Yauti: A Tool for Morphosyntactic Analysis of Nheengatu
within the Universal Dependencies Framework

Leonel Figueiredo de Alencar’

''Universidade Federal do Ceara (UFC), Brazil

Av. da Universidade 2683 — 60.020-181 — Fortaleza — CE — Brazil
leonel.de.alencar@ufc.br

Abstract. This paper reports on Yauti, a rule-based morphosyntactic analyzer
for the endangered Brazilian indigenous language Nheengatu. Its goal is to gen-
erate analyses in the UD framework’s CoNLL-U format. It has been developed
on par with the construction of the Nheengatu treebank of the UD collection.
In sentences only consisting of known and unambiguous words, the tool gener-
ally delivers good results. It obtained a LAS score of 73.2% in a version of the
Nheengatu UD treebank with all 1022 sentences automatically provided with
XPOS tags and a special annotation to handle non-lexicalized words.

1. Introduction

Natural language processing has attained near or state-of-the-art results in Brazil in
the last two decades. The focus has been on Portuguese, placing it among the lan-
guages with the highest Digital Language Support (DLS) Level [Simons et al. 2022,
Eberhard et al. 2023]. Despite that, the enormous linguistic diversity in the coun-
try, represented by about 150 indigenous languages still alive, has been practically
ignored. Only recently has attention been paid to these languages, with the cre-
ation of resources such as treebanks and the implementation of computational anal-
ysis tools, e.g., [Galves et al. 2017, da Silva Facundes et al. 2021, Gerardi et al. 2021,
Martin Rodriguez et al. 2022]. Worldwide, the computational processing of minority lan-
guages has enjoyed a growing interest, also on the part of information technology giants,
e.g., [Bapna et al. 2022].

This paper describes a contribution to bridging the digital divide that endangers
the survival of minority languages in Brazil. We present Yauti, a tool for morphosyn-
tactic analysis of Nheengatu (Modern Tupi) within the Universal Dependencies frame-
work (henceforth UD) [Nivre et al. 2016, de Marneffe et al. 2021].! Nheengatu was the
most spoken language in the Brazilian Amazon until the middle of the 19th century
[Navarro et al. 2017]. Today it is threatened with extinction [Eberhard et al. 2023]. It
is the indigenous language that has been most widely learned across Brazil by language
enthusiasts or in revitalization initiatives as a means of affirming ethnic identity. It also
stands out for its well-documented history spanning four centuries [Moore et al. 1994,
Rodrigues 1996, Freire 2011, Rodrigues and Cabral 2011, Moore 2014].

Notwithstanding its cultural, social, and historical significance, there was no
publicly available corpus or computational tool for processing Nheengatu until re-
cently. Accordingly, Nheengatu ranks with a score of 0.07 at the bottom of the DLS

"Yauti is available at https://github.com/CompLin/nheengatu

scale, in a seemingly infinite distance from Portuguese with 0.96 and English with
1.00. Recent efforts to revert this situation include [de Alencar 2021], who reports on
a machine translation prototype and a small semantic treebank for stative sentences.
[Alexandre et al. 2021a, Alexandre et al. 2021b] deal with a simplistic part-of-speech
tagger and a tagged corpus without any syntactic disambiguation.

Yauti represents a much more ambitious initiative. POS taggers, parsers, and an-
notated corpora are of vital importance not only for developing language technology ap-
plications, but also for language documentation, language learning and instruction, and ty-
pological investigation. A by-product of the development of Yauti is the UD_Nheengatu-
CompLin treebank (henceforth UDTB), the second largest of a Brazilian indigenous lan-
guage in the UD collection. The tool enabled the treebank to grow relatively fast from 196
sentences in Version 2.11 of 11/15/22 to 860 in Version 2.12 of 5/15/23. As of writing
this paper, the development version of UDTB features 1022 sentences.

Section 2 deals with the annotation task according to the UD scheme. Section
3 describes Yauti’s different components and explains how it performs sentence annota-
tions. After reporting on the evaluation results in Section 4, we point out in Section 5
directions for further research.

