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Abstract. The sentence compression task is essential in the text summarization
process. Unfortunately, the lack of labeled data for specific domains restricts
the training of deep learning models to address this problem effectively. In this
paper, we present an approach using a meta-learning algorithm called MAML
to tackle this issue and assess the viability of this technique for the given task,
with particular emphasis on its comparison to a fine-tuned BERT model. Our
experiments reveal that a simpler approach involving fine-tuning a language
model, such as BERT, might indeed be more effective in low-resource scenarios,
consistently outperforming the meta-learning techniques for this particular task.

1. Introduction
The dramatic increase in textual data on the Internet has made it challenging for users to
extract valuable information in a reasonable time. Natural Language Processing (NLP)
systems can help reduce this workload by performing tasks such as text classification,
named entity recognition, and text summarization. In the context of text summariza-
tion, sentence compression plays a crucial role in generating concise yet meaningful sum-
maries.

Sentence compression aims to create a shorter version of an input sentence while
retaining essential information and ensuring grammatical correctness. There are two types
of compressions: extractive and abstractive [Tas and Kiyani 2007]. Extractive compres-
sions remove words without altering the word order, while abstractive compressions gen-
erate summaries by rearranging or introducing new words without restrictions.

Existing sentence compression models often rely on large-scale data, but specific
domains and Low Resource Languages (LRL) face data scarcity challenges. To address
this, we propose employing the few-shot learning paradigm to fine-tune pre-trained mod-
els using limited examples from different domains to simulate the low resource scenario.
We utilize optimization-based meta-learning techniques, specifically the model-agnostic
meta-learning (MAML) algorithm [Finn et al. 2017], to leverage existing models and
datasets.

The main challenges in applying meta-learning techniques in sentence compres-
sion tasks are:

1. The existence of only one compression for each sentence and one sentence for
each compression in the dataset used, unlike image classification tasks that have
large datasets, such as Imagenet, and which have several examples for each class,
such as cats, dogs, lions, and birds classes.



2. The existence of few datasets for extractive sentence compression, such as the
Google News Dataset (GND) that we will use throughout this work, mainly for
LRL such as Brazilian Portuguese.

3. Even the most popular dataset for the sentence compression task (GND) does not
have any information about grouping the pairs of sentences into categories. Most
papers that use meta-learning for few-shot learning tasks group the data for task
creation [Mi et al. 2019, Yu et al. 2018].

To the best of authors’ knowledge, no paper addresses these problems for the
sentence compression task.

The main contributions of this paper include the following:

• We present a novel approach to addressing the sentence compression task by fram-
ing it as a Named Entity Recognition (NER) problem.

• We propose a method for modeling the sentence compression task as a meta-
learning problem, utilizing few-shot learning principles and the well-established
model-agnostic meta-learning (MAML) algorithm.

• We conduct comprehensive evaluations using the Google News dataset, exploring
various few-shot scenarios, dataset divisions, and comparing with a BERT-based
solution.

Our findings indicate that while models developed using the meta-learning ap-
proach can rapidly adapt to new tasks, they do not surpass the performance of a BERT
model fine-tuned with the same dataset. This observation somewhat contrasts with find-
ings in the context of other NLP tasks [Mi et al. 2019, Yu et al. 2018].

2. Related Works
Traditional Methodologies for Sentence Compression: Early approaches to extractive
sentence compression relied on parsing tree pruning methods [Filippova and Altun 2013].
However, these techniques were prone to errors in constructing the trees themselves.
Contemporary strategies began to frame the problem as Seq2Seq tasks, incorporating
various modifications in LSTM-based models [Filippova et al. 2015, Soares et al. 2020,
Kamigaito and Okumura 2020]. To the best of the author’s knowledge, none of these
methods effectively address the challenge posed by the limited availability of training
data.

