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Abstract. We present TableRAG, a novel pipeline designed to integrate tabular
data into traditional Retrieval-Augmented Generation (RAG) systems. Our ap-
proach is composed of three main parts: (i) generating textual representations
of tables; (ii) indexing table representations in vector databases for retrieval,
and (iii) employing large language models to generate SQL or Python code for
data manipulation over a given table. We assessed the effectiveness of TableRAG
by comparing retrieval and re-ranking accuracies over the OTT-QA benchmark
and by utilizing both open and closed-source LLMs to generate code for answer-
ing questions from the WikiTableQuestions benchmark. Our best results show
86.7% HITS@5 for retrieval and 74% accuracy for Q&A, demonstrating the
feasibility of integrating tabular data into RAG systems with high accuracy.

1. Introduction
In recent years, the application of generative models in Question Answering (Q&A) sys-
tems has gained substantial traction, particularly in enterprise settings where accurate and
efficient information retrieval is crucial for decision-making, customer support, and oper-
ational efficiency. Large Language Models (LLMs) have shown remarkable capabilities
in generating natural language responses based on vast amounts of textual data, however,
these models are not without their challenges—one of the most significant being the issue
of hallucination, where the model generates plausible-sounding but incorrect or nonsensi-
cal answers [Kandpal et al. 2023, Gao et al. 2023, Lin et al. 2023, Tonmoy et al. 2024].
This problem becomes particularly pronounced when the required information is not
purely textual but embedded in semi-structured data, such as tables, which can be stored
in large and diversified databases, where the ability to accurately retrieve and interpret
them is essential.

To mitigate hallucination and to retrieve relevant information to a particular do-
main, a widely adopted paradigm known as Retrieval-Augmented Generation (RAG)
is employed. This technique is based on the premise that LLMs are more likely to
provide accurate responses when supplied with relevant context at runtime, i.e., within
the prompt that defines the task instructions, in a strategy called in-context learning
[Dong et al. 2024]. Traditional Information Retrieval (IR) methods are utilized to fetch
pertinent documents, which are then fed into the language model for text generation.

In this work, we propose a RAG pipeline that integrates tabular data within textual
databases for information retrieval, using retrieved tables to generate reliable responses
(Figure 1). Building upon traditional RAG pipelines, we implement a table retrieval mod-
ule based on the same vector similarity strategy commonly used for texts, and another



Figure 1. Overview of the TableRAG Pipeline

module for Q&A based on generating code to manipulate tables. We evaluate the results
using two well-known Q&A benchmarks with tabular data, Open Table-and-Text Ques-
tion Answering (OTT-QA) [Chen et al. 2020a] for the retrieval part of our pipeline, and
WikiTableQuestions [Pasupat and Liang 2015] for the Q&A part.

Our results show that it is possible to incorporate tabular data into Retrieval-
Augmented Generation systems in an efficient way by representing tables as texts, sim-
ilarly to how traditional retrieval information systems work. Moreover, we show that
code generation yields good results for obtaining answers from retrieved tables, and we
highlight the considerable promise for improving the performance of open-source LLMs,
which could lead to the development of more robust, adaptable, and affordable RAG sys-
tems, capable of managing multimodal data sources.

2. Related Work
Unlike Q&A over texts, which involves reading document excerpts to answer questions
using extractive or generative models, Q&A over tables involves additional factors. To
answer complex questions using tables, one must interpret the arrangement of rows and
columns, perform filtering, joins, mathematical operations, and various other forms of
table manipulation.

There are at least three tasks that have been tested in the literature for Q&A with
tabular data. First, parsing semantically compositional questions in order to determine the
manipulation steps that are needed to obtain a given information from a table. The Wik-
iTableQuestions benchmark [Pasupat and Liang 2015] addresses this task. It comprises
semi-structured tables, which may contain textual data, and each question may require
operations such as table lookup, aggregation (counting records, summing numerical val-
ues, etc.), superlatives (finding the maximum or minimum value), arithmetic operations,
among others, which need to be identified in the question in order to determine the ma-
nipulations steps that are needed to answer it correctly.

Second, manipulating relational database tables using their relationships with
other tables to join information from different sources. The Spider benchmark
[Yu et al. 2018] introduced this task. Its specificity involves the use of foreign keys, join-
ing multiple tables, and constructing nested SQL queries.



