
Neighborhood-Search-Based Path Planning
Algorithm Applied to a Python Robotic Simulation

Environment
Polliana Barelli Trentini

Centro de Matemática, Computação e Cognição
Universidade Federal do ABC

Santo André, Brazil
p.barelli@aluno.ufabc.edu.br

Mateus Coelho Silva
Centro de Matemática, Computação e Cognição

Universidade Federal do ABC
Santo André, Brazil

mateuscoelho.ccom@gmail.com

Abstract—Path planning has become one of the most important
fields for mobile robots. It involves analyzing various parameters,
including energy consumption, movement smoothness, travel
time, and collision avoidance. However, to test these path planning
algorithms, researchers are often limited by the need to use 3D
simulators. In this context, our work focuses on developing a path
planning algorithm with a neighborhood-search-based approach
using a lightweight, user-friendly framework software based on
Python. This conventional approach, combined with a simulator,
allowed us to test our algorithm on different maps, finding
successful paths between our initial and goal points, especially
on simpler maps with fewer obstacles. The methodology was
evaluated in several experiments using different parameters as
intermediate points and noise force for disturbances. Our results
indicate the feasibility of the proposed technique, which gener-
ated valid paths and optimized them towards better solutions.

Index Terms—Path planning, Neighborhood search, Mobile
robots, Simulation

I. INTRODUCTION

Over the last decade, path planning has emerged as one
of the most critical fields for mobile robots. In light of ship-
drones [1] and underwater vehicles [2], path planning does not
limit itself only to ground-based robots, which summarizes its
high importance today.

There are two main categories of methodologies in path
planning: conventional approaches, such as global and lo-
cal planning, and learning-based approaches based on Deep
Reinforcement Learning (DRL) technology [3]. The path
planning success rate is directly related to the robot’s energy
consumption, movement smoothness, travel time, and collision
avoidance [4].

Path planning algorithms are typically categorized into
three main groups: classical algorithms, bionic algorithms,
and artificial intelligence algorithms. Our focus is on classical
algorithms. Classical algorithms are generally used in global
path planning, where the environment is previously known by
the mobile robot. The primary objective in using this algorithm
is not only to identify the path with the highest success rate
but also to assess the computational cost and efficiency during
processing [5].

In this paper, we focus on a conventional approach using the
IR-SIM platform [6], a lightweight Python robot simulator that
enables the integration of path planning algorithms. IR-SIM
allows the development and testing of robotics algorithms with
minimal hardware requirements and is user-friendly, which
makes robot navigation intuitive not only for robots but also
for users.

II. RELATED WORKS

Some related works in the literature have applied similar
strategies to ours. Huang et al. [7], for instance, employed
a self-adaptive neighborhood search A* algorithm to solve
the path planning. Although their approach was efficient, it
required a further step in developing an abstract structure of
the map. Our approach utilizes iterative testing to validate,
resulting in a simpler algorithm that solves the same task.

Li et al. [8] propose a Large Neighborhood Search algorithm
for solving multiple-agent path planning. Although they pre-
sented a solid return, their algorithm addresses an issue with
complexities that are beyond the scope of this work. Therefore,
our algorithm offers a more straightforward approach to path
planning within the scope of single autonomous robots.

Also, Li et al. [9] discuss the usage of a Variable Neigh-
borhood Search algorithm combined with a bidirectional A*
to provide path planning. The algorithm also requires the
production of an abstract map structure and employs more
complex structures. Our approach offers a more straightfor-
ward solution, utilizing a continuous mapping method that
eliminates the need to create an explicit occupancy grid.

Literature works often employ more complex algorithmic
and data structures than our work does. Nonetheless, our
results indicate the feasibility of a simple approach using a
simulator and a simpler algorithm.

III. METHODOLOGY

Our first step is to set a start point and a goal point. The
points are represented by [x, y, θ], in which x and y portray
the robot position in the space, and θ, the movement direction
of the robot. For simplicity, we chose [0, 0, 0] as the starting



point and [10, 10, 0] as the goal point. For a more coherent
path, we will use ‘intermediate points’ between the starting
point and the goal point, with the possibility of increasing or
reducing them according to the demand of the environment
size.