Meta-Learning in NLP Tasks: Meta-learning techniques have gained traction in var-
ious Natural Language Processing tasks [Lee et al. 2022]. One reason for the grow-
ing popularity of meta-learning is its effectiveness in low-resource situations, where
collecting and annotating datasets can be prohibitively expensive, such as in Natu-
ral Language Generation [Mi et al. 2019, Qian and Yu 2019] and Machine Translation
[Gu et al. 2018] tasks. Another factor driving the adoption of these techniques is the
domain shift between training data and real-world testing and application scenarios
[Li et al. 2020, Song et al. 2019]. The sentence compression problem addressed in this
study faces both of these challenges.

3. Meta-Learning for Low-Resource Sentence Compression
One of the goals of this study is to develop an efficient model for the sentence compres-
sion task in low-resource scenarios, such as those found in medical or law enforcement



domains. To achieve this, we propose framing the task as a meta-learning problem, en-
abling the model to leverage knowledge from related tasks. The modeling process consists
of four main steps:

1. Reformulate the sentence compression problem as a NER problem, utilizing a
pre-trained BERT model as the foundation,

2. Create a dataset comprised of many sentence compression tasks,
3. Train a meta-model using the created tasks and the base BERT model,
4. Perform adaptation of the meta-model for a new sentence compression task, po-

tentially within a distinct domain.
The following subsections provide a detailed description of each of these steps in

the proposed methodology.

3.1. Sentence Compression as a NER problem
The NER problem is a well-established task in NLP, which involves identifying and clas-
sifying named entities within a given text. The goal of redefining sentence compression
as an NER problem is to take advantage of the vast knowledge and tools available for
NER and use them for the sentence compression task. By doing so, we aim to exploit the
pre-existing strengths of BERT models in capturing contextual information and handling
diverse linguistic structures for improved compression performance [Ma et al. 2019].

The process of task adaptation consists of assigning an entity label to each word
in the dataset’s compressions. We use two entity labels: keep for words that should be
retained in the compressed sentence and compress for words that should be omitted.
This transformation allows us to treat sentence compression as a NER task, where the
objective is to identify and classify words in a sentence as either keep or compress.

To train a model to solve this adapted task, we employ a pre-trained BERT model
as the foundation, given its proven success in various NLP tasks, including NER. We
add an additional classification layer to the model to classify each word of each sentence
as either keep or compress. The model is then fine-tuned on the newly created NER-
style sentence compression dataset, learning to recognize and classify essential words and
phrases to be retained in the compressed sentence.

3.2. Dataset creation
When modeling a problem using the meta-learning approach, we assume access to a dis-
tribution of tasks P(T ). The objective of assuming this distribution is to sample Ti tasks
from the P(T ) distribution – where Ti is a task composed of a training set (DTrain

Ti
,

also known as support set) and a test set (DTest
Ti

, also known as query set) – to train a
meta-model that can generalize well to all tasks used in the training process. The trained
meta-model can then be fine-tuned to a task T ′, also sampled from the P(T ) distribution,
that was not seen in the meta-model training [Bansal et al. 2021]. When dealing with su-
pervised learning tasks using meta-learning, we create the P(T ) distribution based on a
fixed set of tasks, subsampled from all classes [Vinyals et al. 2016].

In our sentence compression tasks, a sentence is an input x and its compression is
an output y. An example task includes a Support Set (or DTrain) of five sentences with
their compressions, and a Query Set (or DTest) of five distinct sentences and their cor-
responding compressions from the Support Set. Mapped to the N -way, K-shot learning
scenario, it yields values of N = 5 and K = 1.



3.3. Meta-training a model

Following the creation of the dataset, we utilized the Model-Agnostic Meta-Learning
(MAML) algorithm to train a meta-model. This model is designed to process a range
of sentence compression tasks as input. The meta-model we chose is an instance of the
BERT model, which consists of approximately 107 million parameters.

