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Abstract. In many human languages, linguistic units represent text structure.
Vector semantics is used in NLP to represent these units, known as embeddings.
Evaluating the learned representations is crucial for identifying critical differ-
ences between the diverse existing embedding models in task-specific selection.
However, the evaluation process is complex, with two approaches: intrinsic and
extrinsic. While useful, aggregated evaluations often lack consistency due to
result misalignment. This work investigates the dependencies and correlations
between embeddings and NLP tasks. The goal is how to initially verify if the
embeddings’ dimensions (i.e., features) depend on the final task. The study then
explores two research questions and presents findings from experiments.

1. Introduction
In many human languages, most information about the structure of texts can be repre-
sented in the form of linguistic units. Understanding how to learn textual representations
using Deep Learning techniques is a crucial area of research in Natural Language Process-
ing (NLP) [Jurafsky and Martin 2018, Oliveira et al. 2022]. This focus has given rise to
various architectures that aim to model words or other linguistic units such as characters,
sentences, or documents.

Embeddings are a fundamental concept in NLP that serve as a form of textual
representation. They are numerical vectors that encode both the meaning and contextual
information of linguistic units within a given language. Many methods have been de-
veloped to generate embeddings, from more straightforward approaches to sophisticated
techniques [Torregrossa et al. 2021, Oliveira et al. 2022].

The field of NLP has yet to converge on a universal embedding method and
scale it sufficiently to provide state-of-the-art results on all tasks [Ignat et al. 2023,
Muennighoff et al. 2022]. Consequently, constructing effective NLP pipelines with high-
quality input representations remains challenging, especially with abundantly available
techniques. This leads to confusion about which model provides practitioners with the
best performance for their embedding use case. Thus, assessing the learned representa-
tions is vital in identifying the critical distinctions between various embedding models,
enabling the selection of the most suitable one for a specific task [Boggust et al. 2022,
Bakarov 2018].

Evaluating embeddings involves two primary approaches: extrinsic and intrinsic.
While extrinsic evaluation guarantees practical performance, intrinsic evaluation offers in-
sights into the inherent quality of embeddings [Jurafsky and Martin 2018]. However, fur-
ther advancements are needed to enhance the evaluation and comparison process, bridging



existing gaps and unlocking the full potential of these powerful language representation
models [Schnabel et al. 2015, Bakarov 2018, Torregrossa et al. 2021].

In recent years, researchers have recognized the importance of addressing the pre-
liminary verification of embeddings before utilizing them to represent a corpus or corpora
in an NLP task [Boggust et al. 2022, Muennighoff et al. 2022]. This research then tackles
the fundamental challenge of measuring (i.e., with heuristics or numerical measures) the
dependencies and correlations between the input textual representations and the ultimate
objective of an NLP task.

Contributions. Overall, the main contributions of this paper can be summarized as fol-
lows:

• Investigate the crucial step of examining whether the learned vectors, used as fea-
tures, are relevant to the final task, ensuring high-quality representations.

• Present two main research questions to guide the study, providing detailed discus-
sions, experimental setups, and results for each one.

• Conduct extensive experiments exploring whether numerical measures can deter-
mine the dependence between input embeddings and their suitability for a specific
NLP task.

2. Related Work

To address the challenge of verifying input representations for NLP tasks, research works
mainly focuses on three topics, presented below. This work addresses the first topic, while
the remaining topics are summarized to provide an overview of the current state.

Explainability and interpretability. General techniques use different tools to
understand model predictions, feature importance, and decision-making processes
[Hamilton et al. 2016, Ribeiro et al. 2016, Shrikumar et al. 2017, Carter et al. 2019].
Unlike other methods, this work compares embeddings learned by different models using
a global measure, considering that internal representations can vary.

Visual embedding techniques and tools. To reason about and interpret the learned rep-
resentations, [Heimerl and Gleicher 2018], [Liu et al. 2019b], and [Boggust et al. 2022]
propose interactive or static systems for exploring embeddings via direct projection ma-
nipulation, interactively filtering, and reconfiguring visual forms.

