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Abstract—This work aims to develop an automated system for
detecting damage in asphalt pavements by leveraging computer
vision and deep learning techniques. It addresses key challenges
such as the accurate identification and classification of various
types of pavement distress. As a central contribution, we present
a publicly available dataset of high-resolution digital images
of urban pavements, structured in accordance with Brazilian
standards and accompanied by per-image annotations curated
by a technical committee. Based on this dataset, the study
also presents initial experiments that implement a methodology
for the automated diagnosis of road conditions. The model
trained with YOLOvVS achieved an mAP@50 of 84.4%. The
proposed approach is intended to support public administration
in decision-making processes related to road maintenance and
intervention planning, ultimately contributing to improvements
in the quality, efficiency, and safety of urban road infrastructure.

Index Terms—asphalt pavement defect, computer vision, deep
learning, YOLO

I. INTRODUCTION

The rapid urban growth in Brazil has increased the need for
efficient road maintenance, as many urban pavements show
deterioration such as potholes, cracks, and deformations.

Traditionally, defect assessment follows The Brazilian Na-
tional Department of Transport Infrastructure (DNIT), an
agency under the Ministry of Transport of the Federal Gov-
ernment, establishes in Standard DNIT 008/2003 [1], relying
on manual visual inspection conducted from moving vehicles.

Recent advances in computer vision and deep learning
have enabled automated detection of pavement defects from
vehicle — or drone-mounted cameras, offering more precise
and scalable evaluations.

In this context, the present work proposes using these tech-
nologies to automate defect detection, introducing a labeled
dataset based on Brazilian standards and training deep learning
models for road condition analysis.

The paper is structured as follows: Section II presents the
foundational concepts; Section III reviews related studies on
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pavement defect detection; Section IV details the proposed
methodology; Section V discusses the experimental results;
and Section VI concludes the study and outlines future work.

II. BACKGROUND
A. Asphalt Pavement

Pavements are vital for mobility and economic activ-
ity, with significant government investment directed toward
their maintenance and expansion. In Brazil, asphalt pave-
ments—composed of layered structures using Petroleum As-
phalt Cement (CAP)—predominate. Effective maintenance is
essential to extend their lifespan, ensure safety, and minimize
repair and reconstruction costs.

B. Defects in Asphalt Pavement

In pavement engineering, asphalt distresses are structural
or functional failures that compromise safety, comfort, and
pavement durability. Potholes typically form from small cracks
caused by traffic loads, which allow water infiltration, weak-
ening the base layers and leading to progressive structural
degradation and surface deformation.

The Brazilian National Department of Transport Infrastruc-
ture (DNIT) Standard 005/2003 [2] classifies pavement surface
defects into the following categories: cracks, deformations
(including depressions, rutting, shoving), surface defects (such
as ravelling, bleeding), potholes, and patches. Each of these
defects can be associated with different causes, such as vehicle
traffic, climatic conditions, and the quality of materials used
in pavement construction. Different types of defects in asphalt
pavement are illustrated in Figure 1.

III. RELATED WORKS

Recent research has advanced pavement condition assess-
ment through deep learning and computer vision. Early meth-
ods relied on traditional image processing (e.g., color thresh-
olding, Gabor filtering, morphology), which were effective in
controlled environments but sensitive to noise and lighting [4],
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Fig. 1. Defects in Asphalt Pavement, adapted from [3].

[5]. With the emergence of Convolutional Neural Networks
(CNNs), studies [6], [7] demonstrated significant gains in
defect detection accuracy and efficiency using models like
Single-Shot Detector (SSD), Inception V2, and MobileNet.

Subsequent works introduced semantic segmentation [8] and
hybrid models combining CNNs with genetic algorithms [9]
to improve precision. The YOLO family became prominent
for real-time detection, with enhancements through attention
mechanisms enabling deployment on embedded systems [10],
[11]. More recent approaches leverage Transformer-based ar-
chitectures, such as SegFormer [12], and loss functions like
Cross-Entropy and Dice to refine crack segmentation. Overall,
the field has evolved from basic image analysis to sophisticated
deep learning frameworks, though challenges remain regarding
data availability and generalization.