Instead of starting with initial random points, we use a base
trajectory that divides the environment into equal parts. For
example, in a 10×10 environment using 3 intermediate points,
our initial trajectory will be [[0,0,0], [2.5, 2,5, 0], [5, 5, 0], [7.5,
7.5, 0]]. Based on the base path, we create random trajectories
with noise that will be evaluated. To apply this noise, we used
discrete uniform distribution through Python’s library NumPy,
regulating the disturbance by the force of the noise. Then, for
each iteration, the trajectory that exhibits the better outcome
in terms of distance to the final goal and total number of steps
will be the baseline for the next iteration. In this way, we create
paths that not only avoid path regression but also obstacles.

Algorithm 1 Iterative Neighborhood Search Trajectory Opti-
mization with Random Disturbances
Require: Number of iterations Niter, number of disturbances

Ndist, number of points P
Ensure: Optimized trajectory τ∗

1: Initialize results ← ∅
2: for s = 0 to Niter − 1 do
3: if s = 0 then
4: Generate initial trajectory τ
5: end if
6: obj ← ∅, τdist ← ∅
7: for t = 1 to Ndist do
8: τ ′ ← DisturbTrajectory(τ)
9: (d, n, df )← Simulate(τ ′)

10: J ← df + 0.01 · n
11: Append J to obj
12: Append τ ′ to τdist
13: end for
14: i∗ ← argmin(obj)
15: τ ← τdist[i

∗]
16: Simulate τ to get (d, n, df )
17: end for
18: return τ

The algorithm 1 depicts the pseudo-code of the method
where Niter is the number of iterations, Ndist is the number
of disturbances that the trajectory will receive to create new
paths, and P are the intermediate points between the starting
point and the destination point. As shown, our output is the
optimized trajectory represented by τ∗, which will be the path
with the minimum distance and steps.

First, we initialize the results as an empty variable. Then, for
each s, which represents the IR-SIM simulations, from 0 to the
number of iterations minus one, if it is the first simulation, we
generate an initial trajectory represented by τ using our base
path. Now, we can initialize the variable obj, which will store
the cost function J = df + 0.01 · n, where df is the distance

to the final objective and n is the total number of steps, and
the variable τdist that will store our disturbed trajectories.

Subsequently, with our initial trajectory, we can use the
function DisturbTrajectory(τ) to create our disturbed path,
represented by τ ′. The simulation with the τ ′ path will return
the total distance traveled, d, the number of steps, n, and the
final distance to the goal point, df . Lastly, we will take the
minimum value of J stored in obj with i∗ ← argmin(obj),
using this trajectory to create more disturbances until we
satisfy Ndist and Niter.

IV. RESULTS AND DISCUSSIONS

For the environments, IR-SIM uses a 2D grid-based environ-
ment. It is a grayscale map in which black pixels are detected
as obstacles. Our tests will be divided into two separate maps.
Since one is more complex than the other, they will serve as
a comparison method.

A. First Map

In Figure 1, we have a simple grid map with obstacles
that were previously configured in the YAML configuration
obstacle. For our first test, we ran 50 simulations three times
with Niter = 10, Ndist = 5 and P = 3. The force of the noise
is set to 1. The cycle with the most successful path samples
will be considered the best.

Fig. 1. IR-SIM grid map environment with configured obstacles

After all cycles, we can notice a few patterns. In the first ten
simulations, the robot crashes directly into the obstacle, and in
the last ten simulations, the robot rarely crashes. Additionally,
due to the grid map structure with an obstacle in the center,
the robot tends to move towards a specific region underneath
or upward.

The third cycle was the best, with 21 collisions and 29
successful paths. After going through the algorithm, it returned
Figure 2 as the best path, which has the following coordinate
points: [0,0,0], [1.5,1,0], [7,4,0], [9.5,5.5,0], [10,10,0]. Visu-
ally, we can infer that the path is not perfect, but it is also
interesting to consider a safety margin for the obstacle, which
improves our view of this path.

