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Abstract. This work explores speech as a biomarker and investigates the de-
tection of respiratory insufficiency (RI) by analyzing speech samples. Previous
work [Casanova et al. 2021] constructed a dataset of respiratory insufficiency
COVID-19 patient utterances and analyzed it by means of a convolutional neu-
ral network achieving an accuracy of 87.04%, validating the hypothesis that one
can detect RI through speech. Here, we study how Transformer neural network
architectures can improve the performance on RI detection. This approach en-
ables construction of an acoustic model. By choosing the correct pretraining
technique, we generate a self-supervised acoustic model, leading to improved
performance (96.53%) of Transformers for RI detection.

1. Introduction
COVID-19 is the cause of a major pandemic that threatens to collapse the healthcare sys-
tems in many regions of the world. Respiratory insuficiency (RI) is one of COVID-19
symptoms, which often requires hospitalization and is aggravated by a common COVID-
19 condition called silent hipoxia, low blood oxygen concentration without breath short-
ness [Tobin et al. 2020]. This work aims to help deal with the COVID-19 pandemic by
providing an automated system, based on deep learning techniques, capable of detect-
ing RI in COVID-19 patients. Such an automated system could, for example, support
cellphone-based patient triage procedures alleviating the burden on health personnel.

We explore the view of speech as a biomarker, by building upon a recently shown
fact: it is possible to detect respiratory insufficiency through analyzing spoken utterances
in real-life conditions (typically a moderately large sentence). This hypothesis has been
previously verified [Casanova et al. 2021] by using a CNN-based deep neural network.
This CNN received a moderately large sentence spoken in real life conditions and had to
predict whether it came from a patient with RI or from the control group. In this work, we
aim to further analyze that hypothesis by studying other network architectures (namely,
Transformers [Vaswani et al. 2017]), in an attempt to improve the results previously ob-
tained in [Casanova et al. 2021], with a view of extending it in the future to RI originated
from other causes, such as influenza, heart disease or mental illness.

In this work we find that Transformers can be used for detecting respiratory insuf-
ficiency with an accuracy of 96.38% up from 87.04% in [Casanova et al. 2021]. To reach
that level of performance, we feed the Transformers with a sequence of Mel Frequency
Cepstral Coefficients (MFCC) obtained from the patients’ audios (henceforth called
MFCC-gram Transformers). Like CNN-based detection from [Casanova et al. 2021], the
Transformer performance drops significantly (to 82.87%) if we feed it standard spectro-
gram coefficients (called Spectrogram Transformers after [Gong et al. 2021]).



The Transformers [Vaswani et al. 2017] were shown to be very effective when
divided in two parts [Devlin et al. 2018]. The pretraining phase generates a language-
based acoustic model with unsupervised (or self-supervised) learning by optimizing a
generic language prediction task with a large amount of generic data. Then, the acoustic
model undergoes a task-specific refinement phase in which both the acoustic model and
additional task-specific neural modules are trained on smaller-size application data. A
baseline transformer is one in which pretraining is a random assignment of weights.

Here, we find that MFCC-gram Transformers benefit from being pretrained with
large quantities of spoken Brazilian Portuguese audios, which is later refined for the target
task of detecting respiratory insufficiency. For pretraining, we explore three known tech-
niques from the literature [Liu et al. 2020b, Liu et al. 2020a] and find that they generally
lead to some performance improvement over baseline transformers. Performance reaches
96.53% using the best of the available techniques.

2. Related Work
In addition to [Casanova et al. 2021] there have been other works [Pinkas et al. 2020,
Laguarta et al. 2020] which study COVID-19 with deep learning using voice related data.
[Pinkas et al. 2020] attempt to detect SARS-COV-2 (the virus that causes COVID-19)
from voice audio data, while this work and [Casanova et al. 2021] attempt to detect RI.
Furthermore, there have been previous works which support the view of speech as a
biomarker [Botelho et al. 2019, Nevler et al. 2019, Robin et al. 2020].

