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Abstract—This work aims to develop an automated system for
detecting damage in asphalt pavements by leveraging computer
vision and deep learning techniques. It addresses key challenges
such as the accurate identification and classification of various
types of pavement distress. As a central contribution, we present
a publicly available dataset of high-resolution digital images
of urban pavements, structured in accordance with Brazilian
standards and accompanied by per-image annotations curated
by a technical committee. Based on this dataset, the study
also presents initial experiments that implement a methodology
for the automated diagnosis of road conditions. The model
trained with YOLOv5 achieved an mAP@50 of 84.4%. The
proposed approach is intended to support public administration
in decision-making processes related to road maintenance and
intervention planning, ultimately contributing to improvements
in the quality, efficiency, and safety of urban road infrastructure.

Index Terms—asphalt pavement defect, computer vision, deep
learning, YOLO

I. INTRODUCTION

The rapid urban growth in Brazil has increased the need for

efficient road maintenance, as many urban pavements show

deterioration such as potholes, cracks, and deformations.

Traditionally, defect assessment follows The Brazilian Na-

tional Department of Transport Infrastructure (DNIT), an

agency under the Ministry of Transport of the Federal Gov-

ernment, establishes in Standard DNIT 008/2003 [1], relying

on manual visual inspection conducted from moving vehicles.

Recent advances in computer vision and deep learning

have enabled automated detection of pavement defects from

vehicle – or drone-mounted cameras, offering more precise

and scalable evaluations.

In this context, the present work proposes using these tech-

nologies to automate defect detection, introducing a labeled

dataset based on Brazilian standards and training deep learning

models for road condition analysis.

The paper is structured as follows: Section II presents the

foundational concepts; Section III reviews related studies on

pavement defect detection; Section IV details the proposed

methodology; Section V discusses the experimental results;

and Section VI concludes the study and outlines future work.

II. BACKGROUND

A. Asphalt Pavement

Pavements are vital for mobility and economic activ-

ity, with significant government investment directed toward

their maintenance and expansion. In Brazil, asphalt pave-

ments—composed of layered structures using Petroleum As-

phalt Cement (CAP)—predominate. Effective maintenance is

essential to extend their lifespan, ensure safety, and minimize

repair and reconstruction costs.

B. Defects in Asphalt Pavement

In pavement engineering, asphalt distresses are structural

or functional failures that compromise safety, comfort, and

pavement durability. Potholes typically form from small cracks

caused by traffic loads, which allow water infiltration, weak-

ening the base layers and leading to progressive structural

degradation and surface deformation.

The Brazilian National Department of Transport Infrastruc-

ture (DNIT) Standard 005/2003 [2] classifies pavement surface

defects into the following categories: cracks, deformations

(including depressions, rutting, shoving), surface defects (such

as ravelling, bleeding), potholes, and patches. Each of these

defects can be associated with different causes, such as vehicle

traffic, climatic conditions, and the quality of materials used

in pavement construction. Different types of defects in asphalt

pavement are illustrated in Figure 1.

III. RELATED WORKS

Recent research has advanced pavement condition assess-

ment through deep learning and computer vision. Early meth-

ods relied on traditional image processing (e.g., color thresh-

olding, Gabor filtering, morphology), which were effective in

controlled environments but sensitive to noise and lighting [4],



Fig. 1. Defects in Asphalt Pavement, adapted from [3].

[5]. With the emergence of Convolutional Neural Networks

(CNNs), studies [6], [7] demonstrated significant gains in

defect detection accuracy and efficiency using models like

Single-Shot Detector (SSD), Inception V2, and MobileNet.

Subsequent works introduced semantic segmentation [8] and

hybrid models combining CNNs with genetic algorithms [9]

to improve precision. The YOLO family became prominent

for real-time detection, with enhancements through attention

mechanisms enabling deployment on embedded systems [10],

[11]. More recent approaches leverage Transformer-based ar-

chitectures, such as SegFormer [12], and loss functions like

Cross-Entropy and Dice to refine crack segmentation. Overall,

the field has evolved from basic image analysis to sophisticated

deep learning frameworks, though challenges remain regarding

data availability and generalization.

