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Abstract. LLM evaluations on tasks like high-stakes multidisciplinary tests still
rely on raw accuracy, a metric that weights easy and difficult questions equally
and ignores guessing. To help bridge this methodological gap, we repurpose the
official three-parameter logistic Item Response Theory (IRT) calibration that
the Brazilian education authority (INEP) uses to score humans on the Exame
Nacional do Ensino Médio (ENEM), and apply it to LLM responses. We then
fit a four-dimensional 3-PL model aligned with ENEM’s knowledge domains.
Results show that similar accuracies can mask proficiency gaps exceeding one
standard deviation across domains. Mathematics remains the toughest domain
for both humans and models, whereas questions on Human Sciences are system-
atically easier for both.

1. Introduction
Large Language Models (LLMs) now reach state-of-the-art (SOTA) performance on high-
stakes multidisciplinary tests, notably national university admission exams such as the
SAT in the United States [OpenAI 2024a], the Gaokao in China [Zong and Qiu 2024],
and Brazil’s ENEM [Abonizio et al. 2024]. These tests have been used as benchmarks to
compare LLM capabilities. However, LLM performance studies on these exams mostly
report a single metric – accuracy – which offers only a coarse view of test-taker profi-
ciency. It weighs easy and hard questions equally, ignores how well each question differ-
entiates examinees who are stronger or weaker in particular abilities, and fails to adjust
for the non-zero chance of correctly guessing answers.

Meanwhile, in the realm of human testing, where reliable ranking of candidates
is critical, exam authorities apply Item Response Theory (IRT) [Baker 2001] to calibrate
each question weight on the candidate score according to how sharply it discriminates
high- and low-performing examinees. Thereby, it can produce scaled proficiency scores
that distinguish candidates who achieve the same number of correct answers, according
to the relevance of each question answered correctly and incorrectly for scoring profi-
ciency in particular abilities. IRT also takes into account question difficulty, based on the
percentage of a population that answers it correctly, and the probability of guessing.

A few recent studies applying IRT to evaluate LLMs on university-admission ex-
ams [Zhang et al. 2023, Zong and Qiu 2024] show that IRT provides finer-grained rank-
ings than accuracy alone. However, they do not exploit IRT distinct dimensions to assess
specific abilities as we propose in this work. In addition, to the best of our knowledge, no
work has applied IRT to evaluate LLMs on the Portuguese-language ENEM. Motivated
by this gap, we ask two linked questions. First, using uni-dimensional IRT scoring, how
do SOTA LLMs of varying sizes compare with human candidates across the ENEM’s four



knowledge domains? Second, once baselines are established, how do multidimensional
IRT (MIRT) shift each model’s performance within those domains?

The major contributions of this paper are: (i) replication of ENEM’s official uni-
dimensional IRT models to evaluate LLM performance on this exam on the human scale;
(ii) an extended analysis using a multidimensional IRT model aligned with the exam’s
official four knowledge domains. Our experimental results show that identical accuracy
does not imply identical proficiency across knowledge domains, and illustrate how these
differences depend on model architecture.

2. The Multidimensional Item Response Theory

The Item Response Theory (IRT) is a family of mathematical models used to measure
individuals’ latent abilities, i.e., unobservable characteristics or proficiencies (e.g., nu-
merical reasoning, reading comprehension, scientific knowledge, logical thinking), indi-
rectly from exam responses. An exam E comprises a set of N assessment items (e.g.,
questions, tasks). It can be administered to a population of size J for measuring D latent
abilities from the responses of each examinee j to each assessment item i (N, J,D ∈ N+,
1 ≤ i ≤ N , 1 ≤ j ≤ J). The central feature of IRT is the characterization of each
assessment item i using one or more parameters: difficulty (bi), discrimination (ai), and
guessing (ci). Each parameter addresses a distinct aspect of an assessment item i on
measuring a latent ability k (1 ≤ k ≤ D):

Discrimination parameter (ai): is the degree to which an assessment item i dis-
tinguishes test-takers who have high ability or proficiency levels from those who have
low ones. An item i with high discrimination will provide more information about a
test-taker’s ability or proficiency level than an item j with low discrimination.

Difficulty parameter (bi): is the level of ability or proficiency required to have a
50% chance of answering item i correctly. Items requiring higher proficiency are deemed
difficult, whereas those answered correctly by most test-takers are considered easy.

Guessing parameter (ci): is the probability of a test-taker answering item i cor-
rectly by chance. In multiple choice items, guessing is the probability of choosing the
correct answer among the available alternatives.