2. The Annotation Task

A UD treebank’s annotation scheme can be divided into two components. While the
first comprises principles considered universal and that every language in the collection
must adhere to, the second consists of specific requirements for a particular treebank of
a particular language. Both incorporate specifications related to the different levels of
morphosyntactic analysis, from orthographic word and syntactic word definitions to parts
of speech, feature structures, and syntactic relations. In addition, the treebank file(s) must
conform to the CoNLL-U format. A validation program verifies compliance with all of
these requirements and grants valid status to a treebank only if it does not violate any of
these specifications.?

root punct
obj
advmod
aux nmod:poss
VERB AUX PART PRON NOUN PUNCT
Reumpuka putari sera se igara 7
l Reumpuka-putari]

Figure 1. Dependency graph of example (3)

Some of these well-formed conditions are common to different syntactic frame-
works, such as the limitation of a single subject per clause. Other requirements seem
theory-specific, for example, the prohibition that nouns or pronouns function as adverbial
modifiers. UD establishes limited inventories of parts of speech (UPOS) and syntactic
relations (DEPREL), which a given language need not exhaust.

https://github.com/UniversalDependencies/tools

Generating an analysis for a Nheengatu sentence conforming to the anno-
tation scheme of UDTB requires filling in nine of the ten fields specified in the
CoNLL-U format® with lexical-grammatical information for each syntactic word; see
Figures 1 and 2.* UDTB does not specify yet enhanced dependency relations
[Schuster and Manning 2016], housed in column #9.

1 2 3 4 5 6 7 8 10

Ip FORM LEMMA UPQS XPOS FEATS HEAD DEPREL MISC

1-2 Reumpuka-putari _ _ _ _ _ _ TokR=0:15

1 Reumpuka umpuka VERB V Number=Sing|Person=2|VerbForm=Fin <] root _

2 putari putari AUX AUXN Compound=Yes |VerbForm=Inf 1 aux _

3 serd sera PART PQ PartType=Int 1 advmod TokR=17:21

4 se se PRON PRON2 Case=Gen|Number=Sing|Person=1|Poss=Yes|PronType=Prs 5 nmod:poss TokR=22:24

5 igara igara NOUN N Number=Sing 1 obj SpAf=No|TokR=25:30
6 ? ? PUNCT PUNCT _ 1 punct SpAf=No| TokR=38:31

Figure 2. Example of annotation in the CoNLL-U format automatically generated
by Yauti for example (3).

Table 1° provides basic statistics of UDTB and MYTH (see Section 4) provided
by the conllu-stats.pl script from the UD project tools repository. They allow one
to dimension the complexity of the task of annotating a sentence in Nheengatu according
to the annotation scheme of UDTB.

Table 1. Statistics of UDTB and MYTH

Dataset Sents Tokens Words Fused Lemmas Forms Fusions Tags Feats Deps
UDTB 1022 10082 10181 99 1075 1450 72 15 66 36
MYTH 43 580 583 3 154 175 3 13 46 24

The first annotation subtask is to determine the syntactic words. Within the con-
text of UD, tokenization requires not just splitting sentences on orthographic words and
punctuation. In the cases computed on the Fused column of Table 1, a single token maps
onto two different syntactic words. In (1)-(3) from UDTB, the fused words are in bold-
face.

(D Amaantu. ‘I’'m just looking.” (Avila2021:0:0:195)
2) Setd reté pird paraname. ‘There are many fish in the river.” (Avila2021:0:0:341)

3) Reumpuka-putari serd se igara? ‘Do you want to break my canoe?’
(Avila2021:0:0:498)

In (1) and (2), the adverb and postposition cliticize to their heads. In (3), the auxil-
iary incorporates into the main verb. Yauti handles both cases through a two-step process.
First, it splits tokens on white space and separates punctuation. Second, it traverses the

Shttps://universaldependencies.org/format.html

“Figure 1 was generated from the CONLL-U annotation in UDTB by the viewer at https://urd2.
let.rug.nl/~kleiweg/conllu/. For presentation purposes, we manually edited the program out-
put displayed in Figure 2. TokR and SpAf are abbreviations for TokenRange and SpaceAfter, respectively.

3Sents and Deps refer to the number of sentences and syntactic relations. The values from the Lemmas
column onwards exclude repetitions.

resulting list of strings and splits off each of a predefined list of suffixes, signaling it with
a specific mark to indicate whether it is a compound member or a clitic.

Yauti, using the CoNLL-U Parser® Python library, generates an object of the
Token class for each orthographic word and each syntactic word. The identity of each
Token object is an integer or a range of integers, as in Figure 2. Each syntactic word must
receive a label from the UPOS and XPOS inventories. The feature structures (FEATS) of
each syntactic word must be assigned. The head of the word and the type of syntactic
relation (DEPREL) it maintains with that head must be determined.