IV. METHODOLOGY
A. Br-AsPaveDam Dataset

We presentBr-AsPaveDam (Brazilian Asphalt Pavement
Damage Dataset) [13], a novel dataset containing 2,167 im-
ages of urban asphalt pavement damage, encompassing 3,918
annotated defects.

The dataset was created from videos captured with a
bumper-mounted camera under diverse lighting, weather con-
ditions (excluding rain), viewing angles, and traffic scenarios.
Recordings were collected on roads representing a wide range
of pavement conditions. RGB frames (1152 x 2048 pixels)
were extracted in PNG format and manually filtered to remove
low-quality images. Pavement specialists then annotated the
dataset following DNIT guidelines, using bounding boxes to
accurately identify and label defects in each image.

The original classes followed the nomenclature and defi-
nitions established by DNIT, namely: Fissures, Deformation,
Ravelling, Pothole, Patch. Images and annotations were la-
beled based on the predominant defect, using severity to break
ties, and grouped into five classes. The “Bleeding” class was
removed due to potential confusion with rainwater stains, and
the similar classes “Depression,” “Slippage,” and “Shoving”
were merged into a single “Deformation” class to improve
consistency and reduce annotation ambiguity. Table I shows
the distribution of images among the different classes.

TABLE I
NUMBER OF LABELS (BOUNDING BOXES) PER CLASS IN THE ORIGINAL
HIGH-RESOLUTION DATASET.

Class # of bounding boxes
Fissures 1843
Deformation 14
Ravelling 1097
Pothole 125
Patch 839
Total 3918

Figure 2 shows representative examples of the Br-
AsPaveDam dataset classes, illustrating the visual characteris-
tics and diversity within each category.
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Fig. 2. Illustrative examples from the Br-AsPaveDam dataset: original images
(top row) and corresponding annotated bounding boxes (bottom row). (a)
Fissure, (b) Deformation, (c) Ravelling, (d) Pothole, (e) Patch.

B. Deep Learning Model

The model adopted in this study was YOLOVS5-s developed
by Ultralytics [14]. Like every member of the YOLO family
[15], YOLOVS is a one-stage detector: object localisation and
classification are completed in a single forward pass, avoiding
the proposal stages required by two-stage approaches.

C. Training Approach

All experiments were conducted in Google Colab Pro using
an NVIDIA L4 GPU (24 GB VRAM). The model was trained



with a mini-batch size of 16 and a fixed input resolution
of 640 x 640 pixels, ensuring stable gradients, consistent
spatial dimensions, and efficient GPU use while preserving
fine details essential for small defect detection.

In the training pipeline, video frames were downsampled
to about 640 pixels on the longer side to reduce computation
while retaining detail. Preprocessing included removing EXIF
metadata and ensuring consistent upright orientation before
augmentation.

To address class imbalance and enhance generalization,
an offline class-balanced augmentation was applied using
geometric, photometric, and noise-based transformations (e.g.,
rotation, brightness adjustment, noise, contrast-limited adap-
tive histogram equalization, shadows) while preserving label
integrity. Synthetic samples were generated to equalize class
frequencies, and the balanced dataset was split using stratified
sampling (80% training, 20% test), maintaining class propor-
tions without requiring on-the-fly oversampling.

The model was fine-tuned from the RDD2020-IMSC [16]
checkpoint, replacing the original eight-class detection head
with a new output branch for five target classes (Fissures,
Deformation, Ravelling, Pothole, Patch) while keeping the
backbone and neck unchanged. This domain-specific initializa-
tion leveraged prior knowledge of asphalt textures and defects,
improving convergence and generalization.

D. Evaluation Metrics

The YOLO model’s performance in detecting and classi-
fying pavement defects was evaluated using standard clas-
sification metrics from the scikit-learn library, providing a
comprehensive assessment of its accuracy, robustness, and
reliability across different defect types.