Methods for comparing embedding spaces. To compare vector spaces, research
works perform alignment through linear transformation [Chen et al. 2018] or nearest
neighbors and co-occurrences over time [Heimerl and Gleicher 2018, Wang et al. 2018b],
relationship analysis between node metrics and graph embeddings [Li et al. 2018],
and evaluation of vector consistency across latent embedding spaces [Liu et al. 2019b,
Boggust et al. 2022].

3. Research Questions and Discussion

Before delving into the experiments, the main research questions that guide this study are:

RQ1 Can heuristics or numerical measures determine the dependence between the
input embeddings and their suitability for a particular NLP task?



Context. Some model performances can degrade when including input features
irrelevant to the target labels. Typically, feature selection methods are intended to
reduce the number of input features to those considered most beneficial based on
statistical tests [Butcher and Smith 2020].
Quantitative investigation. This research question aims to analyze the quality of
pre-trained input embeddings1 by applying an existing feature selection measure
to different types of representations and corpora. The purpose is not to select the
best dimensions for a specific task but to identify which embedding approach has
more dimensions with high scores indicating strong dependence between input
and output. The experiments focus on embedding representations for the training
set.

RQ2 To what extent does the model developed to solve an NLP task affect the
transferability of the input embeddings?
Context. After using a heuristic or numerical measure to assess the suitability of
input embeddings for an NLP task, the question arises: what happens when the
same method is employed now to evaluate the quality of the embeddings alongside
the predicted labels generated by the model?
Qualitative investigation. This research question explores the relationship be-
tween the architecture of an NLP task, the linguistic knowledge encoded in pre-
trained input embeddings, and their transferability. An extrinsic evaluation ap-
proach is employed to investigate this, where a model is trained using different
representations. The objective is to determine whether models with high eval-
uation metrics also exhibit high dependency values. In this context, the feature
selection measure is implemented on the test set, considering both the actual la-
bels and the predicted ones produced by the model.
Statements. Additionally, since different embeddings ends-up producing similar
results for the same model [Muennighoff et al. 2022], the following scenarios are
also considered: (i) if the feature selection measure indicates high dependency
values, yet the model still performs poorly, the issue may lie with the remaining
network components of the model; and (ii), likewise, if the measure suggests low
dependency values, but the model achieves high-quality results, subsequent layers
beyond the textual representation may impact transferability. The ultimate goal
of this research question is to determine the interchangeability of the mentioned
statements.

4. Experimental Setup
4.1. Probing Task
The concept of probing tasks introduced by [Shi et al. 2016] and [Adi et al. 2016] in-
volves using a pre-trained encoder (e.g., embeddings) to train a classifier or decoder that
focuses on simple linguistic properties of sentences [Conneau et al. 2018]. If the classifier
succeeds, the pre-trained encoder representations contain sufficient information to solve
the task effectively. Given the distinct aspects of the research questions, the experimenta-
tion focused only on the Text Classification task as a probing task, specifically Sentiment
Analysis2.

1This work focuses on pre-trained and fine-tuned embeddings, which have become a trend in NLP
systems and a key component of state-of-the-art models [Liu et al. 2019a].

2It is worth noting that this task belongs to the group of tasks used as an extrinsic evaluation method.



Table 1 summarizes the main statistics of the datasets used in this paper: one of
them, CoLA [Warstadt et al. 2019], is part of the benchmark GLUE [Wang et al. 2018a],
and the remaining three, IMDb [Maas et al. 2011], SST-2 [Socher et al. 2013], and Sen-
timent140 [Go et al. 2009], are generic datasets widely utilized for Text Classifica-
tion/Sentiment Analysis task.

Sentiment Classification
Dataset # Corpus # Class Is Balanced? # Per Class Language0 1

IMDb [Maas et al. 2011] 50,000 2 Yes 25,000 25,000

EnglishSST-2 [Socher et al. 2013] 68,219 2 No 30,207 38,012
CoLA [Warstadt et al. 2019] 9,594 2 No 2,850 6,744
Sentiment140 [Go et al. 2009] 160,000 2 Yes 79,849 80,151

Table 1. Statistics of corpora used in experiments. To ensure comparability with
other datasets, 10% of the Sentiment140 training data was randomly selected to
maintain comparable text amounts. The classification values in the table corre-
spond to combined subsets within each corpus, including training, test, or vali-
dation sets.