IV. METHODOLOGY

A. Br-AsPaveDam Dataset

We presentBr-AsPaveDam (Brazilian Asphalt Pavement

Damage Dataset) [13], a novel dataset containing 2,167 im-

ages of urban asphalt pavement damage, encompassing 3,918

annotated defects.

The dataset was created from videos captured with a

bumper-mounted camera under diverse lighting, weather con-

ditions (excluding rain), viewing angles, and traffic scenarios.

Recordings were collected on roads representing a wide range

of pavement conditions. RGB frames (1152 × 2048 pixels)

were extracted in PNG format and manually filtered to remove

low-quality images. Pavement specialists then annotated the

dataset following DNIT guidelines, using bounding boxes to

accurately identify and label defects in each image.

The original classes followed the nomenclature and defi-

nitions established by DNIT, namely: Fissures, Deformation,

Ravelling, Pothole, Patch. Images and annotations were la-

beled based on the predominant defect, using severity to break

ties, and grouped into five classes. The “Bleeding” class was

removed due to potential confusion with rainwater stains, and

the similar classes “Depression,” “Slippage,” and “Shoving”

were merged into a single “Deformation” class to improve

consistency and reduce annotation ambiguity. Table I shows

the distribution of images among the different classes.

TABLE I
NUMBER OF LABELS (BOUNDING BOXES) PER CLASS IN THE ORIGINAL

HIGH-RESOLUTION DATASET.

Class # of bounding boxes

Fissures 1843
Deformation 14
Ravelling 1097
Pothole 125
Patch 839

Total 3918

Figure 2 shows representative examples of the Br-

AsPaveDam dataset classes, illustrating the visual characteris-

tics and diversity within each category.

Fig. 2. Illustrative examples from the Br-AsPaveDam dataset: original images
(top row) and corresponding annotated bounding boxes (bottom row). (a)
Fissure, (b) Deformation, (c) Ravelling, (d) Pothole, (e) Patch.

B. Deep Learning Model

The model adopted in this study was YOLOv5-s developed

by Ultralytics [14]. Like every member of the YOLO family

[15], YOLOv5 is a one-stage detector: object localisation and

classification are completed in a single forward pass, avoiding

the proposal stages required by two-stage approaches.

C. Training Approach

All experiments were conducted in Google Colab Pro using

an NVIDIA L4 GPU (24 GB VRAM). The model was trained



with a mini-batch size of 16 and a fixed input resolution

of 640 × 640 pixels, ensuring stable gradients, consistent

spatial dimensions, and efficient GPU use while preserving

fine details essential for small defect detection.

In the training pipeline, video frames were downsampled

to about 640 pixels on the longer side to reduce computation

while retaining detail. Preprocessing included removing EXIF

metadata and ensuring consistent upright orientation before

augmentation.

To address class imbalance and enhance generalization,

an offline class-balanced augmentation was applied using

geometric, photometric, and noise-based transformations (e.g.,

rotation, brightness adjustment, noise, contrast-limited adap-

tive histogram equalization, shadows) while preserving label

integrity. Synthetic samples were generated to equalize class

frequencies, and the balanced dataset was split using stratified

sampling (80% training, 20% test), maintaining class propor-

tions without requiring on-the-fly oversampling.

The model was fine-tuned from the RDD2020-IMSC [16]

checkpoint, replacing the original eight-class detection head

with a new output branch for five target classes (Fissures,

Deformation, Ravelling, Pothole, Patch) while keeping the

backbone and neck unchanged. This domain-specific initializa-

tion leveraged prior knowledge of asphalt textures and defects,

improving convergence and generalization.

D. Evaluation Metrics

The YOLO model’s performance in detecting and classi-

fying pavement defects was evaluated using standard clas-

sification metrics from the scikit-learn library, providing a

comprehensive assessment of its accuracy, robustness, and

reliability across different defect types.