Third, answering multi-hop open-domain questions that need reasoning over both
textual passages and tabular information. The Open Table-and-Text Question Answering
(OTT-QA) benchmark [Chen et al. 2020a] introduced this task. Its peculiarity is twofold:
the retriever model must find the table that best answers the question from a large collec-
tion of tables, and the reader model must simultaneously examine data from two different
modalities, texts and tables.

For the Q&A part, our approach seeks to address the challenges proposed by the
WikiTableQuestions benchmark, using LLMs to generate code that correctly manipulates
tables in order to find answers to semantically compositional questions. In 2015, when
the WikiTableQuestions benchmark was proposed, the approach used to solve the task
involved converting tables into knowledge graphs and parsing the questions into logical
form, followed by selecting the most probable graph candidates to answer the question
[Pasupat and Liang 2015]. The results achieved were 37.1% accuracy, considering all
candidate answers, and 76.6%, considering that at least one of the candidate answers was
correct.

More recent works address the WikiTableQuestions task using large language
models. [Yin et al. 2020] achieved a result of 52.3% accuracy by pre-training a new
model, called TaBERT, with data from 26 million tables and their respective natural lan-
guage contexts [Liang et al. 2018]. The work by [Liu et al. 2024] used GPT-3.5 to trans-
pose tables to normalize them and then used the same model to perform two types of in-
ference: with direct prompting (DP), asking the model to reason about the table in textual
form, and as a Python agent, asking the model to interact with a Python shell in up to five
interactions. They achieve state-of-the-art accuracy of 73.6% on WikiTableQuestions.

3. TableRAG Pipeline Components
The instruction in Figure 2 is an example of the prompt directed to the language models
for generating Python code. In this prompt, we can observe, besides the request for code
generation, how the tables are represented textually and in consideration of their metadata.
These procedures will be explained step by step in the following subsections.

Obtaining Textual Representation of Tables This part of our approach is inspired by
the work of [Abraham et al. 2022]. Given that it is not always feasible to load entire
tables into memory, the authors employ several strategies to represent the table through
its schema, ensuring that the SQL query to be created is based on this indirect form of
representation. The idea works particularly well in the context of Retrieval-Augmented
Generation, where the initial step is to retrieve specific documents from a diverse doc-
ument repository. In our case, we aim to retrieve the tables that best answer the user’s
query, using the same strategy for text indexing and retrieval.

The metadata generated for a table consists of a textual description, generated by
an LLM, along with additional information such as column names, unique values, and
data types (numeric, textual, dates) for each table column. Other pieces of information,
such as title of the table, paragraphs that explain it, acronyms meanings and so on can
be inserted here to enrich the textual description of each table. When the table preview is
passed to the language model, it is placed as the final element of the prompt, so to truncate
it if exceeding the input token limit that the model accepts.



Figure 2. Prompt for Python Code Generation

Column Renaming: A common error we observed in the construction of Python code
and SQL queries by LLMs is the use of non-existent columns, a particular case of hallu-
cination. To address this issue, we implement a strategy to rename columns to temporary
placeholders, such as Col1, Col2, Col3, . . . ColN. This forces language models to utilize
columns based on the description of the data type they contain, rather than their names.

Table Indexing: The table is then indexed in a vector database through its textual repre-
sentation. The idea is that the summary generated by the LLM should be sufficient for the
table to be retrieved, leveraging the same strategy used in text indexing, by transforming
table descriptions into dense contextual vectors.

Retrieval, Re-ranking and Filtering: Table retrieval is performed via similarity mea-
sures, such as cosine similarity, comparing the vector representation of the user’s query
with the vector representations of table descriptions. After retrieval, we employ a re-
ranking step by asking an LLM to reorder the retrieved tables by relevance, and a filtering
step, by asking it to filter the results, eliminating retrieved tables that despite their simi-
larity to the user’s query cannot directly answer the question.

Code Generation: Next, we prompt an LLM to generate code to obtain the answer
from the table, as exemplified in Figure 2. The code generation prompt was meticulously



adjusted to avoid common pitfalls these models tend to encounter, such as attempting
to perform operations on dataframe columns with missing values without first handling
these cells. These adjustments were based on the outputs of GPT-4, for both SQL and
Python code generation, and improved our accuracy in 16% for the same model, being
the previously mentioned column renaming procedure one of the most beneficial changes
we have made.