True Positives (T'P) are correctly detected defects, False
Positives (F'P) are incorrect defect predictions, and False
Negatives (F'IN) are missed defects. Using TP, F'P, and F'N,
Precision, Recall, and F1-score are calculated to evaluate the
model’s classification performance, according to Equations 1,
2, and 3, respectively.
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Standard computer vision metrics, including Intersection
over Union (IoU) and Mean Average Precision (mAP), were
used to evaluate the model’s spatial accuracy, measuring
bounding box overlap and overall detection performance
across all pavement defect classes.

For each class ¢, the Average Precision is computed as (4):

1
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where p.(r) is the precision as a function of recall r for
class c.

The mean of these values across all C' classes yields the
mAP (5):

C
1
mAP = ; AP, (5)

Equation 6 defines the IoU, where B, is the predicted
bounding box, By is the ground-truth bounding box, N
denotes the intersection (overlapping area), and U denotes the
union (total area covered by both boxes).

IoU — Area of Overlap  |B, N By|
~ Areaof Union  |B, U B|

V. INITIAL RESULTS

(6)

In addition to reporting the conventional mAP@50 metric,
we also evaluate the detector using the COCO-style IoU
thresholds, denoted as mAP@50:95. This metric computes
the average precision over ten IoU thresholds ranging from
0.50 to 0.95 in increments of 0.05, offering a more stringent
and comprehensive assessment of the model’s localization
performance. The best-performing checkpoint, obtained at
epoch 76, achieved a mAP@50 of 84.4% and a corresponding
mAP@50:95 of 73.0%. At this stage, the model also reached a
Precision of 83.9%, a Recall of 80.7%, and an overall F1-score
of 82.3% on the complete validation set. These quantitative
results are summarized in Table II.

TABLE I
DETECTION PERFORMANCE OF THE BEST MODEL (EPOCH 76).

Metric Value (%)
mAP@50 84.4
mAP@50:95 73.0
Precision 83.9
Recall 80.7
F1-score 82.3

Table III presents the class-wise detection performance of
the model on the validation set, evaluated at an Intersection
over Union (IoU) threshold of 0.5. Among the five target
classes, the highest average precision (AP) was achieved for
Deformation (91.3%), followed closely by Ravelling (87.2%)
and Patch (85.2%). Pothole detection yielded an AP of 83.1%,
while Fissures exhibited the lowest performance at 72.3%,
likely due to their subtle appearance and elongated structure,
which makes them more challenging to detect reliably. The
overall mean Average Precision (mAP) across all categories
reached 83.4%, indicating robust and consistent detection
performance across diverse types of pavement distress.

The objectness loss exhibited a smooth and consistent
convergence throughout training, decreasing from an initial
value of 0.148 to 0.097 by the final epoch. This steady
decline indicates stable optimization dynamics and the ab-
sence of overfitting, as no sudden fluctuations or divergence
were observed. These results reinforce the effectiveness of



TABLE III
DETECTION PERFORMANCE AT 10U 0.5 (VALIDATION SET).

Pothole
83.1

Patch
85.2

mAP
834

Deformation

91.3

Ravelling
87.2

Fissures

72.3

the RDD2020-based initialization strategy, which contributes
to both robust classification confidence and accurate spatial
localization across the five target distress categories (Figure 3).
The low final objectness loss further suggests that the model
has learned to effectively distinguish relevant features from
background noise, enhancing its reliability in real-world de-
ployment scenarios.

After 100 training epochs, the object detector achieved
a mean Average Precision of 83.4% at an IoU of 0.5
(mAP@50), indicating a high level of detection accuracy.

VI. CONCLUSION

The proposed approach showcases the potential of computer
vision to automate road inspection, modernizing traditional
pavement monitoring methods. By releasing a publicly labeled
dataset aligned with national standards, this work fills a key
gap in the literature and enables reproducible research. It
also supports sustainable, data-driven urban management by
facilitating large-scale infrastructure monitoring and informing
preventive maintenance and mobility policies.
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