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Abstract. Automatically extracting skills and knowledge from job descriptions
supports recruitment, reskilling, and labor market analysis, yet traditional NER
models struggle with ambiguous and syntactically complex spans. This work
proposes CROSSAGE, a lightweight hybrid architecture that combines con-
textual embeddings from Transformers with structural features from depen-
dency graphs via cross-attention. Results on the SKILLSPAN dataset show
that CROSSAGE with JobSpanBERT achieves the highest F1 for SKILL entities
(49.8), while CROSSAGE (BERT) matched the best baseline for KNOWLEDGE
(64.1) and improves recall (68.8). Gains are especially notable in complex
domains like house, where CROSSAGE reaches 51.5 F1 for SKILL. These
findings highlight CROSSAGE’s potential as an effective alternative to heavier
hybrid models.

Resumo. A extração automática de habilidades e conhecimentos a partir de
descrições de vagas apoia o recrutamento, a requalificação e a análise do
mercado de trabalho, mas modelos tradicionais de NER enfrentam dificul-
dades com spans ambı́guos e sintaticamente complexos. Este trabalho propõe
o CROSSAGE, uma arquitetura hı́brida leve que combina embeddings contex-
tuais de Transformers com caracterı́sticas estruturais de grafos de dependência
por meio de atenção cruzada. Os resultados no dataset SKILLSPAN mostram
que o CROSSAGE (JobSpanBERT) atinge o maior F1 para entidades do tipo
SKILL (49,8), enquanto o CROSSAGE (BERT) iguala a melhor baseline para
KNOWLEDGE (64,1) e melhora o recall (68,8). Os ganhos são especialmente
notáveis em domı́nios complexos como house, onde o CROSSAGE alcança
51,5 de F1 para SKILL. Esses achados destacam o potencial do CROSSAGE
como uma alternativa eficaz a modelos hı́bridos mais pesados.

1. Introduction
The automatic detection of skills and knowledge in job descriptions has become an es-
sential tool to enhance professional matching processes. By identifying technical and be-
havioral competencies in unstructured texts, these systems support candidate screening,
optimize talent allocation, and enable the analysis of training gaps relevant to reskilling
strategies [Senger et al. 2024]. This is especially important amid rapid changes in the
labor market caused by digitalization and evolving occupational demands.

In a broader perspective, automated skill extraction at scale allows continuous
tracking of emerging trends across sectors, informing decisions by policymakers, educa-
tional institutions, and companies [Tamburri et al. 2020]. This strategic capability helps



reduce mismatches between labor supply and demand, improving alignment between pro-
fessional profiles and organizational needs.

Practical applications include job matching, resume analysis, and education.
Models like JobSpanBERT enhance skill recognition in job recommendation sys-
tems [Zhang et al. 2022b], while taxonomies such as ESCO support reskilling by iden-
tifying gaps and suggesting learning paths [Zhang et al. 2022a]. Skill extraction also en-
ables forecasting of future labor demands.

However, skill identification is challenging due to entity sparsity in training data,
domain-specific terminology, and ambiguity of terms (e.g., Java, Agile, Security). Com-
plex expressions like advanced statistical modeling require syntactic awareness, while
job descriptions often mix technical and behavioral language in compound structures
(e.g., Docker, Kubernetes, and Jenkins), making skill extraction more demanding than
traditional NER.

Transformer-based models such as BERT [Devlin et al. 2019] are widely used
in NER but face limitations when applied to skill recognition. Skills are often com-
positional, context-dependent, and distributed across complex structures, which under-
mines the performance of sequential models [Zhang et al. 2022b]. Moreover, Trans-
formers struggle to capture long-range dependencies and syntactic relations between to-
kens [Senger et al. 2024], and even domain-adapted models like JobBERT show difficul-
ties with subtle or behavioral competencies [Decorte et al. 2021].

To overcome these issues, hybrid architectures have emerged, combining con-
textual embeddings with structural representations [Zhang 2024]. Entities that are com-
posed, overlapping, or distributed can be more effectively modeled through the integra-
tion of Transformer-based self-attention and relational reasoning. Graph neural networks
(GNNs), in particular, have shown promise in representing structural relationships de-
rived from syntax, semantics, or co-occurrence [Senger et al. 2024], improving detection
of fragmented or syntactically dependent entities.