Response Generation: The generated code is then executed and the output is passed to
another LLM, which is responsible for providing a natural language response to the user’s
question, considering the question, the data, and the output of the executed code.

4. Methodology
To evaluate the quality of our pipeline, we utilized two traditional benchmarks,
called OTT-QA [Chen et al. 2020a], for the retrieval part, and WikiTableQuestions
[Pasupat and Liang 2015], for the Q&A part. The tables from both datasets were sourced
from Wikipedia.

While the WikiTableQuestions dataset is ideal for our purpose of testing code
generation for table manipulation, it is not ideal for evaluating the efficiency of our table
retrieval module. This is because the questions are constructed in a closed-domain fash-
ion, meaning they can only be answered if it is already known which table they refer to.1

Therefore, when using the benchmark to evaluate our Q&A capabilities, we provide the
language model with the correct table. To assess the quality of our retrieval and re-ranking
modules, we will be testing them against the OTT-QA benchmark.

The OTT-QA benchmark is composed of questions based on those from another
dataset, HybridQA [Chen et al. 2020b], but they were adapted to become “decontextual-
ized,” making them open-domain and therefore suitable for testing retrieval systems. It
contains 400K+ tables to retrieve from and 45K human-annotated questions. We use all
the 2,214 questions in the development partition of the benchmark to test retrieval and
re-ranking. We use HITS@K to measure performance, where K ranges from 1 to 5, and
means whether the correct table for each question is in the top-K retrieved or re-ranked ta-
bles. Re-ranking is done after the retrieval step, and we compare results with and without
re-ranking.

The WikiTableQuestions benchmark contains 2,108 semi-structured tables and
22,033 complex question-answer pairs. The questions and answers were constructed by
humans through crowdsourcing, with instructions to create questions that involve various
types of operations required to answer them, as shown in the distribution in Figure 3.

Due to operational constraints involving LLMs costs, all tests in the WikiTable-
Questions were performed on a sample of 200 questions from the test dataset. As noted,
several adjustments were made to the LLM instructions and to the table indexing method
to facilitate the inference of correct answers and the inference of code that did not gener-
ate exceptions. All the adjustments were based solely on the results observed for the train

1For example, in the question “what is the first city sorted alphabetically?”, there is no indication of
which table should be found–cities of what country? in what state? in what period of time?–, and it can
only be correctly answered if the table to which the question refers has already been identified.



Figure 3. Operations required to answer a sample of 200 questions from Wik-
iTableQuestions. Source: [Pasupat and Liang 2015].

dataset questions, thereby preventing any information leakage from test to train.

The answers in WikiTableQuestions are provided as lists of size greater than or
equal to 1, with sizes greater than 1 when more than one term is expected in the predicted
answer for it to be considered correct. Thus, we used accuracy to measure the perfor-
mance of our Q&A module, normalizing the strings in the dataset and the strings inferred
by the models, to check if all the expected terms are present in the predicted answer.2

In addition to accuracy, we also considered the number of generated codes that
produced any runtime exceptions and the time taken to answer each question. In other
words, we are also testing the ability of these models to generate functional and correct
code in the shortest possible time.

The scenarios in which we tested our pipeline are as follows:

• For generating table descriptions, re-ranking, and the final natural language re-
sponse, we consistently used the GPT 3.5 Turbo model from OpenAI, due to its
good performance and low cost.

• For generating dense vector representations of each table descriptions, we use em-
beddings generated by a model based on XLM-RoBERTa [Conneau et al. 2019]
fine-tuned for information retrieval [Wang et al. 2024], which are then indexed in
the Elasticsearch platform3 and are retrieved using the cosine similarity strategy.

• For generating table manipulation code, we tested:

– Closed-source models, namely GPT 3.5 Turbo and GPT 4
[OpenAI et al. 2024], accessed from OpenAI API;

– Open-source models available from the GPT4All hub [Anand et al. 2023],
namely LLaMa 3 8B Instruct [Dubey et al. 2024], Nous Hermes 2 Mis-
tral DPO 7B [Jiang et al. 2023], Falcon 7B [Almazrouei et al. 2023], and
GPT4All Snoozy 13B [Anand et al. 2023]. We used a single V100 32 GB
GPU to infer responses with these models.