This last subtask gets especially tricky in complex sentences with coordinated
and/or subordinated clauses, clausal complements, etc. Commas, dashes, semicolons,
colons, and quotation marks attach to the highest node of these constituents. Failure
to identify this highest node triggers the wrong annotation of its dependent punctuation
marks. Currently, UDTB has 1913 punctuation marks, totaling 13 different types.

The last column of the CoNLL-U format specifies, via the TokenRange attribute,
the span of the syntactic word and, through the SpaceAfter attribute, whether it is followed
by white space or not. As the first situation is the most general, this attribute is only used
when the value is negative. Its absence implies a positive value. Other attributes housed
in this last column are Orig and OrigLang, which specify, respectively, the original form
and the language of origin of loanwords not yet lexicalized in Nheengatu.

3. Program Construction and Operation

It is evident from the examples presented above that annotating sentences according to the
UDTB scheme is a complex task. Therefore, we decompose it into a series of subtasks,
performed by different functions implemented in a series of Python modules.

Yauti’s starting point is a glossary in JSON format with 1552 entries, generated
from a raw text file that a linguist without programming skills can easily edit; see example
entry in (4). The first version of this glossary only contained about 850 entries. We created
it by extracting the raw text from [de Almeida Navarro 2016]’s glossary, after some post-
editing to remove page numbers, correct inconsistent formatting, etc. The circa 700 new
entries are a manual sample from the over 8000 entries in [Avila 2021].

4) mad 5 (verb) - to see, to look

Navarro’s word classification underwent profound changes to handle annotation
in the UD scheme. Instead of his original system of 12 classes and 6 pronoun subclasses,
Yauti, based, e.g., on [da Cruz 2011] and [Avila 2021], adopts a much more granular in-
ventory with 83 XPOS tags. For example, instead of a single tag for all particles, Yauti has
20 tags for different particle types. Particles play a fundamental role in Nheengatu, whose
verb inflection is relatively poor. Pronouns, determiners, and adverbs also have very high
granular labels. Pronouns and determiners are divided into 15 subcategories, e.g., INDQ
for indefinite quantitative pronouns. Adverbs are classified into 22 subcategories, such as
ADVT, ADVC, and ADVS, for temporal, locative, and intensity adverbs.

The glossary in JSON format feeds a rule-based morphological generator, con-

Shttps://pypi.org/project/conllu/

sisting of functions that take as parameters lemma, part of speech, and inflectional
class information, deriving conjugated verbs, pluralized nouns and pronouns, and words
with relational prefixes.” This generator populates a full-form lexicon of Nheengatu in
the form of a Python dictionary mapping word forms to a list of [lemma, tags]
pairs, where tags is a sequence of tags separated by the plus sign. For example,
the word forms amad ‘1 see’ and reumpuka ‘you break’ from (1) and (3) map to
[['mad’, '"V+1+SG’]1]and [[’umpuka’, ’V+2+SG’]],respectively. The am-
biguous word form setd, which functions as a third class verb (V3) in (2), maps to
[[’setd’, "ADVS’], [’setd’, "INDQ’], [/setd’, ’'V3+NCONT’]].

Using the information encoded in the lexicon, Yauti performs an initial filling of
different annotation fields of the Token objects, notably UPOS and FEATS. It assigns the
feature Clitic=Yes or Compound=Yes to suffixes that constitute syntactic words,
as in (1)-(3). For some word classes, such as ADP, INTJ, CCONJ, and SCONJ, the
syntactic relation is already specified at this stage. Additionally, Yauti parses productive
morphological derivations. One noteworthy aspect of Nheengatu is the application of
aspectual suffixes not only to auxiliary and main verbs, but also to nouns, adverbs, etc.

Yauti then inserts each Token objectin a TokenList. Then it traverses this list
token by token, executing functions that fill in the head and syntactic relations, based on
available information from the current token and preceding and succeeding tokens.