Transformers were designed for NLP [Vaswani et al. 2017, Devlin et al. 2018],
and were also later used in audio processing tasks [Liu et al. 2020b, Liu et al. 2020a,
Schneider et al. 2019, Baevski et al. 2020, Baevski et al. 2019, Song et al. 2019]. In
Mockingjay and Tera [Liu et al. 2020b, Liu et al. 2020a], it was used in phoneme clas-
sification and speaker recognition tasks. There it was shown that variants of the
Cloze task [Taylor 1953, Devlin et al. 2018] for audio could be used for unsuper-
vised pretraining of Transformers. In Wav2Vec and its variants [Schneider et al. 2019,
Baevski et al. 2020, Baevski et al. 2019], a contrastive loss is used to enable unsupervised
pretraining, which is later finetuned to speech and phoneme recognition tasks. In Speech-
XLNet [Song et al. 2019], a speech based version of the XLNet [Yang et al. 2019] was
proposed. The XLNet is a network that maximizes the expected log likelihood of a se-
quence of words with respect to all possible autoregressive factorization orders.

3. Methodology
3.1. Datasets
For the task of respiratory insufficiency detection, the data used in the refinement phase
is the same one used in [Casanova et al. 2021]. There, COVID patient utterances were
collected by medical students at COVID wards from patients with blood oxygenation level
below 92%, as an indication of RI. Control data was collected by voice donations over
the internet without any access to blood oxygenation measurements and were therefore
assumed healthy. As COVID wards are noisy locations, an extra collection was made
consisting of samples of pure background noise (no voice). This is a crucial step in
preventing the network to overfit to the background noise differences in data collection.

The gathered audios contained 3 utterances:



• A long sentence with 31 syllables. It was designed by linguists to be long enough
to have reading pauses while being simple for even low literacy donors to speak.

• A widely known nursery rhyme for readers with reading impediments.
• A well known song along the lines of ’Happy birthday to you’.

As suggested in [Casanova et al. 2021], we select only audios from the first utter-
ance and sample balance the dataset by class and sex. The presence of ward background
noise in the patient audios is treated in a similar way: we insert noise to the control group
as that is easier than removing it from the patients’ signal. This prevents that we eliminate
from the signal, audio that is relevant to the network’s classification.

We employ the same division in training, validation and test as done
in [Casanova et al. 2021]. The best signal-noise ratio audios are included in the test set.
The second best audios are in the validation set. This is done to detect training overfitting.
Table 1 contains information on the number of audio files for each class.

Sets Control Patients Total Audios
Male Female Mean du-

ration(s) Male Female Mean du-
ration(s)

Training 59 84 8.15 83 66 13.18 292
Validation 8 8 7.75 8 8 10.78 32
Test 22 26 7.77 28 32 9.43 108

Table 1. Filtered dataset information.

For the pretraining phase, we use datasets containing Brazilian Portuguese speech.
These datasets are NURC-Recife [Oliviera Jr et al. 2016], ALIP [Gonçalves 2019], C-
Oral Brasil [Raso and Mello 2012] and SP2010 [Mendes 2013]. Together, they contain
more than 200 hours of Brazilian Portuguese speech.

3.2. Preprocessing

As we face similar audio processing issues as [Casanova et al. 2021], we employ simi-
lar preprocessing steps. In the dataset, the majority of audios were sampled at 48kHz.
We preprocess the files using Torchaudio 0.9.0. We extract either the mel-spectrogram
(for Spectrogram Transformers) or the MFCCs of the audios with default Torchaudio
parameters and retain 128 coefficients. Torchaudio, by default, employs a Fast Fourier
Transform [Brigham and Morrow 1967] with a 400ms window and hop length 200.

As the dataset has an inherent imbalance in the audio lengths from patients and
control we do not use the full audios of the first utterance. Instead, we break each audio
into 4 seconds chunks, with a windowing of 1 second steps. Such a windowing method
was observed in [Casanova et al. 2021] to be more effective than, for example, padding
the audios with zeros to make all the audios have the same length. The windowing tech-
nique solves the problem of the imbalance between audio lengths and guarantees the
network will not pay too much attention to the audio lengths and instead focuses on the
content. The windowing technique also serves as a kind of data augmentation as, for ex-
ample, an audio with 8 seconds becomes 5 audios with 4 seconds. We observe that the
windowing should be done before the spectrogram or MFCCs feature extraction.



