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Abstract—This study investigates the use of Non-dominated
Sorting Genetic Algorith III to optimize the hyperparameters
of Cooperative Adaptive Cruise Control (CACC) controllers,
aiming to enhance performance in dynamic traffic scenarios. The
proposed approach, identifies hyperparameter combinations on
Pareto fronts based on the reduction of its accumulated error
and overshoot, which are related to the system’s response time
and stability, respectively. The proposed CACC controller, tuned
with NSGA-III, achieves an accumulated error of 17.37 and an
overshoot of 5.86 %, outperforming other controllers in speed and
accuracy when responding to variations in the leader vehicle’s
speed. Moreover, it maintains a constant safe distance between
vehicles, which is essential for passenger safety and comfort.

Index Terms—NSGA-III, CACC, Optimization Algorithm.

I. INTRODUCTION

Adaptive Cruise Control (ACC) is one of Advanced Driver
Assistance Systems (ADAS), designed to reduce driver work-
load while enhancing road safety [3]. Onboard sensors collect
real-time data on the ego vehicle’s dynamics and its sur-
rounding environment [2]. Distance-measuring sensors—such
as radar, lidar, and cameras—estimate the relative position
and speed of preceding vehicles, while additional sensors,
including vehicle speed and throttle position sensors, provide
crucial inputs for longitudinal control [2].

In contrast to traditional ACC systems, which rely exclu-
sively on onboard perception, Cooperative Adaptive Cruise
Control (CACC) incorporates vehicle-to-vehicle (V2V) com-
munication to significantly enhance safety, stability, and re-
sponsiveness in vehicle platooning scenarios [1]. By adopting
cooperative strategies such as Predecessor Following (PF),
CACC-enabled vehicles can receive real-time kinematic data
from the immediately preceding vehicle. This direct data
exchange allows for more accurate modeling of inter-vehicular
dynamics and enables proactive control actions [1].

However, the design and tuning of CACC controllers present
considerable challenges due to the need to balance multiple,
often conflicting, performance criteria such as safety, comfort,
responsiveness, and energy efficiency. In this context, multi-
objective optimization algorithms offer a powerful solution,
enabling simultaneous tuning of controller parameters across
several performance metrics. These algorithms are particularly
effective in handling trade-offs and finding Pareto-optimal
solutions that ensure a more balanced system performance.
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This paper proposes CACCga (Collaborative Adaptive Cruise
Control), a framework for the multi-objective optimization of
CACC controller parameters using the NSGA-III algorithm.
The primary aim is to evaluate whether this approach can
reduce transient regime errors and improve overall control
performance in cooperative driving scenarios.

II. RELATED WORK

Various studies like [6] and [7] propose cascaded architec-
tures, where low-level controllers act on vehicle dynamics,
while high-level controllers maintain a safe distance. Notably,
[6] demonstrates that using V2V to anticipate the behavior of
the preceding vehicle can significantly improve the system’s
transient performance.

In parallel, optimization algorithms have been successfully
applied to the calibration of controller parameters. In [S] and
[8], metaheuristic algorithms such as Particle Swarm Opti-
mization (PSO) and Genetic Algorithms (GA) are employed
to tune PID controller gains. These focus mainly on mini-
mizing accumulated error, overlooking overshoot’s impact on
control performance. Similarly, [9] highlights multi-objective
optimization and computational efficiency but does not directly
address transient metrics like overshoot or accumulated error.