For our second test, we changed only the force of the noise,
now set to 2. After three cycles, the second cycle yielded
the best results, with 24 collisions and 26 successful paths.
Figure 3 was the best path, with coordinates points [0,0,0],



Fig. 2. Path [0,0,0], [1.5,1,0], [7,4,0], [9.5,5.5,0], [10,10,0]

[1,0,0], [5,2,0], [10,10,0], [10,10,0]. The robot’s path crosses
the obstacle too closely, which is not ideal because it lacks a
safety margin. However, it does produce a fast trajectory.

Fig. 3. Path [0,0,0], [1,0,0], [5,2,0], [10,10,0], [10,10,0]

Regarding the force set to 2, we can attest that it is
significantly more variable than force 1. It does not exhibit
a clear pattern of collisions, and, contrary to our expectations,
the difference between the two forces when discussing the
robot’s exploration is not significant. After both tests, we
decided to run an additional 50 simulations for three cycles
with Niter = 10, Ndist = 5, and P = 2 for both force values
used previously.

For the force of the noise set as 1, our best cycle was the
first, with 24 collisions and 26 successful paths. It returned
Figure 4 as the best path, with coordinates at points [0,0,0],
[2.3,0,0], [7.6,4.6,0], and [10,10,0].

For the force of the noise set to 2, all three cycles yielded
high results, but the first one stood out, with 14 collisions and
36 successful paths. The best of all the cycles we have had so
far. It returned us Figure 5 as the best path, with coordinate
points [0,0,0], [5.3,3.3,0], [7.6,3.6,0], [10,10,0].

B. Second Map

In Figure 6, we have one of the IR-SIM preset grid maps,
a cave environment. It is a grayscale PNG image. Since it has
more obstacles spread across the map, we consider this one
significantly more complex than the other, and our objective
is to find a successful path under the 50 simulations. For our
first test with this map, we performed the same 50 simulations

Fig. 4. Path [0,0,0], [2.3,0,0], [7.6,4.6,0], [10,10,0]

Fig. 5. Path [0,0,0], [5.3,3.3,0], [7.6,3.6,0], [10,10,0]

three times, with Niter = 10, Ndist = 5, and P = 3, and the
noise force set to 1. Again, we will consider the best cycle,
the one with the most successful path samples.

Fig. 6. IR-SIM cave grid map environment

After all cycles, we can only consider one successful result.
The first two were complete failures, and our last one only had
one successful path. Throughout the simulation, we could see
promising paths, but usually the robot crashed after an open
curve or the last point was generated directly at an obstacle.
Our algorithm returned us Figure 7 as the best path, with
coordinates points [0, 0, 0], [3.5, 0.5, 0], [3.0, 5.0, 0], [6.5,
7.5, 0], [10, 10, 0].

For our next test, we set the noise to 2. After three
cycles, our robot was unable to find a single successful path,
indicating that force 2 is not suitable for this map. While the
robot attempted to find a path to the goal throughout all the



Fig. 7. Path [0, 0, 0], [3.5, 0.5, 0], [3.0, 5.0, 0], [6.5, 7.5, 0], [10, 10, 0]

simulations, we observed that after a few disturbances, the
robot became stuck at the bottom of the map, crashing into
all the obstacles. As attested by the first map tests, Force 2 is
inconsistent and does not help us explore more of the map as
expected, failing to meet our needs, especially on maps with
greater complexity.

Continuing our tests with Niter = 10, Ndist = 5, and
P = 2 for both force values used previously, we start
with the force set as 1. Our first cycle had two success-
ful paths, whereas the second and third cycles experienced
collisions in all simulations. For the best path, our algo-
rithm returned Figure 8 with the following coordinate points:
[0,0,0], [2.3333333333333335, 0.3333333333333335, 0],
[3.666666666666667, 8.666666666666668, 0], and [10,10,0].
It is a direct and relatively safe path, contradicting our fore-
knowledge that a map with more obstacles would require more
intermediate points to create a path.