The meta-model will be initialized with random θMeta parameters (also called
meta-parameters). In an iteration step of the MAML algorithm, each task Ti will use a
copy of all the parameters θi (here called task parameters) of the meta-model and will
optimize them using the dataset DTrain

Ti
, generating updated parameters θ′i. Once all tasks

are optimized, the datasets DTest
Ti

will be used to optimize the meta-parameters θMeta

using the parameters θ′i of the tasks that were calculated. This way, the meta-model will
be generalizing all tasks used as input in its own meta-parameters.

3.4. Fine-tuning process

With the meta-model trained from N -way, K-shot learning tasks, we obtain the param-
eters θMeta that should generalize the tasks used in the previous step. Given a new sen-
tence compression task with a small dataset for training, we can use the newly trained
meta-model for the fine-tuning process. The θMeta parameters will be used to initialize a
new model and update it with the data from the new task. Since the new task has a small
amount of associated data, it will take advantage of the already trained parameters of the
meta-model as a good starting point for optimization.

4. Experiments
In this section, we will first formally present the Research Questions (RQ) that this work
aims to answer:

RQ1. How does a model trained using meta-learning and conventional machine learning
compare?

RQ2. What is the change in the performance of a meta-model if we increase the number
of examples per class of each class?

In summary, the RQs presented try to evaluate if using meta-learning techniques
is viable for the sentence compression problem.

We will also present the baseline and experiment settings, the dataset used and the
data augmentation process applied, and finally, the results of the experiments performed.

4.1. Baseline and Model Settings

Since MAML is model agnostic, for all experiments performed in this work, we
used as a baseline for the conventional machine learning training a BERT model
[Kenton and Toutanova 2019] with an additional classification layer to classify the words
with the entities keep or compress. For the MAML implementation, we used the
Pytorch framework.

For all experiments performed, we considered two different settings:

• Scratch-BERTSC: Fine tune the BERT with only the target N -way, K-shot low-
resource task.



• Meta-BERTSC: Train a meta-model using MAML and different N -way, K-shot
low-resource tasks and then fine-tune it to an unseen task.

In the Meta-BERTSC setting, the number of tasks used to train the meta-model,
i.e., tasks batch size, is one of the parameters that will be evaluated in the experiments,
varing among 16, 32, 64 and 128. We setted α = 0.001 and β = 0.0001. A last param-
eter evaluated in this experiment is the size of each task: we considerer a 5-way, 1-shot
scenario and a 5-way, 5-shot scenario.

All models, for both Scratch-BERTSC and META-BERTSC, were evaluated in
the target task. For the evaluation metrics, we used the ROUGE score variances, i.e.,
ROUGE-1, ROUGE-2 and ROUGE-L. We will also present the accuracy for the trained
models. To assess the similarity between the compression ratio of system outputs and
that of gold compressed sentences, we employed the delta compression (∆C) metric,
which is the difference between the system compression ratio and gold compression ratio
[Kamigaito et al. 2018].

In terms of training times, the Scratch-BERTSC model outperformed the META-
BERTSC approach. For a batch size of 16 tasks in a 5-way, 1-shot scenario, for exam-
ple, Scratch-BERTSC completed training in 49 seconds, while META-BERTSC took 168
seconds. Similarly, for a larger batch size of 128 tasks, Scratch-BERTSC required 366
seconds, and META-BERTSC required considerably more time, 1326 seconds.

4.2. Google News Dataset for SC
The Google News Dataset [Filippova and Altun 2013], comprising 200,000 pairs of news
article headlines and their compressed versions, is used for all experiments in this work.
Despite the categorized nature of news articles, this dataset doesn’t provide information
about the pairs’ categories.

We adapted the Google News dataset into a meta-learning framework using the
pipeline from Subsection 3.2, dividing it randomly into 5-way, 1-shot learning tasks. This
implies each task has examples from five different classes, with one example per class,
considering each compression as a class with one sentence generating that specific com-
pression.