All corpora are in English and were loaded via Hugging Face3. Although Senti-
ment140 originally had three classes, only the available training set with two classes was
used. Also, hold-out validation was conducted by combining all properly annotated texts
from each corpus. The data was split into 70% training and 30% test sets.

4.2. Feature Selection Measure

Mutual Information (MI) is a statistical measure that quantifies the mutual dependence
or information shared between two variables [Fano 1961]. In the context of NLP and
embeddings, MI can be used to assess how well the embedding representation captures
relevant information about the input text and its corresponding labels in a given task.
However, there are some considerations to keep in mind:

Advantages. MI captures relevant information since it measures the relevance of the
embedding representation to the task (i.e., higher MI indicates more relevant information).
Additionally, MI can deal with non-linear dependencies since it helps model complex
relationships between text and task targets.

Challenges. The accurate estimation of MI can be difficult, especially for high-
dimensional embeddings. While MI provides a quantitative measure, understanding the
specific linguistic or semantic aspects captured or neglected may be challenging.

In summary, MI can be a valuable tool for assessing the quality of embedding
representations for NLP tasks [Zhelezniak et al. 2020]. To tackle the listed challenges, it
is crucial to complement MI with other evaluation techniques. Incorporating task perfor-
mance (i.e., qualitative analysis) will be essential in the results section.

Here, MI is used with Scikit-learn4. The discrete features parameter was
modified to consider continuous features. As mentioned as one of the challenges, using
MI with dense representations has been difficult since it can have some issues estimating

3https://huggingface.co/datasets
4https://scikit-learn.org/stable/modules/generated/sklearn.feature_

selection.mutual_info_classif.html

https://huggingface.co/datasets
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html


MI for continuous random variables [Zhelezniak et al. 2020]. Yet, the aim is to assess
Scikit’s usability for such representations.

4.3. Probing Model and Parameters

A basic model architecture for Sentiment Analysis comprises two intermediate layers
with 32 units each and a final layer for sentiment prediction with sigmoid activation. The
models are trained using the Keras library, a high-level API of TensorFlow, for up to 300
epochs with early stopping and a patience of five.

4.4. Pre-Trained Embedding Models

The experimentation involves three widely used publicly available models for English em-
beddings: GloVe [Pennington et al. 2014] and fastText [Bojanowski et al. 2016], which
are static/classic embeddings, and DistilBERT [Sanh et al. 2019], a contextual represen-
tation model that has 40% fewer parameters than the original BERT Base.

The pre-trained static embeddings GloVe5 and fastText6 were loaded via the Flair
library for NLP7, having 300-dimensional vectors each. The DistilBERT pre-trained
model8 was instantiated using the Transformers library from Hugging Face. By default,
the hidden states of all Transformer-based model layers are concatenated to produce the
embeddings, generating vectors with 768 dimensions.

Sentence embeddings. To accommodate the requirements of the Scikit-learn MI func-
tion, the pre-trained representations were employed as sentence embeddings. The pooling
operation used for static and contextual embeddings gives the mean of all words in the
sentence. The texts with the pre-trained static sentence embeddings were embedded via
Flair. The sentence embedding matrices were extracted after training the models to be
used as input to the MI function.

