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Abstract. Anomaly detection, driven by advancements in machine learning and
deep learning, has gained significant importance across various fields. How-
ever, its application to unstructured textual data, particularly in Portuguese,
remains underexplored. In textual analysis, these techniques are crucial for de-
tecting deviations within text collections. This paper investigates state-of-the-art
methods for anomaly detection in Portuguese text corpora and introduces a new,
flexible loss function designed to enhance detection across different contamina-
tion levels. By evaluating these methods on benchmark datasets, specifically
in the contexts of hate speech detection and sentiment analysis, we address ex-
isting challenges and contribute to the development of more effective anomaly
detection techniques for Portuguese text data.

1. Introduction

Anomaly detection refers to the identification of patterns in data that deviate from ex-
pected norms [Chandola et al. 2009]. Anomalies, often termed outliers or exceptions,
are distinct from the majority of observations that define the “normal” pattern. While
anomaly detection techniques have been extensively applied to structured data, such as
continuous and categorical variables [Boutalbi et al. 2023], less attention has been given
to unstructured data like text — the focus of this work.

Anomaly detection began with statistical methods in the late 19th century
[Edgeworth 1887] and has since expanded, with deep learning broadening its scope to
unstructured domains like images and text [Chandola et al. 2009, Pimentel et al. 2014].
However, its application to textual anomaly detection remains limited [Pang et al. 2019].
Detecting anomalies in text data is particularly challenging due to the variety of linguistic
levels involved, such as spelling, syntax, and semantics [Xu et al. 2023b]. Leveraging
deep learning’s ability to model complex patterns has led to significant advancements in
the field.

Traditionally treated as an unsupervised task due to the absence of ground
truth labels, anomaly detection has employed techniques like autoencoders and
GANs [Pang et al. 2019]. Popular approaches in this domain include DeepSVDD
[Ruff et al. 2018] and Deep Isolation Forest [Xu et al. 2023a], both focusing on modeling
normal data and identifying deviations as anomalies. However, recent semi-supervised
neural approaches, such as DevNet [Pang et al. 2019] and DeepSAD [Ruff et al. 2020],
have shown improved detection accuracy by integrating limited labeled anomalies into the
training process [Xu et al. 2023b], bridging the gap between unsupervised and supervised



learning. Despite recent advancements, there remains a significant gap in comprehensive
research focused on anomaly detection in Portuguese text corpora.

In this paper, we extend neural network-based anomaly detection techniques to
handle these complexities in Portuguese text data. Furthermore, we propose a change
in the loss function in order to establish a compromise between the samples that corre-
spond to anomalies in relation to the others. Experiments show that this approach is quite
promising. To effectively address the unique challenges of representing textual data, we
employ two pre-trained BERT-based models, checking the strengths and weaknesses of
each representation in the different tasks.

2. Methodology

2.1. Problem Definition

Given a dataset X = {x1, x2, . . . , xN+K}, where U = {x1, x2, . . . , xN} is unlabeled data
and K = {xN+1, . . . , xN+K} represents labeled anomalies (K ≪ N ), the goal is to train
a model to identify these rare anomalies. This task is challenging due to the imbalance
between the large unlabeled set and the small labeled anomaly set. The process involves
two key steps:

1. Embedding Transformation: Data X is transformed into embeddings Z =
{z1, z2, . . . , zN+K}, with each zi being a vector in Rd.

2. Scoring Function: A neural network learns a scoring function ϕ : Z → R to
ensure that ϕ(zi) > ϕ(zj) when zi is an anomaly and zj is normal, minimizing the
use of labeled examples.

We adopted the DevNet model due to its demonstrated good performance obtained
in studies considering textual domain [Xu et al. 2023b] along with its ability to effec-
tively manage high-dimensional spaces, such as embeddings. Additionally, the model’s
interpretable loss function, based on a straightforward Z-score strategy, provides valuable
insights that can be later used to assess text identified as anomalies.

2.2. DevNet for Anomalous Text

The DevNet algorithm [Pang et al. 2019] introduces a semi-supervised approach that
learns an interpretable outlier scoring function, ϕ(z; Θ), using a Z-score deviation loss.
While the original formulation is based on raw data points x, we denote the embeddings
as z to reflect the transformed data representations. This approach assumes a prior normal
distribution over anomaly scores, modeled with l random objects ri ∈ R sampled from a
standard normal distribution N (µR, σR):

dev(z) =
ϕ(z; Θ)− µR

σR

, (1)

where µR and σR are the mean and standard deviation of anomaly scores within the
reference distribution. This deviation is then incorporated into a contrastive loss function
to enhance the distinction between anomalous and normal samples, where y indicates
anomaly status, and a ensures a minimum separation between classes [Pang et al. 2019].