Furthermore, models that implement cross-attention between Transformer-
based and GNN-based representations—such as GNET [Xiang et al. 2024] and BERT-
GT [Lai and Lu 2020]—have shown improved performance in complex NER tasks.
Cross-attention enables a dynamic combination of contextual and structural perspectives,
capturing dependencies that self-attention alone might overlook.

In this context, this paper presents the CROSSAGE model, a hybrid architecture
that combines contextual embeddings from Transformers with structural signals from
syntactic graphs via cross-attention to enhance skill and knowledge recognition in job
descriptions. Our contributions include: (i) the proposal of the CROSSAGE architec-
ture, which combines contextual and structural information via cross-attention; (ii) an
initial empirical evaluation on the SKILLSPAN dataset, comparing CROSSAGE variants
to strong transformer-based baselines; and (iii) a discussion of observed strengths and
limitations to guide future improvements and research on structure-aware NER in labor
market applications.



2. Background

2.1. NER for skill and knowledge recognition

Named entity recognition (NER) plays a key role in identifying fine-grained competen-
cies such as skills and knowledge within job-related texts. Unlike traditional NER do-
mains—such as news or biomedical corpora—this context requires handling nested, over-
lapping, and often ambiguous spans that reflect complex human capabilities. Addressing
these challenges depends not only on suitable model architectures, but also on access to
high-quality annotated data tailored to this domain.

The SKILLSPAN dataset [Zhang et al. 2022b] provides span-level annotations
for SKILL and KNOWLEDGE entities across three domains—BIG, HOUSE, and
TECH—totaling over 232k tokens. It supports nested and overlapping spans and was
annotated using ESCO-based guidelines, achieving Fleiss’ κ above 0.70 [Zhang 2024].
Models trained under single-task learning (STL) consistently outperformed multi-task se-
tups, reflecting the distinct syntactic and semantic patterns of each entity type.

Span-based models achieved superior performance on SKILLSPAN com-
pared to token-level baselines. JobSpanBERT reached the highest F1-score for
SKILL spans (56.64), while JobBERT led in KNOWLEDGE spans (63.88) under
STL [Zhang et al. 2022b]. JobSpanBERT showed better span precision, particularly for
longer and syntactically complex expressions, whereas JobBERT obtained higher recall
in identifying knowledge spans.

Hybrid models such as NNOSE [Zhang et al. 2024], which combines JobBERTa
with a k-nearest neighbor memory and whitening transformation, achieved the best over-
all span-level F1-score (64.24). It also improved generalization in cross-dataset eval-
uations. Complementary strategies—like ESCO-guided pretraining [Zhang et al. 2023],
weak supervision with concept similarity [Clavié and Soulié 2023], and few-shot prompt-
ing with LLMs [Nguyen et al. 2024]—offered promising alternatives for low-resource
or multilingual contexts, though none outperformed supervised span models on
SKILLSPAN.

2.2. Components in training NER models

Beyond model architecture, several training components strongly influence NER per-
formance, including attention mechanisms, loss functions, and optimization strategies.
NER models leverage self-attention to capture long-range dependencies, with Transform-
ers like BERT using multi-head attention for richer context modeling [Sun et al. 2019,
Li et al. 2018]. In hybrid setups, cross-attention enables interaction between Trans-
former and GNN representations, enhancing semantic and structural understand-
ing [Bajestani et al. 2024, Hu and Weng 2025].

Loss functions such as cross-entropy and focal loss [Li et al. 2022,
Dong et al. 2019] guide training, with the latter addressing class imbalance via
tunable parameters α and γ. To optimize performance, hyperparameter tuning with
bayesian optimization tools like Optuna [Optuna 2025, Abbas et al. 2023] is often used.
Early stopping [Wang and Yan 2018] helps prevent overfitting by halting training once
validation performance plateaus.



2.3. Graph neural networks in NLP

GNNs have become increasingly popular in NLP for modeling non-sequential structures,
where tokens are nodes and edges capture syntactic or statistical relations [Wu et al. 2021,
Nikolentzos et al. 2020]. GATs enhance this by assigning attention weights to neigh-
bors, allowing the model to focus on semantically relevant connections [Long et al. 2023,
Liu et al. 2022]. This is particularly useful in skill recognition, where certain terms in job
descriptions carry more informational weight [Zhou et al. 2020].