5. Experimental Results

5.1. RQ1 Results

Table 2 contains the performance of the models during training via accuracy results and
some info about MI scores (maximum and mean values). Table 3 retains precise info
about the MI scores distribution, showing descriptive statistics of the percentiles. The
following observations can be made in greater detail:

Pre-trained sentence
embedding representation

IMDb SST-2 CoLA Sentiment140
Training Acc MI Scores Training Acc MI Scores Training Acc MI Scores Training Acc MI Scores
Best Epoch Max Mean Best Epoch Max Mean Best Epoch Max Mean Best Epoch Max Mean

GloVe (300d) 0.879 0.052 0.011 0.950 0.067 0.037 0.923 0.012 0.012 0.792 0.032 0.011
fastText (300d) 0.881 0.070 0.010 0.963 0.065 0.035 0.874 0.014 0.002 0.817 0.040 0.011
Fine-tuned GloVe (300d) 0.985 0.556 0.306 0.984 0.279 0.097 0.958 0.060 0.014 0.953 0.155 0.027
Fine-tuned fastText (300d) 0.987 0.602 0.384 0.980 0.300 0.117 0.940 0.143 0.033 0.929 0.220 0.050
DistilBERT (768d) 0.908 0.089 0.013 0.918 0.117 0.040 0.911 0.022 0.003 0.794 0.040 0.008

Table 2. Model performance results during training and MI scores key informa-
tion. The best results for the accuracy metric are highlighted in bold.

5https://nlp.stanford.edu/projects/glove
6https://fasttext.cc/docs/en/english-vectors.html
7https://flairnlp.github.io/docs/intro
8https://huggingface.co/docs/transformers/model_doc/distilbert

https://nlp.stanford.edu/projects/glove
https://fasttext.cc/docs/en/english-vectors.html
https://flairnlp.github.io/docs/intro
https://huggingface.co/docs/transformers/model_doc/distilbert


Pre-trained sentence
embedding representation

IMDb SST-2 CoLA Sentiment140
MI Scores Percentiles

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th
GloVe (300d) 0.005 0.008 0.015 0.329 0.036 0.040 0.000 0.000 0.003 0.009 0.010 0.013
fastText (300d) 0.004 0.007 0.012 0.030 0.033 0.037 0.000 0.000 0.003 0.008 0.009 0.013
Fine-tuned GloVe (300d) 0.207 0.323 0.434 0.049 0.074 0.128 0.003 0.012 0.022 0.010 0.019 0.036
Fine-tuned fastText (300d) 0.282 0.462 0.552 0.062 0.098 0.171 0.011 0.025 0.051 0.016 0.036 0.069
DistilBERT (768d) 0.005 0.009 0.018 0.036 0.037 0.044 0.000 0.001 0.005 0.004 0.006 0.010

Table 3. Descriptive statistics with the percentiles of the MI scores distribution
for the sentence embeddings of each training set.

Fine-tuning process. The static sentence embeddings, such as those from GloVe and
fastText, were fine-tuned during training. The results include the frozen and fine-tuned
versions. Although this deviates from the standard approach of maintaining encoder ar-
chitecture agnosticism in probing tasks, it allows an understanding of the extent of the
dependency introduced by fine-tuning these static vectors. On the other hand, the fine-
tuning of DistilBERT was not performed to enable a more focused investigation of its
original internal layers and their contributions to the task.

High MI score values for fine-tuned representations. Indeed, as reported in Tables 2
and 3, fastText’s updated embeddings showed the highest dependency across all datasets,
closely followed by fine-tuned GloVe embeddings. On the other hand, the non-updated
sentence embeddings generally had MI scores much closer to 0. Although DistilBERT
has many dimensions with score values close to 0, it exhibits a more comprehensive range
of scores among the non-tuned representations.

Good performance of probing models during training. Another observation is that
most models converged well during training, obtaining accuracies close to or greater than
0.90, except for GloVe and DistilBERT on the Sentiment140 training data. The RQ2
will verify if the models are ideal and are on the borderline between underfitting and
overfitting.

RQ1 answer. As a response to RQ1, the MI measure does not readily indicates which
sentence representations are sufficient to solve the different Sentiment Analysis tasks.
Despite the MI measure lacking evidence, these results are still valuable as part of the
research, which includes attempts beyond initial expectations.

Updating sentence embeddings during training logically improves the correlation
between input embeddings and the task objective. Also, note that the MI values are low
for CoLA and Sentiment140. This will be discussed further in the next section.