Unfortunately, with the original Google News Dataset, it is not possible to vary the
size of K in an N -way, K-shot learning sentence compression task since it is practically
impossible for two or more non-related sentences to have the same compression, i.e.,
two or more examples with the same class. We used data augmentation techniques to
work around this problem to create more sentences based on one single compression and
evaluate the scenario of increasing the number of N and K in the meta-model training.

4.3. Compression Augmentation
For the compression augmentation process, we used a pre-trained BERT model
[Kenton and Toutanova 2019] on English language with a masked language modeling
(MLM) objetive1.

For each compression of our dataset, we randomly place mask tokens between
the words. We empirically choose to insert 10% of the number of words as masks in the

1The pre-trained model used is available at https://huggingface.co/bert-base-cased



compression (or one mask if the compression had less than ten words). With too many
masks, the sentence generated might not be semantically correct. Once all masks are
placed, we use the previously mentioned pre-trained model to replace them with actual
correct words.

This whole process can be repeated to generate any number of sentences based
on a single compression. Figure 1 presents an example of the compression augmentation
process.

Sentence

Compression

Sentence
with Masks

New
Sentence

I like chocolate.

I really like white chocolate.

I do like chocolate.

I [MASK] like [MASK] chocolate.

Figure 1. Example of a compression augmentation using a masked language
modeling (MLM) objective.

After generating new sentences based on each compression, we are now able to
create N -way, K-shot learning tasks with larger values of K: the task will have more
than one sentence leading to the same compression (to do the reverse process of data
augmentation, i.e., compress the sentence, we only need to extract the words added by the
model to get the respective compression).

To verify that the generated sentences have the same meaning as the com-
pressions that originated them, the sentence-level embeddings model Universal Sen-
tence Encoder [Cer et al. 2018] were calculated for all sentences and compressions,
and the values of each pair were calculated using the cosine similarity. We cal-
culated the embedding similarities and extracted some descriptive statistics for the
set of all comparisons: mean=0.95440, median=0.96100, and standard
deviation=0.03443. These values show that the meaning of the newly generated
sentence is very similar to the meaning of the original compression.

4.4. Results and Discussion

Meta-learning Versus Conventional Learning: To answer the RQ1., we compared two
models created using the META-BERTSC and the Scratch-BERTSC settings described
previously.

We trained the model from the META-BERTSC setting with 5-way, 1-shot ran-
domly created tasks, i.e., we randomly chose five pairs of sentences and compression
from the Google News Dataset to create each task. We vary the batch size of tasks from
the list of values [16, 32, 64, 128].

The rest of the dataset was used to sample sentence compression tasks to fine-tune
the meta-model chosen previously individually. Table 1 presents the average F1 Score



(F1), ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L) and ∆C metrics of all models
fine-tuned for [16, 32, 64, 128] tasks.

batch F1 R-1 R-2 R-L ∆C
16 0.78002 0.76478 0.52067 0.76478 0.10163
32 0.77046 0.74560 0.50840 0.74522 0.08339
64 0.74938 0.72042 0.47680 0.72006 0.07716

128 0.78230 0.75714 0.52604 0.75606 0.08180

Table 1. Results for the 5-way, 1-shot learning scenario with the model trained
from the META-BERTSC setting.

Table 2 presents the results of the model trained in the Scratch-BERTSC scenario
with the same tasks and metrics used in the fine-tuning process for the META-BERTSC
scenario described previously.

batch F1 R-1 R-2 R-L ∆C
16 0.80777 0.77974 0.60439 0.77860 0.047612
32 0.80951 0.76883 0.59564 0.76835 0.046216
64 0.79398 0.75405 0.57421 0.75345 0.050612

128 0.80915 0.76810 0.59827 0.76682 0.041529

Table 2. Results for the 5-way, 1-shot learning scenario with the model trained
from the Scratch-BERTSC setting.