In the multidimensional IRT, Θj ∈ RD is a D-dimensional vector containing
the values of the D > 1 latent abilities of the examinee j in an exam E. A measure
Θj[k] of the latent ability k for the examinee j is directly proportional to the probability
P (X) of this examinee correctly answering each of the N assessment items. Let Xij be
the binary response (1 for a correct response, 0 otherwise) of person j to item i. IRT
models frequently use the standard logistic link function σ(z) = 1

1+exp(−z)
to represent

P (Xji = 1|Θj[k], z), i.e., the probability of the jth examinee answering the ith item
correctly, with z being a function of parameters ai, bi and ci. The three most common IRT
models are:



One-parameter logistic
model (1-PL): The “Rasch”
model [Chow et al. 2024] only ac-
counts for item difficulty.

P (Xij = 1 | Θj, bi) =
1

1 + e−(Θj−bi)

Two-parameter logistic (2-PL): now in-
cludes discrimination −ai and difficulty bi.
z = e−ai(Θj−bi)

P (Xij = 1 | Θj,−ai, bi) =
1

1 + e−ai(Θj−bi)

Three-parameter logistic (3-PL): A parameter ci captures guessing:

P (Xij = 1 | Θj, ai, bi, ci) = ci + (1− ci)
1

1 + e−ai(Θj−bi)
(1)

Figure 1 illustrates the isolated impact of the parameters a, b and c on the prob-
ability of a correct response from examinee j to item i: (i) shows how the difficulty bi
shifts the curve horizontally; (ii) illustrates the impact of ai on slope; and (iii) shows the
vertical shift induced by ci.
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Figure 1. The impact of the parameters a, b and c.

Once parameters ai, bi, ci have been calculated for every assessment item i, they
are used to estimate the latent ability vector Θj for each examinee j, from their bi-
nary response vector Xj . The Expected-a-Posterior (EAP)[Bassett and Deride 2016]
is a Bayesian approach to estimate proficiency across attributes by employ-
ing both observed item responses and prior information, defined as: θ̂EAP,j =∫

θ Lj(θ)f(θ) dθ∫
Lj(θ)f(θ) dθ

, where Lj(θ) =
∏N

i=1 P
(
Xij = xij | θ

)
, is the joint likelihood, and

f(θ) is a known prior distribution such as the standard-normal distribution. Details on the
numerical implementation are given in Step (iv), Section 5 .

3. Related Works
We conducted a bibliographical search for peer-reviewed studies about the use of IRT
and other metrics to assess LLMs’ performance on exams like ENEM. We considered
works published between Jan 2020 and Apr 2025 in the following academic databases:
ACL Anthology, arXiv, IEEE Xplore, ACM Digital Library, Scopus, Web of Science,
SpringerLink, and ScienceDirect. The search expression employed was: (IRT OR MIRT
OR accuracy OR performance) AND (LLM or language model) AND (SAT OR Gaokao
OR ENEM OR ’university-admission exam’). We also complemented this review using
OpenAI’s Deep Research tool [OpenAI ].



Since we did not find in the results any study applying IRT-based LLM evalua-
tion specifically to the ENEM exam, we broadened our inclusion criteria to address two
complementary goals: (i) studies that applied IRT to evaluate LLM performance on other
university-admission exams, and (ii) studies that evaluated LLM performance on the 2022
and 2023 ENEM editions, using accuracy metrics.

We found only two papers proposing IRT-based LLM evaluation on university-
admission exams, both examining the Chinese Gaokao exam. [Zhang et al. 2023] mapped
the performance of various LLMs onto a Rasch-calibrated (1PL) scale enabling difficulty-
aware comparisons, beyond raw accuracy. Subsequently, [Liu et al. 2025] extended this
approach to a different Gaokao subset, observing that even top-performing LLMs exhib-
ited unexpected errors on easier questions, highlighting their insensitivity to item diffi-
culty. Both studies relied exclusively on uni-dimensional 1-PL IRT models. However,
as discussed in Section 2, the uni-dimensional IRT may not adequately capture the inter-
disciplinary nature of university-admission exams, and the 1-PL IRT model may neglect
aspects such as item discrimination and guessing behavior.

Since 2017, the ENEM has increasingly served as a key benchmark for
evaluating AI advancements in Portuguese-language contexts [Silveira and Mauá 2017,
Silveira and Mauá 2018]. Recently, substantial progress has been marked by the emer-
gence of advanced LLMs, notably the Sabiá1, family of models [Pires et al. 2023a,
Abonizio et al. 2024], which demonstrated impressive performance on the ENEM 2022
and 2023 exams. Evaluations indicate that the largest variant, Sabiá-3 reached an ac-
curacy of approximately 87.7%, comparable to state-of-the-art models like GPT-4o and
Claude-3.5 Sonnet. Intermediate-sized variants, Sabiazinho-3 and Sabiá-2 Medium,
also delivered strong results, achieving accuracies around 82.7% and 71.8%, respec-
tively [Abonizio et al. 2024]. Additionally, smaller LLMs have been shown to signifi-
cantly benefit from advanced prompting strategies, narrowing the performance gap com-
pared to larger models [Superbi et al. 2024, Taschetto and Fileto 2024].