5.2. RQ2 Results

The objective of the RQ2 is to observe the semantic transferability of embeddings with
the MI measure and an extrinsic evaluation. The analysis conducted using the MI measure
on the training set was similarly applied to the test set. Minor changes were expected in
the distribution of MI scores, as the main characteristics of the data were retained for
both sets. Tables 4 and 5 present descriptive statistics of the percentile distribution of MI
scores, including actual and predicted classes. Further examination reveals the following
detailed observations:

Conflicting MI score values for CoLA. As expected, the distributions are equivalent to



Pre-trained sentence
embedding representation

IMDb SST-2 CoLA Sentiment140
MI Scores Percentiles

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th
GloVe (300d) 0.003 0.007 0.014 0.014 0.017 0.022 0.000 0.001 0.006 0.007 0.010 0.011
fastText (300d) 0.002 0.006 0.011 0.015 0.018 0.021 0.000 0.001 0.006 0.007 0.010 0.013
Fine-tuned GloVe (300d) 0.168 0.264 0.336 0.029 0.053 0.102 0.000 0.002 0.008 0.011 0.018 0.032
Fine-tuned fastText (300d) 0.225 0.349 0.403 0.038 0.069 0.132 0.000 0.002 0.007 0.016 0.032 0.061
DistilBERT (768d) 0.003 0.008 0.017 0.016 0.019 0.026 0.000 0.002 0.007 0.003 0.005 0.009

Table 4. Descriptive statistics with the percentiles of the MI scores distribution
for the sentence embeddings of each test set with the actual classes.

Pre-trained sentence
embedding representation

IMDb SST-2 CoLA Sentiment140
MI Scores Percentiles

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th
GloVe (300d) 0.003 0.008 0.015 0.016 0.019 0.023 0.003 0.008 0.014 0.012 0.014 0.017
fastText (300d) 0.003 0.008 0.014 0.015 0.018 0.023 0.005 0.011 0.017 0.012 0.015 0.022
Fine-tuned GloVe (300d) 0.184 0.283 0.384 0.031 0.056 0.106 0.006 0.014 0.022 0.015 0.025 0.039
Fine-tuned fastText (300d) 0.244 0.416 0.510 0.041 0.075 0.143 0.010 0.021 0.032 0.021 0.040 0.071
DistilBERT (768d) 0.003 0.009 0.020 0.016 0.020 0.027 0.000 0.003 0.009 0.004 0.007 0.014

Table 5. Descriptive statistics with the percentiles of the MI scores distribution
for the sentence embeddings of each test set with the predicted classes.

those for RQ1. However, the CoLA dataset has the most incompatible distributions, with
score values lower than those obtained for the training set. Note that for the predicted
classes, CoLA’s MI scores are much more similar to those for the training set, indicating
that the model can accurately maintain the variance and patterns learned during training.

MI score values indicating overfitting for CoLA and Sentiment140. Also, for the
CoLA dataset, it is possible to deduce, based on the MI scores, that the model may not
have performed well for the test set, which indicates the existence of overfitting. Overfit-
ting can also be noticed for Sentiment140 by some subtle changes when comparing the
distributions of the scores of the predicted classes with the actual ones. The existence or
not of overfitting in the models will be further analyzed. The fact that the MI scores could
reveal this unexpected model behavior is intriguing.

Extrinsic evaluation. Table 6 reports the accuracies obtained between the ground truth
and what was predicted by the probing models, and some info about the MI scores. Table
7 has more extrinsic evaluation results for other metrics.

Pre-trained sentence
embedding representation

IMDb SST-2 CoLA Sentiment140

Test Acc MI Scores Test Acc MI Scores Test Acc MI Scores Test Acc MI Scores
Max Mean Max Mean Max Mean Max Mean

GloVe (300d) 0.830 0.050 0.010 0.879 0.049 0.019 0.625 0.024 0.004 0.500 0.267 0.010
fastText (300d) 0.857 0.072 0.009 0.887 0.051 0.019 0.609 0.021 0.004 0.500 0.042 0.010
Fine-tuned GloVe (300d) 0.879 0.406 0.241 0.910 0.242 0.072 0.577 0.023 0.004 0.497 0.139 0.025
Fine-tuned fastText (300d) 0.880 0.430 0.288 0.912 0.253 0.088 0.615 0.024 0.004 0.499 0.190 0.044
DistilBERT (768d) 0.866 0.097 0.013 0.867 0.094 0.022 0.677 0.027 0.004 0.501 0.044 0.007

Table 6. Model performance results for the test set and MI scores key information.
The best results for the accuracy evaluating metric are highlighted in bold.