The fine-tuned model Scratch-BERTSC consistently outperforms the META-
BERTSC in all different metrics considered. Table 3 shows two examples of predicted
compressions with the Scratch-BERTSC approach and the META-BERTSC approach.

Sentence:
Asda has dropped Saatchi & Saatchi out of the pitch for its
£100m advertising account, ending its 20-year relationship
with owner Publicis Groupe.

Compression: Asda has dropped Saatchi & Saatchi for its £ 100m account.
[S-BSC]: Asda has dropped Saatchi & Saatchi for its £100m account.

[M-BSC]: Asda has dropped Saatchi Saatchi accounts for its £100m
account.

Table 3. An example of compressions performed by the two models evaluated.
In this table, the terms “S-BSC” and “M-BSC” are abbreviations for the terms
“Scratch-BERTSC Prediction” and “META-BERTSC Prediction”, respectively.

Increasing the Number K of Examples per Class: To answer RQ2., we com-
pared two models created using the META-BERTSC setting: one with 5-way, 1-shot
randomly created tasks (results from Table 1) and another with 5-way, 5-shot randomly
created tasks. We also fine tuned the Scratch-BERTSC model with the same increased
amount of tasks for the 5-way, 5-shot setting.

Table 4 and Table 5 presents the average F1 Score (F1), ROUGE-1 (R-1), ROUGE-
2 (R-1), ROUGE-L (R-L) and ∆C metrics of all models fine-tuned for [16, 32, 64,
128] tasks.



batch F1 R-1 R-2 R-L ∆C
16 0.75577 0.72926 0.49441 0.72828 0.06936
32 0.75175 0.71070 0.46656 0.70835 0.03720
64 0.75616 0.72122 0.48416 0.71966 0.05984

128 0.76329 0.73454 0.50208 0.73355 0.06201

Table 4. Results for the 5-way, 5-shot learning scenario with the model trained
from the META-BERTSC setting.

batch F1 R-1 R-2 R-L ∆C
16 0.80318 0.75739 0.59899 0.75519 0.02642
32 0.80239 0.76228 0.60694 0.75975 0.02743
64 0.79808 0.74732 0.57472 0.74573 0.03689

128 0.76638 0.71441 0.49862 0.71321 0.02050

Table 5. Results for the 5-way, 5-shot learning scenario with the model trained
from the Scratch-BERTSC setting.

Based on the presented results, we cannot guarantee that a higher value of K
generate better results, since for none of the two approaches are better than the other for all
metrics, both for the Scratch-BERTSC and META-BERTSC approaches. Unfortunately
there is a current limitation in the increase of the value of K because it would demand the
generation of more sentences based on the same compression. The automatic addition of
too many new words in the compression could generate syntactically incorrect sentences.

5. Conclusions and Future Works

In this work, we used the MAML algorithm for sentence compression via meta-learning,
particularly when data is scarce. The resulting meta-model could be fine-tuned for specific
domains with little data. However, our findings revealed its limitations, as it didn’t outper-
form a fine-tuned BERT model, even with limited data. This suggests BERT’s robustness
and contextual understanding, combined with fine-tuning, may be a better approach for
sentence compression in low-resource scenarios.

In future works, we intend to investigate the following additional research ques-
tions regarding the similarity between the distribution of tasks and the meaning bias be-
tween a sentence and the compressions generated during the work:

RQ1 What would be the impact of training a meta-model with domain-specific tasks,
e.g., sentence compression task with sentences only related to sports, and fine-tune
it to a different domain task?

RQ2 How similar are the tasks of the distribution used? And when we separate by
domain, how similar are the tasks? And the new tasks that the meta-model will be
tuned for, how similar are they to each other?

Finally, the present work can also serve as a basis for researchers who wish to
investigate the advantages of leveraging pre-trained BERT models and fine-tuning tech-
niques and the use of meta-learning in the sentence compression task since we believe
this is the first study to propose this approach to this problem.
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