To this end, Yauti makes use of general syntactic patterns of Nheengatu. Let’s
look at some examples. A noun that does not govern an adposition and precedes a verb
generally functions as its subject, while an analogous noun following a verb functions
as its object. The closest noun to the left of a postposition constitutes its head. This
noun, in turn, is linked to the nearest verb through the oblique syntactic relation, noun-
dependent adpositional phrases being rare. In noun sequences, the one farthest to the left
is a possessive modifier of its next neighbor to the right, which, in turn, is a possessive
modifier of the next noun in the sequence, and so on.

Subordinating conjunctions (SCONJ) behave analogously to postpositions: the
closest verb to the left is its head, and this verb is linked as an adverbial clause modifier to
another verb. Yauti adopts the following heuristics to identify the head of a verb governing
a SCONIJ: try to find a verb in a preceding matrix clause, if there is none, try to find one
in a subsequent clause. Under the scope of the negation particle, however, subordinating
conjunctions and the relative pronoun precede their governing verb.

Very typical of Nheengatu are clauses in parataxis, where the first verb governs the
second, which governs the next one, and so on. Yauti often manages to handle this con-
struction. However, it fails to correctly analyze clausal complements (ccomp and xcomp
in UD) since Nheengatu has no complementizers or infinitives, and information on verb
valence is presently unavailable. Another still unsolved challenge is correctly identifying
the head of a noun between two verbs linked via parataxis. It can either be the obj of
the first verb or the nsubj of the second. Yauti always chooses the latter option, which is
sometimes incorrect.

As there are no comprehensive formalized descriptions of Nheengatu, the con-

"Relational prefixes encode, e.g., syntactic contiguity (CONT) or non-contiguity (NCONT) between a
head and its dependent [Rodrigues and Cabral 2011].

struction of the syntactic annotation algorithm proceeded incrementally. We initially
made a very simple version of the algorithm to handle basic cases like the SVO pattern
in simple sentences. We then applied it to increasingly complex and diverse examples,
observing the mistakes made and correcting the code to avoid them. The current algo-
rithm is the result of this process after the annotation of more than 1000 sentences (Table
1). The vocative is an example of a syntactic relation whose annotation has only recently
become automated. Before that, Yauti incorrectly assigned the nsubj or obj relation to
verb dependents in the vocative function, following the most general SVO pattern. Now
a rule corrects this initial annotation, provided some conditions are met.

>>> s='Seta/v3 reté/advs pira paraname.'’
>>> tk=AnnotateConllu.parseSentence(s)
>>> print(tk.serialize())

1 Setd seta VERB V3 Number=Sing|Person=3|Rel=NCont | VerbForm=Fin 0 root
enRange=0:4

2 reté reté ADV ADVS AdvType=Deg 1 advmod _ TokenRange=5:9

3 pira pira NOUN N Number=Sing 1 obj _ TokenRange=10:14

4-5 paraname _ _ _ _ _ _ _ SpaceAfter=No|TokenRange=15:24
4 parana parana NOUN N Number=Sing 1 obl _ _

5 me upé ADP ADP Clitic=Yes 4 case _ _

6 . . PUNCT PUNCT _ 1 punct _ SpaceAfter=No|TokenRange=25:26

Figure 3. Parsing example (2) with Yauti in the Python IDLE shell

Yauti’s central function is parseSentence, which takes as an argument a string
with or without part-of-speech tags and other abbreviations, as explained below. This
function returns an object of the TokenList class. Thus, the program can be used
in batch processing as a component of a pipeline, generating analyses in the CoNLL-U
format, following the UDTB annotation scheme for the sentences given as input.

However, because of ambiguity, the results generated by the fully automatic mode
of the program are in general precarious. For each syntactic word with n XPOS tags,
the program generates n Token objects. Thereafter, TokenList creation rules operate
on these objects, generating chain errors. To address this problem, an automatic part-of-
speech tag disambiguator is under development. For the time being, it is in interactive
mode that the program is most effective. In a typical interaction, the user types in an ex-
ample in the Python shell, executing the parseSentence function. Yauti generates the
respective analysis. The user checks which words are ambiguous and manually eliminates
the ambiguities by specifying the corresponding tag, as in Figure 3. Next, the user reruns
parseSentence on the tagged sentence, manually correcting detected errors, e.g., af-
ter inspecting the visualization of the sentence or executing the validation program. In
Figure 3, Yauti incorrectly assigned node 3 the obj instead of the nsubj relation.