Overfitting for CoLA and Sentiment140. The models with the different sentence em-
beddings have high and very close accuracies for the IMDb and SST-2 datasets. It is
possible to state through these results that the CoLA and Sentiment140 models suffered
overfitting.



Pre-trained sentence
embedding representation

IMDb SST-2 CoLA Sentiment140
P R F1 P R F1 P R F1 P R F1

GloVe (300d) 0.832 0.831 0.831 0.881 0.879 0.879 0.627 0.626 0.627 0.500 0.500 0.500
fastText (300d) 0.857 0.857 0.857 0.887 0.887 0.886 0.618 0.609 0.613 0.500 0.500 0.499
Fine-tuned GloVe (300d) 0.880 0.880 0.880 0.911 0.910 0.910 0.623 0.577 0.594 0.497 0.497 0.496
Fine-tuned fastText (300d) 0.881 0.880 0.880 0.912 0.912 0.912 0.613 0.615 0.614 0.499 0.499 0.495
DistilBERT (768d) 0.868 0.866 0.866 0.867 0.867 0.866 0.703 0.677 0.687 0.500 0.501 0.499

Table 7. Extrinsic evaluation of sentence embeddings for different datasets. The
best results for the weighted F1-score (F1) metric are highlighted in bold.

Extrinsic evaluation analysis. Looking only at the accuracy metric, it is undefined which
sentence embedding is the best for a specific dataset, which usually happens for this type
of embedding evaluation. As reported by accuracy, fastText and GloVe achieved the best
F1-score results among the sentence embeddings for the IMDb and GloVe corpora. Dis-
tilBERT was the best only for the CoLA dataset. Finally, it is imprecise, which is better
for Sentiment140, neither by accuracy nor by the F1-score.

RQ2 answer. Based on the results, the probing model designed for solving various Senti-
ment Analysis tasks impacts the input representations. As anticipated, the extrinsic eval-
uation results for different sentence embeddings exhibit high similarity, making it chal-
lenging to determine the best embedding model for particular datasets, such as IMDb and
Sentiment140. It is worth mentioning that the low distribution of MI scores of all sub-
sets for the CoLA and Sentiment140 corpora, even with fine-tuned sentence embeddings,
suggests that the models would perform poorly for these datasets since the beginning.

Closing to the RQ2 statements. Only the second statement can be attested to the two
expected scenarios: the model performs well even when the MI measure indicates low
dependency values. This suggests that the subsequent layers in the model may impact
semantic transferability. It is worth noting that the dimensions with high dependency MI
score values are primarily associated with embedding models that underwent fine-tuning
during training. However, fine-tuning can not be considered the optimal solution.

6. Conclusion

This study aimed to answer two research questions related to the suitability and transfer-
ability of input embeddings for NLP tasks. The first one, RQ1, focused on determining
the dependence between different input embeddings on the target of the Sentiment Anal-
ysis task. The RQ2 examined the transferability of the embeddings and their impact on
the model’s performance. Overall, the findings emphasize the importance of model archi-
tecture and highlight the complexities involved in evaluating the suitability and transfer-
ability of input embeddings for NLP tasks.

Research future directions. The results obtained for the research questions could have
been better; therefore, future work should focus on improving results by expanding the
experimental setup to include more NLP tasks for evaluation, researching feature selection
measures for dense data, developing customized probing models, and comparing static
vs. contextual embeddings. Additionally, consider including non-English languages for
better generalizability. The main objective of these future works is to create a framework
that addresses the need for adequate and high-level evaluation of different NLP systems,
providing accurate and initial indications for their construction.
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