporal

A avaliação da sincronização temporal foi realizada

excluindo-se os dados da fase de inicialização, visando elimi-

nar outliers decorrentes da estabilização do sistema. A análise

consistiu em medir a diferença temporal entre as capturas do

radar (sensor de referência) e as das câmeras e do LiDAR.



A defasagem da câmera, apresentada na Figura 6(b), demon-

strou uma distribuição normal, com média de 0.8 ms e

desvio padrão de 11.12 ms. Já a do LiDAR apresentou uma

distribuição mais uniforme, conforme mostrado na Figura 6(a),

com limite absoluto de defasagem em 25 ms.

Os valores estão dentro do esperado: a variação da câmera

pode ser explicada pelo atraso (delay) no processamento

de cada frame, enquanto o LiDAR e os radares possuem

periodicidade quase constante, na qual a quantidade de pontos

nas mensagens interfere pouco, com os limites bem definidos

pela metade do seu perı́odo. Esses resultados indicam que a

infraestrutura de sincronização baseada em software manteve

defasagens médias abaixo de 15 ms, com valores mı́nimos

próximos de 1 ms.

Fig. 6. Quantidade absoluta de defasagem entre os sensores. (a) radar e
LiDAR. (b) Câmeras e radar

D. Armazenamento por ROS2 bag

O armazenamento dos dados foi concebido como parte

essencial da infraestrutura, já que a plataforma SENSYNC

visa não apenas processar fluxos em tempo real, mas também

gerar datasets reprodutı́veis para pesquisa. O perfil padrão

de QoS foi ajustado conforme os nós produtores, e o cache

desativado para que cada mensagem fosse registrada imediata-

mente. Os dados incluem os fluxos brutos (nuvens de pontos

e imagens comprimidas), além de metadados de sincronização

(frame id), diagnósticos e registros de latência. Essa abor-

dagem transforma o rosbag em uma unidade de análise

completa, facilitando a reprodutibilidade e comparações entre

sessões. Assim, o uso do ros2 bag foi incorporado à

arquitetura como mecanismo de organização e padronização

dos dados.

V. CONCLUSÃO

Este artigo apresentou uma arquitetura de aquisição e

sincronização multimodal baseada exclusivamente em soft-

ware no ROS 2, integrada a um veı́culo real equipado com

câmeras, radares e um LiDAR. A técnica utiliza o radar

como referência temporal e combina filas dinâmicas com o

filtro ApproximateTime para alinhar sensores de diferentes

frequências.

Os testes em vias urbanas do Recife–PE mostraram de-

fasagens máximas abaixo de 25 ms e médias de 9–12 ms,

valores adequados para aplicações de percepção veicular. A

plataforma sustentou uma taxa de gravação de aproximada-

mente 29 Mb/s, resultando em cerca de 12 GB de dados

sincronizados. Esses resultados confirmam que a sincronização

em software é viável e reprodutı́vel em condições reais.

A principal limitação observada é a variação temporal

(jitter) provocada pelo sistema operacional e pelas diferentes

caracterı́sticas dos sensores. Futuramente, serão avaliadas

técnicas para reduzir essa variação, como o uso do kernel

PREEMPT RT e otimizações de QoS, além da ampliação do

dataset.

AGRADECIMENTOS

Os autores agradecem a FUNDEP Programa Mover -

Linha V, pelo incentivo financeiro aos projetos FACEPE(APQ-

1698-1.03/22) e SEGCOM (27192*80), VEHICLE OTA

(29271*10) também à FINEP (01.22.0157.00 - REF.

1157/21), assim como ao CNPq (304391/2021-2) e CAPES

(88887.571378/2020-00).

REFERENCES

[1] J. Gu, A. Lind, T. R. Chhetri, M. Bellone, and R. Sell, ”End-to-
end multimodal sensor dataset collection framework for autonomous
vehicles,” Sensors, vol. 23, no. 15, p. 6783, 2023.

[2] A. K. Tyagi and S. U. Aswathy, ”Autonomous intelligent vehicles
(AIV): Research statements, open issues, challenges and road for future,”
International Journal of Intelligent Networks, vol. 2, pp. 83–102, 2021.

[3] Y. Ye, Z. Nie, X. Liu, F. Xie, Z. Li, and P. Li, ”ROS 2 real-time per-
formance optimization and evaluation,” Chinese Journal of Mechanical
Engineering, vol. 36, art. no. 144, 2023.

[4] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, and
O. Beijbom, ”nuScenes: A multimodal dataset for autonomous driving,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[5] K. Huang, B. Shi, X. Li, X. Li, S. Huang, and Y. Li, ”Multi-modal
sensor fusion for auto driving perception: A survey,” arXiv preprint
arXiv:2202.02703, 2022.

[6] X. Wu, H. Sun, R. Wu, and Z. Fang, ”EverySync: An Open Hardware
Time Synchronization Sensor Suite for Common Sensors in SLAM,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2024, pp.
12587–12593.

[7] I. P. Junior, L. P. Horstmann, and A. A. Fröhlich, ”Enabling Time
Synchronization with Hardware-in-the-Loop Integration on a Data-
Driven Middleware for Autonomous Vehicles Simulations,” in Proc.
Workshop Latinoamericano Dependab. Segur. Sist. Veı́cul., 2024, pp.
5–8.

[8] H. Hu, J. Wu, and Z. Xiong, ”A Soft Time Synchronization Framework
for Multi-Sensors in Autonomous Localization and Navigation,” in Proc.
IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (AIM), 2018, pp. 694–
699.

[9] Dataset SeSync, ”Dataset SeSync [Online],” Google Drive,
2025. Available: https://drive.google.com/drive/folders/
12Uwej7a3jy37YYJgQGBBiom9UeqL66kS. [Accessed: Oct. 2,
2025].