L(ϕ(z; Θ), µR, σR) = (1− y)|dev(z)|+ y ·max(0, a− dev(z)), (2)



2.3. Proposal

To provide flexibility, the parameter η ∈ [0, 1] is introduced in the DevNet loss function
given in Eq. 2, controlling the balance between regular and anomalous samples,

L(ϕ(x; Θ), µR, σR) = (1− η)(1− y)|dev(x)|+ η · y ·max(0, a− dev(x)), (3)

The η parameter adjusts the model’s emphasis on anomalies, allowing adaptation
to varying levels of contamination (i.e., percentage of labeled anomalies) and data avail-
ability. We investigate different proportions of labeled anomalies to assess the robustness
of the solution in various scenarios, aiming to determine the minimum amount of la-
beled data needed for good performance. Additionally, we employ two distinct text repre-
sentation strategies: the monolingual BERTimbau model [Souza et al. 2020], specifically
designed for processing Portuguese text, and the multilingual Sentence-BERT (SBERT)
[Reimers and Gurevych 2019], which generates sentence-level embeddings across mul-
tiple languages, including Portuguese. Our customized DevNet implementation, named
η-DevNet, was evaluated against its original version using both representation strategies.

3. Experiments and Results

3.1. Experiments

To evaluate the performance of different representation methods and loss functions, we
first tested η values ranging from 0.5 to 1 using the BERTimbau embedding strategy,
where η = 0.5 corresponds to the original DevNet formulation. The other parameters
were adopted from the DevNet reference: a = 5, l = 5000, µR = 0, and σR = 1.
Contamination levels were adjusted by introducing between 5 and 1000 anomalies across
the experiments, with anomalies randomly selected. After identifying the optimal η value,
we applied it in subsequent experiments to compare both embedding strategies across
different datasets. The mean ROC-AUC values were calculated over 10 experimental
runs for each scenario.

3.2. Dataset

We evaluate our approach using two Brazilian datasets. The first, Told-Br
[Leite et al. 2020], contains 21,000 labeled instances of tweets tagged with hate speech,
categorized into themes such as homophobia, racism, and misogyny, with hate speech
serving as the anomaly class. The second dataset, UTLC-Movies [Sousa et al. 2019],
comprises over one million movie reviews. From this dataset, we sampled 40,000 re-
views for sentiment analysis, where negative sentiment is treated as the anomaly class.

3.3. Results

Figure 1, shows performance and stability improvements as η is adjusted, with η = 0.7
yielding optimal performance. This value was subsequently used for further analysis. The
results shown in Table 1 outline these results for both tasks, demonstrating that in most
cases, the adapted loss function led to performance improvements. Reaching a reasonable
level of accuracy requires a minimum threshold of labeled examples, which varies with
task complexity. In our experiments, sentiment analysis needed only 0.87% of labeled
anomalies to achieve a ROC-AUC of 0.85, while hate speech detection required 2.59% to



Figure 1. η Comparison across different η values with varying amounts of labeled anomalies using
BERTimbau embedding strategy.

reach a ROC-AUC of 0.73. This discrepancy likely arises from the greater complexity of
hate speech detection, which involves subtle linguistic nuances and diverse expressions.
Additionally, pre-trained models may not fully capture slang and politically specific con-
texts, which are common in hate speech but may be underrepresented during training.

Table 1. Comparison of ROC-AUC values across different scenarios and contamination levels for
UTLC-Movies and Told-BR datasets when η = 0.7, where % refers to the contamination level.

UTLC-Movies Told-BR

Nb. Outliers % Bη BD Mη MD % Bη BD Mη MD

5 0.02 0.58 0.57 0.52 0.52 0.05 0.46 0.48 0.50 0.50
10 0.04 0.62 0.58 0.54 0.57 0.11 0.48 0.50 0.53 0.53
25 0.09 0.66 0.65 0.60 0.68 0.27 0.57 0.57 0.54 0.60
50 0.18 0.70 0.69 0.64 0.66 0.53 0.58 0.63 0.56 0.60
100 0.35 0.78 0.71 0.71 0.70 1.05 0.66 0.63 0.61 0.60
250 0.87 0.82 0.76 0.75 0.69 2.59 0.73 0.68 0.56 0.52
500 1.73 0.83 0.83 0.81 0.79 5.05 0.75 0.73 0.50 0.51
1000 3.41 0.85 0.84 0.81 0.75 9.62 0.76 0.76 0.50 0.52

Acronyms: BERTimbau η-loss (Bη), BERTimbau Devnet loss (BD), multilingual SBERT η-loss (Mη), multilingual SBERT Devnet loss (MD).

Our results show that the BERTimbau representation [Souza et al. 2020] consis-
tently outperformed the multilingual model across tasks. This advantage can be traced to
BERTimbau’s specialization in Portuguese, allowing it to capture more intricate linguistic
nuances, such as idiomatic expressions and regional variations.

4. Conclusion and Future Work

This study shows that BERTimbau, tailored for Portuguese, consistently outperforms mul-
tilingual models in anomaly detection, with the customized loss function providing no-
table improvements. These results highlight the potential of semi-supervised methods for
tasks like harmful content detection and sentiment analysis in Portuguese contexts with
limited labeled data.

Future work may expand this approach to related tasks such as topic modeling,
fake news detection, and fraud detection. Although some labeling effort is still required
for good performance, the small amount of labeled data needed makes this approach
feasible in resource-constrained scenarios. Furthermore, the promising advances in Large
Language Models (LLMs) could not only serve as valuable tools for benchmarking but
also automate anomaly tagging, reducing manual effort and enhancing adaptability and
scalability across various real-world applications.
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