3.3. Noise insertion

The noise in COVID wards is a serious bias source. This can be seen in our experiments
and in the original work with the dataset by [Casanova et al. 2021]. One potential way of
dealing with this bias source is to filter the noise and eliminate it. However, this has the
risk that we eliminate important low-energy information from the data, information which
would have been useful in detecting whether a patient had RI. Moreover, eliminating the
noise could also create extra biases, as different procedures for eliminating patient and
control noises would be required. Thus, instead of eliminating the noise, we consider it
much easier to insert the noise present in the COVID wards into all the audio samples.

The original dataset contained 16 samples of 1 minute each containing just the
background noise present in COVID-19 wards. These noise samples are added to all the
training, validation and test audios, similarly to what was done in [Casanova et al. 2021].
We experiment with the amount of noise we add to each of the audio files. During training,
audio samples are injected with one or more noise samples. These are selected randomly
from the pool of noise samples each time an audio is used for training. The starting point
of each noise sample is also selected randomly. Lastly, a factor to change the intensity of
the sample is drawn. This factor is limited by a maximum amplitude value which depends
on the patient audio noises. This process is similar to the one in [Casanova et al. 2021]
and the goal is inserting noise as similar to the pre-existing noise as possible.

3.4. Transformers

We consider two types of Transformers: MFCC-gram Transformers and Spectrogram
Transformers. They are equivalent except in the data features that are fed to them: MFCC-
gram Transformers receives MFCC audio features and Spectrogram Transformers receive
mel spectrogram audio features. Our Transformers are equivalent to the Transformer En-
coder units described in [Vaswani et al. 2017]. Namely, we use a multi-layer Transformer
encoder (3 layers) with multi-head self-attention. Each encoder layer has two sub-layers,
the first being a multi-head self-attention network and the second being a fully connected
feed-forward layer. Each sub-layer has a residual connection followed by layer normal-
ization [Ba et al. 2016]. Every encoder layer and sub-layers produce outputs of dimension
512. In addition to the attention sub-layers, each encoder layer contains a fully connected
feed-forward network with an inner layer of dimension 2048.

In order to generate the sequence of tokens that is sent to the Transformers the
MFCC and/or Spectrogram is split into its frames. Each frame of the MFCC or spec-
trogram corresponds to one token fed to the sequence. We also attempted joining mul-
tiple frames into one token but this typically produced worse results than the one to one
framework. We use sinusoidal positional encoding [Vaswani et al. 2017, Liu et al. 2020b,
Pham et al. 2019] to make our model position aware. As suggested by [Liu et al. 2020b],
each frame is first projected linearly to a hidden state of dimension 512.

Our Transformers are trained in two phases: pretraining and refinement. In the
pretraining phase, we leverage the unsupervised training techniques described in Sec-
tion 3.5 to build an acoustic model over generic audio data. In the refinement phase, the
pretrained Transformers is refined over COVID related audio data. For some experiments,
we bypass the pretraining phase by initializing the Transformers with a random assign-
ment of weights and refining that over the COVID data. This is done to get a baseline



performance and we call these Transformers the baseline Transformers. We will name
our Transformers types baseline MFCC-gram Transformers and baseline Spectrogram
Transformers when we consider Transformers which bypass the pretraining phase.

Our code is based on the guide “The annotated Transformer”1. While our Trans-
formers are small in comparison to the ones used, e.g. in BERT [Devlin et al. 2018], the
amount of available data for respiratory insufficiency detection is also rather small so we
do not expect that larger Transformers would yield significantly improved results. Once
more data is available, it is recommended to also increase our Transformers.

3.5. Unsupervised pretraining: acoustic model construction

We describe three techniques to pretrain acoustic models in a self-supervised way. They
are based off Masked acoustic modelling [Liu et al. 2020b]. This erases a fraction of
the input and tries to reconstruct the erased parts from the remaining frames. They are
bidirectional methods and the reconstruction depends on both left and right contexts.