III. METHODOLOGY
A. Vehicle Dynamic Model

A moving vehicle is subject to multiple forces beyond
those produced by its propulsion and braking mechanisms.
By invoking Newton’s second law, the longitudinal motion of
the vehicle can be modeled using the following relation 1:

d
md—z = F, —mgsin(0) — mfgcos(d) — 0.5pAC(u + uy)?
(1
Equation 1 can be analyzed under steady-state condi-
tions—i.e., when % = 0. At this equilibrium point, the
traction force required to maintain constant speed is given by:
Fiyo = mgsin(fy) —mfgcos(fy) — 0.5pAC(ug + uyw)? (2)

To assess the system’s dynamic behavior around the equi-
librium point, a linearization of equation 1 can be performed
via a first-order Taylor series expansion, yielding the following
linearized model:
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Fig. 1. Proposed Optimization Mechanism (CACClyq)
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Here, the variables are expressed as perturbations from their
nominal values:

_ m _ 1
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The resulting linearized vehicle dynamics can also be de-
scribed in the frequency domain using a transfer function:
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B. Controller Design (CACC)

Consider the design of a controller to maintain a desired
headway. The state plant model of vehicle i for the ACC con-
troller is obtained using the transfer function in the equation
5 and adding a double integrator and it results as:

T = —x9 + vy, (6)
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Zo = dj — d (8)
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where 1 = d;, zo = v;, x3 is the integral of control error
and x4 the double integral of error. The state based controller
yields:

u = —F1$1 — F2.232 — F333‘3 — F4l‘4 = le‘ (10)

where f7 — [Fl Fy, Fj3 F4] is the vector of gains
and z = — [xl Ty X3 :c4]T is the vector of states.

According to [6], we can add the feed-forward controller
Gy for rejecting the measurable disturbance, the ideal feed-
forward controller is determined by taking the inverse of the

vehicle dynamics, but this inverse is not realizable and an
approximation has to be used. Thus, the inverse of the transfer
function can be approximated with:

1+ s7
Gyr(s) = K+ (11)
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C. Proposed Optimization Mechanism (CACCy,)

To minimizing tracking error and overshoot, we pro-
pose using the Nondominated Sorting Genetic Algorithm
I (NSGA-III) for automatic hyperparameter optimization,
termed Collaborative Adaptive Cruise Control genetic opti-
mization (CACCy,), illustrated in Figure 1.

The pseudo-code for the proposed optimization mechanism
(CACC,,) follows:

1) Initial population and reference point: The vector f*
represent the genes on the chromosome. The population
initialization is done by:

Tip = TP 4 (2T — ) - rand (12)
where, ¢+ = 1,2,...N ( N is the population size = 40).
xi is the k-th (k = 1,2,3,4) represents k-th gene of

the i-th individual, and x’,Z“" and z7'*" are the lower

and upper bounds.[—10000 10000].

2) The objective functions calculation: Calcu-
late/Simulate objectives on the CACC vehicle dynamic
model for all individuals:

3) Selection Operator: Apply tournament selection to
choose parents for crossover.

4) Crossover Operator: Generate offspring ¢; using dif-

ferential evolution:
Qi = Pok + F - (Dit — Dsk)s (13)

where F' is the evolution parameter.



5) Mutation Operator: Mutate genes with probability 0.5:

max

Qi = Qi + B+ (g —q"") - N(0,1) para k € K
(14)
with 8 = 0.1.

6) Formation of new population: Merge parents and
offspring (R; = P; U Q) to form a 2N-sized pool.

7) Fast nondominated sorting: Identify nondominated
solutions for Pareto ranking (Fi, Fb, ...).

8) Adaptive normalization of population individuals:
TNormalize objective values using the ideal point and
extreme points defined by the Achievement Scalarizing
Function (ASF).

9) Association Operation: Assign individuals to uniformly

distributed reference points in the objective space using

perpendicular distance metrics.

Niche-preservation operation: If (S; < N, fill remain-

ing spots in Py; by selecting individuals associated

with the least represented reference points.

Stop Criterion: When the number of iteration is reached

(i = 50), stop and the optimized parameters of f! are

output, otherwise return to step 3.
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This method enhances population diversity and approxi-
mates the Pareto front effectively. Table I lists the adopted
NSGA-III parameters.