Hybrid models that combine GNNs with Transformers leverage both local struc-
ture and global context. Cross-attention layers enable GAT-based node embeddings
to interact with contextual embeddings from models like BERT [Gao et al. 2025], en-
riching token representations for NER tasks [Yang and Cui 2021]. In real-world ap-
plications, GNNs also outperform sequential models in irregular layouts, as shown
by [Carbonell et al. 2021] in structured information extraction from documents with vi-
sual features.

2.4. Evaluation metrics for sequence labeling

Model performance in sequence labeling is typically assessed using precision, recall, and
F1-score [Zhang et al. 2021, Shaaban et al. 2022]. These metrics can be applied at the
token or span level, with span-level evaluation being more stringent due to boundary
sensitivity. The F1-score provides a balanced measure, especially important in domains
with class imbalance or where both over- and under-prediction are critical.

3. Methodology

3.1. Dataset preparation

We used the SKILLSPAN dataset [Zhang et al. 2022b] as our main benchmark. It con-
tains English job descriptions annotated with span-level SKILL and KNOWLEDGE enti-
ties using the BIO scheme. To align with our CROSSAGE architecture, word-level labels
were projected to token-level indices after subword tokenization, and non-head subwords
were masked to reduce alignment noise.

To incorporate syntactic structure, we constructed token-level dependency graphs
based on word-level parses. These graphs encode head–dependent relations and were used
as edge indices in the GAT module. The preprocessing pipeline involved four stages: (i)
tokenization and label alignment, (ii) span normalization, (iii) syntactic graph construc-
tion, and (iv) filtering of invalid samples.

The dataset is divided into training, development, and test splits, with documents
drawn from the tech and house domains. The training set includes 1,237 SKILL and
2,188 KNOWLEDGE entities in the tech domain, and 984 SKILL and 781 KNOWLEDGE
entities in house. The development set contains 1,351 entities in tech and 812 in
house, while the test set includes 1,245 in tech and 1,019 in house. On average,
sentences contain approximately one entity, with house examples exhibiting longer job
descriptions and more behavioral expressions.

Lexical analysis revealed domain-specific patterns: in the tech domain,
KNOWLEDGE entities are dominated by technical terms like JavaScript, Python, and Java,
while SKILL entities include expressions such as communication skills, passionate, and



solving business problems. In contrast, the house domain features skills like motivated
and proactive, and knowledge areas such as Engineering, English, and Project manage-
ment.

3.2. Graph construction

To inject syntactic structure into token representations, we constructed dependency graphs
using the spaCy [Honnibal and Montani 2017] parser (en core web sm), which
adopts the annotation scheme of the universal dependencies (UD) [Nivre et al. 2020].
Each token is treated as a node, and directed edges represent head–dependent relations
derived from the parsed dependency tree.

Because SKILLSPAN is pre-tokenized, we applied a character-offset alignment
procedure to match its tokens with spaCy outputs. A tolerance of two characters was
used to handle minor inconsistencies (e.g., spacing or punctuation). The resulting aligned
edges form the set Edep, used to define token-level graphs G = (V,E) for each sentence.

The full graph construction process is detailed in Algorithm 1. Only syntactic
dependencies are retained to preserve linguistic interpretability and reduce noise in the
input structure.

Algorithm 1: Dependency-based graph construction for SKILLSPAN
Input: Token sequence T = [t1, t2, . . . , tn]
Output: Edge set Edep ⊆ {(i, j)}
Step 1: Concatenate tokens into sentence string S = t1 ∥ t2 ∥ . . . ∥ tn;
Step 2: Parse S using spaCy to obtain dependency tree D;
Step 3: Initialize edge set Edep = ∅;
Step 4: Align each spaCy token di to dataset token tk via character-level
matching;

foreach token di in D do
if di has a head dh and i ̸= h then

Let j and k be the dataset indices aligned to dh and di;
Add edge (j, k) to Edep;

return Edep

As illustrated in Figure 1, the resulting graphs expose syntactic dependencies
among related tokens—such as in the expression “A degree in Computer Science or re-
lated fields or equivalent practical experience.”, where multiple entities are linked under a
shared qualifier. These structured representations can improve the model’s ability to cap-
ture compositional relationships and long-range dependencies in complex entity spans.