Our study builds directly upon the open-source2 contributions and methodologi-
cal groundwork laid by [Nunes et al. 2023] and extended by [Pires et al. 2023b]. Their
curation of the question datasets detailed in Section 4.1 provided an essential founda-
tion for our research. Additionally, their forward-looking suggestion to explore ENEM’s
IRT-based evaluations directly inspired our approach.

In this work, we use the official uni-dimensional parameters as a baseline. We
leverage it to enable direct comparisons of human and LLM proficiency by positioning
their ENEM responses into the same unified latent-ability scale. In addition, since ENEM
aims to assess performance in four knowledge domains, as reflected in its structure, we
also propose and implement a four-dimensional 3-PL MIRT model. This multidimen-
sional approach explicitly models latent correlations among domains, offering a more
detailed characterization of proficiency compared to the uni-dimensional baseline alone.

4. Methodology
We evaluate LLMs’ performance on ENEM through uni- and multidimensional IRT using
a process consisting of four sequential steps:

1https://www.maritaca.ai/en
2https://github.com/piresramon/gpt-4-enem

https://www.maritaca.ai/en
https://github.com/piresramon/gpt-4-enem


(i) Generate LLM responses: Collects model outputs for proficiency estimation.
(ii) Estimate LLM uni-dimensional abilities: Uses the official IRT parameters to posi-

tion LLM responses onto the exam proficiency scale. This allows consistent com-
parison between LLMs and human examinees by estimating a single proficiency
parameter (θj) for each LLM j.

(iii) Extend the uni-dimensional IRT to MIRT: Fits a 3-PL MIRT model (Eq. 1, Sec-
tion 2) using human responses from ENEM questions. In this paper, the MIRT
dimensions are the four knowledge domains of ENEM.

(iv) Estimate multidimensional abilities: Builds the latent abilities vector Θj within the
MIRT scale calibrated for both humans and LLMs.

4.1. Datasets

The ENEM exam covers four knowledge domains – Mathematics, Natural Sciences
(Physics, Chemistry, Biology), Human Sciences (History, Geography, Philosophy, Soci-
ology), and Languages (Portuguese, Foreign Languages, Literature) – each domain com-
prises 45 assessment items, totaling 180. Although an additional essay impacts exami-
nees’ final score, it is not evaluated using IRT and thus beyond the scope of this study.

We rely on three datasets for each exam year analyzed (2022 and 2023): (i)
ENEM’s assessment items, consisting of multiple-choice questions, visual elements (e.g.,
tables, figures), and official answer keys; (ii) official uni-dimensional IRT parameters; and
(iii) full record of examinee responses for each exam administration. Details about these
datasets are in the following.

Assessment items: This dataset3, used in the step (ii) of our experiments (Section 5),
was assembled by [Nunes et al. 2023]. It contains assessment items from the 2022
ENEM exam. Later, [Pires et al. 2023b] added the 2023 items and official textual
descriptions of visual elements to enable fair comparison between text-only and
multimodal LLMs. One Mathematics item was annulled in both 2022 and 2023,
reducing each year’s exam to 179 valid assessment items.

IRT parameters: This dataset, used in step (ii) of our experiments, provides the official
ENEM values for the uni-dimensional 3-PL parameters ai (discrimination), bi (dif-
ficulty), and ci (guessing), described in Section 2. It covers 2022 and 2023, though
the Brazilian Institute of Educational Studies and Research (INEP) calibrates the
values according to the examinee responses each year, ensuring comparability of
proficiency scores for all ENEM administrations [INEP 2021]. In addition to the
IRT parameters, this dataset contains each assessment item’s unique identifier and
its position across different exam booklet versions. This information is essen-
tial to accurately map each LLM response to the corresponding assessment item
parameter, enabling direct comparability with human responses.

ENEM microdata4: Released annually by INEP since 1998, this dataset consists of
anonymized individual candidate responses to assessment items, demographic
and socioeconomic information collected through a self-reported questionnaire,
and administrative metadata (e.g., attendance status, exam booklet codes, foreign-
language option). Our study employs the datasets from the 2022 [INEP 2022]
and 2023 [INEP 2023] exam editions in Steps (iii) and (iv). Although INEP does

3https://huggingface.co/datasets/maritaca-ai/enem
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not fully disclose its equating methodology for the 2009 baseline [INEP 2021],
microdata enable approximate replication of official uni-dimensional scoring.