• All code generation models were tested by generating SQL queries (executed us-
ing the Python library sqldf) and code for dataframe manipulation (executed
using the Python library pandas).

2We use accuracy as defined in [Mallen et al. 2022], since other metrics could be harder to be applied
due to the nature of generative models answers, which tend to have a lot more words than the needed terms.

3https://www.elastic.co/

https://www.elastic.co/


5. Results

Figure 4 shows the performance of the retrieval and the re-ranking modules in TableRAG
pipeline to find the most suitable tables to answer questions from OTT-QA. Re-ranking is
applied on top of the retrieved tables, and increases the results of retrieval in 3.7 points in
HITS@1, when the table ranked first is the correct one. Re-ranking is still better than just
retrieval when looking at HITS@2, but after that, just retrieval becomes better than when
re-ranking is applied. When looking at HITS@5, the results from retrieval are 1.4 point
better than those with re-ranking. This decrease happens mainly because of lower-ranked
tables that the LLM judged that needed to be filtered out of the list during re-ranking,
when they were in fact the correct ones.

Figure 4. Comparison of Retrieval and Re-ranking Results over OTT-QA

Figure 5 shows the performance of the different models tested for generating
Python code or SQL queries to answer the WikiTableQuestions. The yellow bars rep-
resent the accuracy value, while the orange ones represent the number of codes that pro-
duced exception at runtime, both in % of questions. The green line represents the average
time in seconds taken to answer each question.

The best results come from OpenAI’s closed-source models, both GPT-4 and GPT-
3.5. The disparity between the best closed-source model and the best open-source model
can be easily explained, among other factors, by the size of the models: while Nous
Hermes 2 has 7 billion parameters in its neural architecture and achieved 40% accuracy,
GPT-4 is speculated to have over 1 trillion4, reaching 74%.

The difference in results between generating SQL and Python code for closed-
source models is relatively small (74% in Python versus 72.5% in SQL for GPT-4). How-
ever, the difference in time is striking: while GPT-4 took an average of 11.5 seconds to
generate Python code per question, generating SQL code was much faster, averaging 2.8
seconds. This is due to the fact that more preprocessing is required to construct functional
Python code, and the larger the code, the longer the inference time. For open-source
models, in general, better results are obtained when generating SQL code. Nous Hermes
2 achieved 40% accuracy building SQL queries and only 20% building Python codes,
while the better open-source Python code generator, LLaMA, obtained only 26%.

4Sources suggest that GPT-4 could be a mixture of several models that, together, total 1.76 trillion
parameters (https://en.wikipedia.org/wiki/GPT-4).

https://en.wikipedia.org/wiki/GPT-4


Figure 5. Comparison of LLMs Results in Code Generation for Q&A over Wik-
iTableQuestions

6. Conclusions
We presented TableRAG, a pipeline for integrating tabular data into traditional Retrieval-
Augmented Generation systems. The pipeline consists of obtaining textual representa-
tions of tables, indexing and retrieving them as dense contextual vectors, generating SQL
or Python code for table manipulation, and generating a candidate answer in natural lan-
guage. With the described pipeline, we achieved results of up to 86.7% HITS@5 in
retrieval and 74% accuracy in Q&A using GPT-4.

Some limitations of this work should be considered. Due to computational cost
and processing time, the results for Q&A were obtained using a sample of 200 ques-
tions from the WikiTableQuestions test set, making it difficult to compare our results with
those of other works using the same benchmark. Additionally, the instructions provided
to the language models for code generation were adjusted based on the outputs of the
GPT-4 model, as it was the best-performing model, but they could also have been ad-
justed considering the most frequent errors of each of the other models individually. The
open-source models did not undergo any fine-tuning process, which could significantly
improve their results, and we did not test open-source models larger than 13B parameters.
Finally, we did not perform any preprocessing on the tables to make them more easily
interpretable, such as the table transposition procedure performed by [Liu et al. 2024],
which yielded the state-of-the-art with 73.6% accuracy using GPT-3.5.
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