3.3. Model architecture

We propose CROSSAGE (Cross-attentional graph and encoder), a hybrid architecture
for skill and knowledge recognition that integrates a Transformer encoder, a multi-layer
GAT, and a cross-attention mechanism.

The input sequence X = {x1, . . . , xT} is first encoded using a pretrained Trans-
former (e.g., BERT or JobSpanBERT), yielding contextual embeddings h

(0)
t ∈ Rd. In

parallel, we construct a token-level dependency graph G = (V,E), where nodes are



Figure 1. Example of a dependency graph highlighting connections between
nested knowledge mentions.

initialized with the same contextual embeddings. A multi-layer GAT updates these via
neighbor-aware message passing:

h
(l)
g,i = σ

 ∑
j∈N (i)

α
(l)
ij W

(l)h
(l−1)
g,j

 , (1)

where α
(l)
ij are learned attention coefficients and W(l) are projection matrices.

To combine structural and semantic information, CROSSAGE applies cross-
attention between the contextual (h(l)

t ) and graph-based (h(l)
g ) representations:

h
(l+1)
t = CrossAttn

(
Q = h

(l)
t , K = V = h(l)

g

)
+ h

(l)
t , (2)

enabling each token to attend over related nodes in the graph. This process is
repeated across L layers, producing enriched representations.

The final token embeddings h(L)
t are mapped to BIO-label logits via a linear layer

with softmax:

ŷi = softmax(W · h(L)
i + b), ŷi ∈ RC (3)

To address class imbalance, we use focal loss [Dong et al. 2019]:

Lfocal = −α(1− pi)
γ log(pi), (4)

where α controls class weighting and γ focuses learning on hard examples.



Table 1. Hyperparameter search space used in Optuna optimization.
Hyperparameter Type Search Space
Learning rate (η) Continuous (log-uniform) [1× 10−5, 5× 10−5]
Focal loss (α) Continuous (linear) [0.5, 2.0]
Focal loss (γ) Continuous (linear) [1.0, 3.0]
Number of GAT heads (h) Integer {2, 4}
Number of GAT layers (L) Integer {1, 2}

CROSSAGE is trained end-to-end, jointly optimizing Transformer, GAT, and at-
tention components. Its modular design supports extension to other sequence labeling or
span-based tasks.

3.4. Training procedure
Experiments1 were conducted on Google Colab Pro [Google 2019] using an NVIDIA T4
GPU (16GB). The implementation used Python with PyTorch 1.13, HuggingFace Trans-
formers 4.31, and PyTorch Geometric 2.3.

The model was trained separately for SKILL and KNOWLEDGE entities using
token-level BIO supervision. The Transformer encoder (BERT or JobSpanBERT) was
fine-tuned end-to-end. Training ran for up to 10 epochs with early stopping (patience =
3) based on development span-level F1. Dropout was applied within each cross-attention
layer to regularize the attention outputs and prevent overfitting. Specifically, a dropout
rate of 0.1 was used after the multi-head attention computation in each cross-attention
block.

Focal loss was used to address class imbalance, focusing learning on hard
or minority-class examples. Hyperparameter tuning was performed with Op-
tuna [Optuna 2025] to maximize span-level F1 on the dev set. The search space (Table 1)
included learning rate, focal loss parameters (α, γ) and GAT settings (number of heads
and layers). Eight trials were run per entity type using batch size 16.

Evaluation used span-level F12 with the seqeval library under the IOB2
scheme, following both strict (exact match) and loose (partial overlap) crite-
ria [Senger et al. 2024]. Models were trained and evaluated strictly on the official
SKILLSPAN splits [Zhang et al. 2022b], with all final results reported on the held-out
test set. We also performed subgroup analyses on the tech and house domains to eval-
uate generalization across stylistic and lexical variation, providing a robust assessment of
CROSSAGE in real-world occupational texts.

4. Results and discussions
4.1. Overall performance
Table 2 reports span-level precision, recall, and F1-scores, along with the best hyperpa-
rameter configurations found via Optuna for each model–entity pair. We compare the base

1Code available at: https://github.com/tonylincon1/crossage
2In span-level evaluation for NER, a predicted entity is considered correct only if both its label and its

span boundaries (start and end positions) exactly match those of a reference entity. Precision is computed
as the ratio of correctly predicted spans to the total predicted spans, recall as the ratio of correctly predicted
spans to the total reference spans, and the F1-score as the harmonic mean of precision and recall.