In addition to disambiguating tags, parseSentence accepts two other types of
abbreviations. First, @ assigns a word the root syntactic relation. This generally improves
the annotation of verbless sentences, which are common in Nheengatu. They can be tricky
for Yauti to deal with, as any content word can be the main predicate of the sentence and
act as root. Second, we have functions for parsing words the morphological analyzer does
not know about and are inappropriate for Yauti’s lexical database. These unknown words
fall into two groups: (i) Portuguese words in code-switching, proper nouns, and non-
lexicalized interjections, e.g., onomatopoeias; (ii) productive morphological derivations,
e.g., collective nouns, words with degree, privative or aspectual suffixes, etc.

4. Evaluation of Yauti

UDTB is the only Nheengatu syntactic treebank available. To evaluate Yauti, therefore,
we could not count on a previous gold standard. Instead, to assess how useful the tool
can be for annotating texts in Nheengatu, we resorted first to UDTB (Table 1). Given the
grammatical and lexical diversity of this treebank, compiled from excerpts of different
genres from different regions and diachronic stages, we expect that the average perfor-
mance in this dataset should reflect in the annotation of other sentences from the same
sources or other texts of more or less similar characteristics.

Parsing Nheengatu is especially challenging due to the lack of spelling standard-
ization and limited computational resources. On the other hand, the current lexicon of
the morphological analyzer only covers a fraction of [Avila 2021]. Another still unre-
solved issue is the ambiguity resolution. Thus, we have restricted the evaluation task to
three main dimensions by isolating the effects of the unknown word analysis and ambigu-
ity resolution subtasks. The first dimension is the performance in the standard LAS and
UAS metrics [Straka et al. 2016, Nivre and Fang 2017, Straka 2018]. The second is the
splitting of tokens into syntactic words. The third is morphological analysis, encompass-
ing both lemmatization and UPOS and XPOS assignment. Additionally, we computed
accuracy for the SpaceAfter attribute.

To perform this evaluation, we implemented a Python code that traverses each
TokenList of UDTB and extracts, from each Token object, a triple in the format
(form, tag, spaceafter). The second member of this triple can either be the
lower-cased tag from the XPOS field or an abbreviation of the name of a Token ob-
ject construction function, prefixed with = and possibly followed by a series of colon-
separated strings in the form of k|v, where k is a keyword argument and v its value.
From these triples, another function constructs a valid input for the parseSentence
function. (5)-(7) are test sentences automatically constructed from the information en-
coded in UDTB. In (5), =v and =n trigger the creation of verb and noun Token objects
for Portuguese loanwords not registered in [Avila 2021]. The function =hab in (6) and
(7) handles the frequentative aspect suffix -wara, which attaches to the verb su ‘to go’ in
(11) and to the adverb iké ‘here’ in (7). The named parameters x and a handle the XPOS
and the accentuation of the final vowel of the base form.

(5) Presizu/nec aintd/pron uistudari/=v portugués/=n upé/adp. ‘It’s necessary that
they study in Portuguese.” (MooreFP1994:0:0:8)

(6) Asuwara/=hab:x|v:a|t mikiti/adve. ‘1 always go there.” (Avila2021:0:0:432)

(7) Ikewara/=hab:x|advdx:a|t aikii/cop, reyuri/v ramé/sconj, resika/v se/pron2
piri/adp. ‘I'm always here, when you come, come visit me.” (Avila2021:0:0:429)

Applied to all 1022 thusly annotated sentences from UDTB, Yauti obtained 80.0
and 73.2 in the UAS and LAS metrics, respectively (Table 2). These values are similar to
those achieved in some treebanks by the deep neural parser of the UDPipe 2.0 prototype
in the CoNLL 2018 UD Shared Task competition [Straka 2018]. For example, this parser,
representative of the state-of-the-art in dependency parsing, achieved a UAS of 78.66 and
LAS of 74.25 in the Galician-TreeGal treebank. In the other two principal dimensions,

Yauti delivered a much higher performance. Specifically, it achieved an accuracy score of
99.7% and 98.4% in the assignment of lemmas and features, respectively, attaining 100%
accuracy in tokenization. It is worth noting that several lemma and feature errors have
turned out to be incorrect annotations of UDTB. Yauti also exhibited high accuracy in the
SpaceAfter attribute, with a score of 99.5%.