To finish our tests, we set the noise to 2. Just like with 3
points, our robot exhibited similar behavior and was unable
to find a path during the three cycles. After analyzing all our
results, we can infer some things about the behavior of our
algorithm. We can attest that, using our second map as an
example, our robot was able to find a path only with a specific
level of noise. It was clear that when we set our noise level to
2, our robot did not explore the map as expected, but instead
tended to make erratic movements.

Fig. 8. Path [0,0,0], [2.3333333333333335, 0.3333333333333335, 0],
[3.666666666666667, 8.666666666666668, 0], [10,10,0]

This analysis suggests that our base trajectory also needs to

be adapted to our map, and not only regarding our initial and
goal points. While Figure 3 shows us that a diagonal base
trajectory was a good idea since it motivates our robot to
explore more of the obstacle sides, Figure 8 makes it clear
that this specific base trajectory was getting in the way of the
robot to find a successful path. However, since our algorithm
was able to find more than one effective path for both maps,
achieving its initial objective, we can assert that our path
planning algorithm had a satisfactory performance.

V. CONCLUSION

This research emphasizes the effectiveness not only of a
neighborhood-search-based algorithm for path planning, but
also of our simulator of choice, IR-SIM. By combining our
algorithm with IR-SIM, we were able to observe our robot’s
behavior in a robotic simulation environment.

Our methodology involved analyzing common path plan-
ning challenges to create Python functions in IR-SIM. Since
our algorithm is based on a neighborhood-search approach,
we prevented possible problems in simple random sampling
by aggregating a base trajectory compatible with our interme-
diate points. Our algorithm proved to be effective, especially
on maps with less complexity, demonstrating that using a
neighborhood-search base can be beneficial if we limit our
parameters to reduce the likelihood of generating anomalies.

ACKNOWLEDGMENT

The authors would like to acknowledge CAPES, CNPq, the
Federal University of ABC for supporting this research. This
work was developed at the laboratory of artificial intelligence,
robotics and algorithms (IARA++), at the Federal University
of ABC, Santo André, Brazil.

REFERENCES

[1] X. Li and H. Zhang, “Cooperative path planning optimization for ship-
drone delivery in maritime supply operations,” Complex Intelligent
Systems, vol. 11, pp. 1–24, 05 2025.

[2] H. B. Amundsen, M. Føre, S. J. Ohrem, B. O. A. Haugaløkken, and
E. Kelasidi, “Three-dimensional obstacle avoidance and path planning for
unmanned underwater vehicles using elastic bands,” IEEE Transactions
on Field Robotics, vol. 1, pp. 70–92, 2024.

[3] Y. Zhang, W. Zhao, J. Wang, and Y. Yuan, “Recent progress, challenges
and future prospects of applied deep reinforcement learning : A practical
perspective in path planning,” Neurocomputing, vol. 608, p. 128423, 2024.

[4] M. Gemeinder and M. Gerke, “Ga-based path planning for mobile robot
systems employing an active search algorithm,” Applied Soft Computing,
vol. 3, no. 2, pp. 149–158, 2003.

[5] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, “Path planning
techniques for mobile robots: Review and prospect,” Expert Systems with
Applications, vol. 227, p. 120254, 2023.

[6] e. a. Han, Ruihua, “IR-SIM: An open-source lightweight simulator for
robot navigation, control, and learning,” 2024.

[7] J. Huang, C. Chen, J. Shen, G. Liu, and F. Xu, “A self-adaptive neigh-
borhood search a-star algorithm for mobile robots global path planning,”
Computers and Electrical Engineering, vol. 123, p. 110018, 2025.

[8] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig, “Mapf-lns2: Fast
repairing for multi-agent path finding via large neighborhood search,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
pp. 10256–10265, 2022.

[9] P. Li, Y. Li, and X. Dai, “Vns-ba*: An improved bidirectional a* path
planning algorithm based on variable neighborhood search,” Sensors,
vol. 24, no. 21, p. 6929, 2024.