Table 2. Span-level results and best Optuna trial configuration per entity and
model. Best F1-scores per column are in bold.

Entity Model P R F1 η α γ Heads Layers

SKILL

BERT 46.4 50.5 48.3 2.43E-5 1.064 1.832 – –
CROSSAGE (BERT) 50.2 47.4 48.8 3.55E-5 1.663 1.880 4 1
JobSpanBERT 46.5 51.4 48.8 3.13E-5 1.568 2.539 – –
CROSSAGE (JobSpanBERT) 51.6 48.1 49.8 4.90E-5 1.125 1.342 4 1

KNOWLEDGE

BERT 60.9 67.8 64.1 3.34E-5 0.885 1.103 – –
CROSSAGE (BERT) 60.0 68.8 64.1 2.51E-5 1.645 1.651 2 1
JobSpanBERT 57.9 68.3 62.7 2.86E-5 1.843 1.550 – –
CROSSAGE (JobSpanBERT) 59.9 67.2 63.4 1.48E-5 1.467 2.251 2 2

Table 3. Span-level results (Precision, Recall, F1) for SKILL and KNOWLEDGE enti-
ties by domain on the test set. Best results per column are in bold.

Model
SKILL KNOWLEDGE

Tech House Tech House
P R F1 P R F1 P R F1 P R F1

BERT 44.4 51.3 47.6 47.8 49.9 48.8 67.5 71.7 69.5 48.4 59.2 53.3
CROSSAGE (BERT) 50.0 49.7 49.8 50.0 45.7 47.8 68.7 72.8 70.7 45.1 60.3 51.6
JobSpanBERT 45.4 50.9 48.0 47.2 51.7 49.4 64.0 70.9 67.3 46.9 62.7 53.7
CROSSAGE (JobSpanBERT) 48.5 46.3 47.4 53.8 49.4 51.5 64.7 69.8 67.1 51.1 61.9 56.0

BERT [Devlin et al. 2019] and JobSpanBERT [Zhang et al. 2022b] models with their cor-
responding CROSSAGE variants.

For SKILL entities, CROSSAGE (JobSpanBERT) achieved the best F1-score
(49.8) and precision (51.6), surpassing both its base encoder (48.8 F1) and CROSSAGE
(BERT) (48.8 F1). While JobSpanBERT reached the highest recall (51.4), the gains in
precision with CROSSAGE highlight the effectiveness of structural integration for im-
proving boundary accuracy.

In the case of KNOWLEDGE entities, BERT and CROSSAGE (BERT) both attained
the highest F1-score (64.1), though the latter offered improved recall (68.8 vs. 67.8). Sim-
ilarly, CROSSAGE (JobSpanBERT) yielded a modest F1 gain over its base model (63.4
vs. 62.7), with increased precision but slightly reduced recall. These patterns suggest
that CROSSAGE enhances recall and precision trade-offs differently depending on the
encoder and entity type.

Hyperparameter tuning revealed that SKILL models generally favored higher fo-
cal loss γ values, reflecting the difficulty of minority class detection. CROSSAGE vari-
ants typically employed shallow GATs (1–2 layers, 2–4 heads), balancing graph signal
propagation and over-smoothing.

4.2. Domain-specific evaluation

Table 3 presents span-level performance by domain (tech and house) for both SKILL
and KNOWLEDGE entities. These domains differ linguistically: tech contains concise
technical terms, while house includes longer, behavior-oriented expressions.

For SKILL entities in tech, CROSSAGE (BERT) achieved the best F1-score
(49.8) and highest precision (50.0), whereas BERT had the highest recall (51.3). In
house, CROSSAGE (JobSpanBERT) outperformed other models (F1 = 51.5), benefit-
ing from domain-adapted embeddings and structural modeling, especially in handling



Figure 2. Qualitative comparison of predicted spans across models. Overlaps
between true labels (green) and predictions from BERT (orange), CROSSAGE
(BERT) (blue), JobSpanBERT (yellow), and CROSSAGE (JSB) (light pink) are
shown for selected examples.

abstract or behavioral phrases.

In KNOWLEDGE spans, CROSSAGE (BERT) led performance in the tech do-
main (F1 = 70.7), highlighting its capacity to detect technical concepts via combined
syntactic and contextual cues. Conversely, in house, CROSSAGE (JobSpanBERT) ob-
tained the best F1 (56.0), suggesting better generalization to linguistically diverse or less
lexicalized entities.