Table 2. Performance of Yauti in two data sets

Dataset LAS UAS Lemmas Feats
UDTB 732 80.0 99.7 98.5
MYTH 71.0 76.3 96.6 96.8

This experiment also revealed 96 XPOS and 204 UPOS discrepancies compared
to UDTB, many of which were actually incorrect annotations in the treebank. Most er-
rors Yauti commits in this domain involve distinguishing pronouns from determiners, on
the one hand, and auxiliary from main verbs, on the other. In the lexicon, these distinc-
tions are underspecified. Yauti tries to guess the correct tags during the construction of
the TokenList object. However, the accuracy levels show that the algorithm needs
improvement in this aspect.

As a first step to test performance on unseen data, we applied the tool to the
myth “How the Night Appeared” [de Magalhdes 1876, pp. 163-171]. We modernized the
spelling but kept the original punctuation intact.® This story contains relatively many ob-
solete forms. We manually updated the JSON glossary with 34 lemmas hitherto unknown
to Yauti. We also manually annotated the sentences, as in (5)-(7). We corrected Yauti’s
output and compared this gold standard to the test version. Table 2 displays the main
results.

5. Final Remarks

We have encountered several annotation errors we could not yet prevent due to time con-
straints or a lack of fuller understanding of the respective phenomena. One of the primary
issues we face is with verb-subject clauses (Figure 3). Cross-linguistically, this construc-
tion relates to unaccusativity, which is difficult to detect automatically. Another challenge
comes from verbless sentences, where any content word can act as root. A further dif-
ficulty is the indirect object (iobj), defined in UD theory as a verb’s core argument in
addition to an obj or a ccomp. While identifying it may be challenging in the general
case, it seems clear-cut in languages such as English that feature double objects or in
languages like German that use a dative case. In UDTB, a noun governing a dative post-
position is an iobj whenever the same verb governs an obj or a ccomp. However, as we
saw, the latter relation is hard to identify in Nheengatu. We intend to address the issues
identified so far soon in the hope of improving Yauti’s performance.

The evaluation experiment showed that Yauti is useful not only to annotate new
sentences but also to check existing annotations for consistency. As UDTB constantly
increases, we hope to train a neural parser on the data with UDPipe 2.0 and compare its
performance with the improved rule-based approach.

8We owe the orthography adaptation to the philological expertise of Marcel Twardowsky Avila (p.c.).

References

Alexandre, D. M., Gurgel, J. L., and de A. Araripe, L. F. (2021a). Compilacdo de um
corpus etiquetado da Lingua Geral Amazonica. In Anais do XIII Simpdsio Brasileiro

de Tecnologia da Informagdo e da Linguagem Humana, pages 427-431, Porto Alegre,
RS, Brasil. SBC.

Alexandre, D. M., Gurgel, J. L., and de Alencar Araripe, L. F. (2021b). Nheentiqueta-
dor: Um etiquetador morfossintatico para o sintagma nominal do nheengatu. Revista
Encontros Universitdrios da UFC, 6:1-13.

Avila, M. T. (2021). Proposta de diciondrio nheengatu-portugués. PhD thesis, Faculdade
de Filosofia, Letras e Ciéncias Humanas da Universidade de Sdo Paulo.

Bapna, A., Caswell, ., Kreutzer, J., Firat, O., van Esch, D., Siddhant, A., Niu, M., Bal-
jekar, P., Garcia, X., Macherey, W., Breiner, T., Axelrod, V., Riesa, J., Cao, Y., Chen,
M. X., Macherey, K., Krikun, M., Wang, P., Gutkin, A., Shah, A., Huang, Y., Chen,
Z., Wu, Y., and Hughes, M. (2022). Building machine translation systems for the next
thousand languages. Technical report, Google Research.

da Cruz, A. (2011). Fonologia e gramdtica do nheengati: A lingua falada pelos povos
Baré, Warekena e Baniwa. LOT, Utrecht.

da Silva Facundes, S., de Freitas, M. F. P., and de Lima-Padovani, B. F. S. (2021). Num-
ber expression in Apurind (Arawdak). In Himéldinen, M., Partanen, N., and Alnajjar,
K., editors, Multilingual Facilitation, pages 31-42. University of Helsinki Library,
Helsinki.

de Alencar, L. F. (2021). Uma gramatica computacional de um fragmento do nheen-
gatu / A computational grammar for a fragment of nheengatu. Revista de Estudos da
Linguagem, 29(3):1717-1777.

de Almeida Navarro, E. (2016). Curso de Lingua Geral (nheengatu ou tupi moderno):
A lingua das origens da civilizagdo amazénica. Centro Angel Rama da Faculdade de
Filosofia, Letras e Ciéncias Humanas da Universidade de Sao Paulo, Sao Paulo, second
edition.

de Magalhaes, J. V. C. (1876). O selvagem. Typographia da Reforma, Rio de Janeiro.

de Marneffe, M.-C., Manning, C. D., Nivre, J., and Zeman, D. (2021). Universal Depen-
dencies. Computational Linguistics, 47(2):255-308.