True Positives (TP ) are correctly detected defects, False

Positives (FP ) are incorrect defect predictions, and False

Negatives (FN ) are missed defects. Using TP , FP , and FN ,

Precision, Recall, and F1-score are calculated to evaluate the

model’s classification performance, according to Equations 1,

2, and 3, respectively.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-score = 2 ·
Precision · Recall

Precision + Recall
(3)

Standard computer vision metrics, including Intersection

over Union (IoU) and Mean Average Precision (mAP), were

used to evaluate the model’s spatial accuracy, measuring

bounding box overlap and overall detection performance

across all pavement defect classes.

For each class c, the Average Precision is computed as (4):

APc =

∫
1

0

pc(r) dr (4)

where pc(r) is the precision as a function of recall r for

class c.

The mean of these values across all C classes yields the

mAP (5):

mAP =
1

C

C∑
c=1

APc (5)

Equation 6 defines the IoU, where Bp is the predicted

bounding box, Bgt is the ground-truth bounding box, ∩
denotes the intersection (overlapping area), and ∪ denotes the

union (total area covered by both boxes).

IoU =
Area of Overlap

Area of Union
=

|Bp ∩Bgt|

|Bp ∪Bgt|
(6)

V. INITIAL RESULTS

In addition to reporting the conventional mAP@50 metric,

we also evaluate the detector using the COCO-style IoU

thresholds, denoted as mAP@50:95. This metric computes

the average precision over ten IoU thresholds ranging from

0.50 to 0.95 in increments of 0.05, offering a more stringent

and comprehensive assessment of the model’s localization

performance. The best-performing checkpoint, obtained at

epoch 76, achieved a mAP@50 of 84.4% and a corresponding

mAP@50:95 of 73.0%. At this stage, the model also reached a

Precision of 83.9%, a Recall of 80.7%, and an overall F1-score

of 82.3% on the complete validation set. These quantitative

results are summarized in Table II.

TABLE II
DETECTION PERFORMANCE OF THE BEST MODEL (EPOCH 76).

Metric Value (%)

mAP@50 84.4
mAP@50:95 73.0
Precision 83.9
Recall 80.7
F1-score 82.3

Table III presents the class-wise detection performance of

the model on the validation set, evaluated at an Intersection

over Union (IoU) threshold of 0.5. Among the five target

classes, the highest average precision (AP) was achieved for

Deformation (91.3%), followed closely by Ravelling (87.2%)

and Patch (85.2%). Pothole detection yielded an AP of 83.1%,

while Fissures exhibited the lowest performance at 72.3%,

likely due to their subtle appearance and elongated structure,

which makes them more challenging to detect reliably. The

overall mean Average Precision (mAP) across all categories

reached 83.4%, indicating robust and consistent detection

performance across diverse types of pavement distress.

The objectness loss exhibited a smooth and consistent

convergence throughout training, decreasing from an initial

value of 0.148 to 0.097 by the final epoch. This steady

decline indicates stable optimization dynamics and the ab-

sence of overfitting, as no sudden fluctuations or divergence

were observed. These results reinforce the effectiveness of



TABLE III
DETECTION PERFORMANCE AT IOU 0.5 (VALIDATION SET).

Fissures Deformation Ravelling Pothole Patch mAP

72.3 91.3 87.2 83.1 85.2 83.4

the RDD2020-based initialization strategy, which contributes

to both robust classification confidence and accurate spatial

localization across the five target distress categories (Figure 3).

The low final objectness loss further suggests that the model

has learned to effectively distinguish relevant features from

background noise, enhancing its reliability in real-world de-

ployment scenarios.

After 100 training epochs, the object detector achieved

a mean Average Precision of 83.4% at an IoU of 0.5

(mAP@50), indicating a high level of detection accuracy.

VI. CONCLUSION

The proposed approach showcases the potential of computer

vision to automate road inspection, modernizing traditional

pavement monitoring methods. By releasing a publicly labeled

dataset aligned with national standards, this work fills a key

gap in the literature and enables reproducible research. It

also supports sustainable, data-driven urban management by

facilitating large-scale infrastructure monitoring and informing

preventive maintenance and mobility policies.
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