These findings indicate that hybrid architectures like CROSSAGE are particularly
beneficial in domains with higher compositional complexity or abstract spans—especially
for SKILL detection in house and KNOWLEDGE recognition in tech.

4.3. Qualitative and error analysis
To illustrate the practical benefits of structural modeling, Figure 2 presents selected ex-
amples where CROSSAGE outperformed its base models. These cases were manually
chosen to highlight improvements in span boundary alignment and semantic coherence,
particularly in multiword expressions.

For instance, in the third example, CROSSAGE (BERT) produced more accurate
span predictions in phrases such as “understand of architeture and design across all sys-
tems”, capturing the full extent of the skill mention more effectively than the standard
BERT. Similarly, CROSSAGE (JobSpanBERT) was better at identifying complex expres-
sions like “application data and infrastructure architecture”, which often challenge linear
models due to their syntactic depth and domain-specific terminology.

These examples suggest that the integration of structural signals enhances the
model’s ability to recognize semantically dense or behaviorally articulated mentions, even
in the presence of ambiguous or lengthy constructs.

4.4. Comparison with related work
Span-based baselines on SKILLSPAN show strong results, with JobSpanBERT
reaching 56.64 F1 for SKILL and JobBERT 63.88 for KNOWLEDGE under



STL [Zhang et al. 2022b]. In comparison, CROSSAGE (JobSpanBERT) scored 49.8 for
SKILL and CROSSAGE (BERT) 64.1 for KNOWLEDGE, closely matching top models.
Our hybrid approach also improves precision on complex spans and recall in domain-
specific cases.

While NNOSE [Zhang et al. 2024] attained 64.24 F1 using memory retrieval and
whitening, CROSSAGE offers a simpler alternative by leveraging structural cues via
cross-attention—achieving competitive results without external memory or ontologies.

5. Conclusion and future work
This paper presented the CROSSAGE model, a hybrid architecture that integrates
Transformer-based contextual embeddings with structural information derived from de-
pendency graphs via cross-attention. The model was evaluated on the SKILLSPAN
dataset for the task of skill and knowledge recognition in job descriptions, using span-
level precision, recall, and F1-score as primary evaluation metrics.

CROSSAGE (JobSpanBERT) achieved the highest F1-score for SKILL entities
(49.8), surpassing both its base encoder JobSpanBERT (48.8) and CROSSAGE (BERT)
(48.8), with a notable gain in precision (51.6 vs. 46.5). For KNOWLEDGE, CROSSAGE
(BERT) reached an F1-score of 64.1—equal to the standard BERT baseline—but offered
improved recall (68.8 vs. 67.8), indicating more comprehensive detection of knowledge
spans. In domain-specific evaluations, CROSSAGE (BERT) achieved the best F1 for
KNOWLEDGE in the tech domain (70.7), while CROSSAGE (JobSpanBERT) led for
SKILL in house (51.5), outperforming the base model (49.4). These results suggest
that integrating structural signals via cross-attention can enhance boundary accuracy and
recall in complex or abstract span contexts.

Although CROSSAGE does not yet outperform memory-augmented mod-
els such as NNOSE—whose best reported F1-score on SKILLSPAN reached
64.24 [Zhang et al. 2024]—it offers a lighter-weight alternative that does not rely on ex-
ternal retrieval modules, whitening transformations, or ontological resources. The results
validate the potential of graph-based inductive biases to improve fine-grained entity recog-
nition in occupational texts, particularly where entity boundaries are ambiguous.

As future work, we plan to enhance CROSSAGE through improved regu-
larization (e.g., dropout scheduling, graph sparsification, adversarial training) and
broader evaluation on datasets like KOMPETENCER [Zhang et al. 2022a] and JOB-
STACK [Jensen et al. 2021] to assess generalization across domains and annotation
schemes. We also aim to explore multilingual variants using models such as XLM-
RoBERTa and mBERT, enabling cross-lingual skill recognition.

Further directions include integrating semantic-enhanced graphs (e.g., from
knowledge bases), experimenting with CRF layers for structured decoding, and analyz-
ing efficiency–performance trade-offs via graph pruning. Finally, we intend to expand
interpretability and practical validation through attention visualizations.
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