Time Alteration: also called Masked acoustic modelling [Liu et al. 2020b]. Start
by selecting frames up to 15% of the input2, 1) mask them all to zero 80% of the time, 2)
replace all with a random frame 10% of the time or 3) leave the frames be in the remaining
10% of the time. The goal of this process (as opposed to always masking the frames) is
to alleviate the mismatch between training and inference.

Channel Alteration: this techinique is from [Liu et al. 2020a]. Randomly mask
a block of consecutive quefrency channels to zero for all time steps of the input sequence.
First, the width WC of the block is selected uniformly from {0, 1, . . . ,W} where W is
a 10% fraction of the total number of channels. Second, sample a channel index IC
from {0, 1, . . . , H − WC − 1} where H is the total number of channels in the input.
Then, channels from IC to IC +WC − 1 are masked to zero. Observe that (as with time
alteration), a fraction of the time none of the channels will be masked.

Noise Alteration this technique is from [Liu et al. 2020a]. Apply sampled Gaus-
sian noise to change the magnitude of the inputs with a probability of 10%. For that end,
we sample a random magnitude matrix with the same size as the input. Each element in
the matrix is sampled from a normal distribution with mean zero and 0.2 variance. The
matrix is then added to the real input frames.

4. Results and Discussion
Here we show the results obtained by the two experiments performed: the first where we
compare baseline MFCC-gram Transformers, baseline Spectrogram Transformers and the
CNN from [Casanova et al. 2021], and the second where we try different unsupervised
pretraining techniques to improve baseline Transformers by building an acoustic model.

First, we note that when no ward noise is added to either the patient or control
files, baseline MFCC-gram Transformers performs very well (98.89 ± 0.38) in the test
files. However, this performance drops dramatically (to 70.07 ± 3.15) if we add noise to
the test files and this is a strong sign the model is biased by the noise. This bias is less

1http://nlp.seas.harvard.edu/2018/04/03/attention.html
2More precisely, we select a fraction of the frames in chunks of a certain size so that the total number of

frames masked amounts to 15%. In the experiments, the chunk size was 7.



extreme than what was observed at the MFCC-gram CNN in [Casanova et al. 2021] but
is still present. Therefore, in our experiments, noise is added to the training and test files.

In the first experiment, we consider baseline Transformers and bypass the pre-
training phase. We vary the amount of ward noise we add to the training and test files.
We add to the audio files between 0 and 3 noise files, including either the same amount of
noise files to the patient and control audio files or one more file to the control files. This
is comparable to the Experiments 3.x from [Casanova et al. 2021] and we can directly
compare baseline MFCC-gram Transformers, baseline Spectrogram Transformers with
the CNN from [Casanova et al. 2021]. We perform each experiment for 20 epochs and
repeat the experiments 10 times. The batch size is set to 16. The results are in Table 2.
We show both the performance when including noise as well as the performance without
including noise in the test samples. Figure 1 shows the same data as Table 2.

Model Noise Samples Accuracy (with noise in
test samples)

Accuracy (without noise
in test samples)Patient Control

Baseline
MFCC-gram
Transformers

0 1 96.38± 0.72 96.85± 0.84
1 1 96.30± 1.12 97.36± 1.89
1 2 95.39± 1.26 96.44± 1.72
2 2 95.68± 0.48 97.35± 1.01
2 3 94.33± 1.48 96.53± 1.13
3 3 94.86± 0.75 96.63± 1.09

MFCC-gram
CNN

0 1 74.07± 1.93 61.11± 8.40
1 1 86.11± 2.98 66.67± 3.74
1 2 83.33± 3.34 84.26± 6.17
2 2 85.19± 0.93 88.89± 0.53
2 3 85.19± 1.85 74.07± 5.10
3 3 87.04± 0.93 91.67± 2.98

Baseline
Spectrogram
Transformers

0 1 82.87± 1.48 68.73± 3.88
1 1 82.84± 1.82 82.65± 2.25
1 2 80.75± 2.22 77.18± 1.56
2 2 79.02± 3.19 82.05± 2.57
2 3 78.07± 2.78 74.67± 1.99
3 3 78.73± 2.33 81.96± 1.97

Table 2. The performance of the Transformers and the CNN is shown in Table 2.
The different lines show performance of the network according to the num-
ber of noise files added to the test files, both for patients and control.