TABLE I
NSGA-III PARAMETERS FOR CACCyq
Parameters Values Parameters Values
Population size (/V) 40 Crossover Percentage 0.5
MaazxIter 50 Mutation Percentage 0.5
Evolution parameter (F') 0.02 Reference Points (h) 10

D. Objective Functions

1) Accumulated Error: it is the sum of errors over time,
defined by:

e(t) = /f (@ —an@)edn a3

2) Overshoot: it is the maximum peak value of the re-
sponse curve, measured from the reference signal, de-

fined by:
c(ty) — ¢(o0)
M, =22 16
p ¢(00) (16)
IV. RESULTS

The proposed design approach for the CACC system
was evaluated through simulations conducted in the MAT-
LAB/Simulink environment. For the test executions, a delay
of 100 ms was considered, as indicated in [6] the parameter
values were adopted according to [6]. Additionally, since the
controller depends on communication between the vehicles, a
delay of 100 ms was considered, as indicated in [6].

A. Proposed Optimization Analysis

The NSGA-III algorithm was implemented to optimize the
gains of a CACC controller, with the goal of achieving a
transient response that effectively balances system stability and
response time. Figure 2 illustrates the Pareto front resulting
from the multi-objective optimization performed by CACCl,.
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Fig. 2. Pareto front of Accumulated Error vs. Overshoot metrics

The graph is divided into three distinct regions, labeled A,
B, and C:

e Region A: is characterized by solutions with low accu-
mulated error but high overshoot. This region represents
system responses that are fast, but exhibit significant
oscillations.

o Region B: encompasses solutions that strike a more favor-
able balance between accumulated error and overshoot,
potentially representing the optimal trade-off between
control stability and precision.

e Region C: contains solutions with high accumulated
error and low overshoot, indicating more conservative
approaches where stability is prioritized.

The points presented in the figure represent the solutions
obtained by CACCj,, forming the Pareto front. A specific
solution was highlighted with a marker and a label indi-
cating its coordinates: the point (17.37, 0.0586). The accu-
mulated error is moderate, while the overshoot is relatively
low. The parameter values for the selected point are f7 =
[—12288 4909 —-5079 —1093}.

B. Evaluation

Figure 3 illustrates the follower vehicle’s behavior in a
simulation. The controller from [7] demonstrates the slowest
stabilization, with delayed responses to leader speed changes
and notable overshoot, which may affect passenger comfort
and increase collision risk.

By contrast, the controller in [6] responds faster to speed
variations but exhibits the highest overshoot, causing unwanted
oscillations. When communication is integrated into this con-
troller, performance improves notably—delivering quick re-
sponses with reduced overshoot and promoting a smoother,
safer ride. The proposed C'ACCy, controller achieves the
best results, with faster, more accurate reactions and minimal
oscillation during both acceleration and braking, enhancing
stability and precision in following the lead vehicle.
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The proposed CACC,, controller achieves the best results, REFERENCES

with faster, more accurate reactions and minimal oscillation
during both acceleration and braking, enhancing stability and
precision in following the lead vehicle. Figure 4 shows how
the distance between leader and follower evolves, highlighting
the impact of each controller on tracking stability. During
acceleration, all controllers guide the follower toward the 4m
target distance with varying degrees of efficiency.

However, during deceleration, ACC controllers without
communication perform poorly, often reducing the distance
dangerously or even producing negative values—indicating
potential collisions. Although the CACC from [6] avoids
crashes, it still allows unsafe proximity. In contrast, the pro-
posed CACC consistently maintains a safer gap and minimizes
oscillations.

V. CONCLUSIONS

The results highlight that proper hyperparameter tuning is
vital for optimizing CACC performance, enhancing stability
and safety in distance control. The proposed (CACC,,)
achieved an accumulated error of 17.37 and an overshoot of
5.86%, outperforming the controllers in [7] and [6]. This opti-
mization framework can also be extended to refine feedforward
controller parameters and integrate models considering road
inclines for further performance gains.
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