Eberhard, D. M., Simons, G. F.,, and Fennig, C. D., editors (2023). Ethnologue: Lan-
guages of the World. SIL International, Dallas, twenty-sixth edition.

Freire, J. R. B. (2011). Rio Babel: A historia das linguas na Amazonia. EQUER]J, Rio de
Janeiro, second edition.

Galves, C., Sandalo, F., Sena, T. A. d., and Veronesi, L. (2017). Annotating a polysyn-
thetic language: From Portuguese to Kadiwéu. Cadernos de Estudos Linguisticos,
59(3):631-648.

Gerardi, F. F,, Reichert, S., and Aragon, C. C. (2021). TuLeD (tupian lexical database):
introducing a database of a South American language family. Language Resources and
Evaluation, 55(4):997-1015.

Martin Rodriguez, L., Merzhevich, T., Silva, W., Tresoldi, T., Aragon, C., and Gerardi,
F. F. (2022). Tupian language ressources: Data, tools, analyses. In Proceedings of
the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced
Languages, pages 48—-58, Marseille, France. European Language Resources Associa-
tion.

Moore, D. (2014). Historical development of Nheengatu (Lingua Geral Amazonica). In
Mufwene, S. S., editor, Iberian Imperialism and Language Evolution in Latin America,
pages 108—142. University of Chicago Press, Chicago.

Moore, D., Facundes, S., and Pires, N. (1994). Nheengatu (Lingua Geral Amazonica),
its history, and the effects of language contact. In Proceedings of the Meeting of the
Society for the Study of the Indigenous languages of the Americas, July 2-4, 1993 and
the Hokan-Penutian workshop, July 3, 1993, Report / Survey of California and other
Indian Languages ; 8, pages 93—118, Berkeley, CA. [University of California].

Navarro, E., Avila, M., and Trevisan, R. (2017). O nheengatu, entre a vida e a morte:
A traducdo literdria como possivel instrumento de sua revitalizacdo lexical. Revista
Letras Raras, 6(2):9-29.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Haji¢, J., Manning, C. D., Mc-
Donald, R., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R., and Zeman, D. (2016).
Universal Dependencies v1: A multilingual treebank collection. In Proceedings of the
Tenth International Conference on Language Resources and Evaluation (LREC’16),
pages 1659-1666, Portoroz, Slovenia. European Language Resources Association
(ELRA).

Nivre, J. and Fang, C.-T. (2017). Universal Dependency evaluation. In Proceedings of
the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017), pages 86-95,
Gothenburg, Sweden. Association for Computational Linguistics.

Rodrigues, A. D. (1996). As linguas gerais sul-americanas. Papia, 4(2):6-18.

Rodrigues, A. D. and Cabral, A. S. A. C. (2011). A contribution to the linguistic history
of the lingua geral amazonica. ALFA: Revista de Linguistica, 55(2).

Schuster, S. and Manning, C. D. (2016). Enhanced English Universal Dependencies:
An improved representation for natural language understanding tasks. In Proceed-
ings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16), pages 2371-2378, Portoroz, Slovenia. European Language Resources As-
sociation (ELRA).

Simons, G. F., Thomas, A. L. L., and White, C. K. K. (2022). Assessing digital language
support on a global scale. In Proceedings of the 29th International Conference on Com-
putational Linguistics, pages 4299-4305, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Straka, M. (2018). UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceed-
ings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 197-207, Brussels, Belgium. Association for Computational
Linguistics.

Straka, M., Hajic¢, J., and Strakové, J. (2016). UDPipe: Trainable pipeline for process-
ing CoNLL-U files performing tokenization, morphological analysis, POS tagging and

parsing. In Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC’16), pages 4290-4297, PortoroZz, Slovenia. European Language
Resources Association (ELRA).