We observe a significant improvement in performance for baseline MFCC-gram
Transformers when compared to the MFCC-gram CNN. When including noise in test
samples, the best performance is attained by baseline MFCC-gram Transformers where
we add a single noise file to the control files and keep the patient files unchanged. When
we compare without noise being added the best performance is attained by baseline
MFCC-gram Transformers where we add a single noise file to both the patient and control
files. We would like to point out though that the differences are rather small and baseline
MFCC-gram Transformers performs well as long as some noise is added.

For the second experiment, we fix the amount of ward noise we insert to the train-



Figure 1. This has the same data as Table 2. The y axis shows accuracy and the
x axis shows the number of noise files added to patient and control files.

ing and test files to be a single noise file for both patient and control audio files. We vary
the technique employed for unsupervised pretraining, attempting time alteration, channel
alteration and noise alteration techniques as described in Section 3.5. We pretrained on
the corpuses of NURC-Recife, C-Oral Brasil, SP 2010 and ALIP. Pretraining consisted of
5 epochs on the data of all those corpuses, splitting each file into 4 seconds audio with a
1 second window step. Finetuning on the respiratory insufficiency data was performed in
20 epochs and repeated 10 times so the results are averaged. We show the performance of
each for both MFCC-gram Transformers and Spectrogram Transformers in Table 3.

We observe a small improvement (over the baseline) using time alteration when
we test MFCC-gram Transformers including noise in the test files. We also observe an
improvement using noise alteration when we test MFCC-gram Transformers without in-
cluding noise in the test files. In principle, one could combine these techniques as they are
independent ways of masking the input. We have done that by performing all three tech-
niques at the same time as shown in the table. Note that the performance of Spectrogram
Transformers increases even more robustly than that of MFCC-gram Transformers.

5. Conclusion and Future work

By employing a Transformers network to the dataset of respiratory insufficiency from
COVID-19 detection created in the paper [Casanova et al. 2021], we improved the perfor-
mance of their CNN network from 87.04% to 96.38%. Moreover, we found that MFCC
and Spectrogram based Transformers improve their performance through unsupervised
pretraining on a large amount of unlabeled data.



Model Pretraining
type

Accuracy (with noise in
test samples)

Accuracy (without noise
in test samples)

MFCC
Transformers

Baseline 96.30± 1.12 97.36± 1.89
Time Alter-
ation 96.53± 0.71 97.00± 1.55

Channel Alter-
ation 96.15± 0.84 97.04± 1.52

Noise Alter-
ation 95.93± 0.66 98.21± 0.89

Time + Chan-
nel + Noise 96.38± 1.24 98.54± 1.56

Spectrogram
Transformers

Baseline 82.84± 1.82 82.65± 2.25
Time Alter-
ation 80.99± 3.49 87.90± 2.75

Channel Alter-
ation 82.41± 1.75 87.53± 2.25

Noise Alter-
ation 80.61± 1.32 86.08± 2.70

Time + Chan-
nel + Noise 81.67± 1.51 86.93± 2.61

Table 3. The performance of the Transformers network is compared when unsu-
pervised pretraining is done. The different pretraining techniques are com-
pared for MFCC-gram and Spectrogram Transformers. We fix the amount
of noise insertion to be one noise file inserted at patient and control files.

Future work could involve augmenting the dataset with audios from patients of
many more respiratory illnesses besides COVID-19. Moreover, we could ideally get au-
dio from patients and control under similar conditions. Furthermore, one could attempt
improving the performance of Spectrogram Transformers so that they match the perfor-
mance of MFCC-gram Transformers. Moreover, we currently train our acoustic model in
the single task of respiratory insufficiency detection. It would be interesting to extend our
model for other tasks, creating the first acoustic model of spoken Brazilian Portuguese.
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