4.2. LLM selection
Given the strict page limit, we restrict our evaluation to a subset of SOTA LLMs selected
according to three criteria: (i) the model size, defined as the number of parameters used for
inference; (ii) the licensing type (proprietary, open-weights5 or open-source), and (iii) the
training emphasis (instruction-tuned vs. reasoning-oriented). Guided by these criteria,
we selected ten models:

• DeepSeek R1–0528 [DeepSeek-AI 2025] (671 B parameters, 37 B active; open-
source; reasoning-optimized, released Jan 20, 2025) and its sibling DeepSeek V3–
0324 [DeepSeek-AI 2024] (identical size and license; instruction-tuned, released
Dec 25, 2024) represent the open-source large-model tier.

• OpenAI’s GPT-4o [OpenAI 2024a] (instruction-tuned), O1 and
O3 [OpenAI 2024c] (reasoning-optimized), with undisclosed parameter counts.

• Llama 4 Maverick [Meta AI 2024a](400 B parameters, 17 B active;
open-weights; ) anchors the open-weights baseline, while its lighter sib-
ling Llama 4 Scout [Meta AI 2024b](109 B parameters, 17 B active ; up to
10 M-token context; ∼40 T training tokens) provides a lightweight comparator.

• GPT-4o Mini [OpenAI 2024b] (instruction-tuned), O3 Mini [OpenAI 2025], and
O4 Mini [OpenAI 2025] (both reasoning-optimized), each with approximately
8 B-parameters, complete the subset as compact comparators.

Prompting strategies: This study follows the pipeline proposed in [Nunes et al. 2023],
which includes two prompting strategies:
Few-shot: Each prompt opens with the official ENEM question header followed by three

examples, one for each domain: Languages, Human Sciences, and Mathematics.
These examples explicitly indicate the correct alternative.

CoT: The same triad of examples is retained, but now each one includes its
full step-by-step solution, implementing the CoT prompting paradigm (see
[Wei 2022]). The model must: (i) produce its own reasoning, (ii) select the correct
alternative, and (iii) briefly justify the exclusion of the remaining options.

4.3. Computational Implementation
INEP computes IRT parameters and estimates examinee proficiency using the proprietary
software BILOG-MG, developed by Scientific Software International (SSI) [INEP 2021].
However, a single-user license costs US$10,9206. Thus, we considered open-source pro-
gramming languages with dedicated MIRT libraries, such as Python (py-irt), Julia
(IRT.jl), and Java (bmirt). However, ultimately we selected R [R Core Team 2025]
due to its dedicated, peer-reviewed [Chalmers 2012] IRT modeling package, mirt7.
Additionally, R provides vectorized numerical computation, built-in support for paral-
lel computing, and an extensive package ecosystem via the Comprehensive R Archive
Network (CRAN). These combined strengths make R a suitable choice for allowing easy
reproduction of our IRT research.

5“Open-weights” licenses release the trained weights for inference and fine-tuning while withholding
full training data and source code.

6https://ssilive.com/bilogmg-operational Consulted in May 2025
7https://CRAN.R-project.org/package=mirt

https://ssilive.com/bilogmg-operational
https://CRAN.R-project.org/package=mirt


5. Experiments

The experiments follow the steps described in section 4. Details of each step are
presented below. The code, datasets and results employed are available on GitHub8.

Step (i): Generate LLM responses. All LLM evaluations were executed with the
open-source9 pipeline of [Nunes et al. 2023], a wrapper around the lm-evaluation-harness
framework [EleutherAI 2024]. We instrumented the code to log every LLM complete
response, because steps (ii) and (iv) require the binary response matrix. ENEM uses
multiple color-coded test booklets, in which items are identical, but appear in different
orders to deter copying. Thus, our logger also records (i) booklet color and (ii) item
position per LLM answer. Decoding hyperparameters were set to minimize stochastic-
ity: temperature=0.0 (greedy) and top p=1.0 (no token filtering). 54 pipelines
were run, yielding 19,332 item-level responses spanning all combinations of ten LLMs, 3
prompting strategies, and 358 assessment items across two exam years. Logged responses
were then recoded as correct/incorrect and stacked into a 54×358 binary response matrix.
This matrix, joined with the respective booklet code and item positions, was persisted for
use in Steps (ii) and (iv).

Step (ii): LLM uni-dimensional θ estimation. As documented by INEP [INEP 2021],
for each examinee j, θj is computed by the expected-a-posteriori (EAP) estimator using
the 3-PL parameters a, b, c for each assessment item and the examinee’s binary response
matrix Xj . Eq. 2 defines the EAP estimator, the integral form is on the left and its
Gauss–Hermite approximation on the right.

θ̂EAP,j =

∫
θ Lj(θ)f(θ) dθ∫
Lj(θ)f(θ) dθ

≈
∑Qp

k=1 θkLj(θk)wk∑Qp

k=1 Lj(θk)wk

, where : (2)

Lj(θ) =
∏N

i=1 P
(
Xij = xij | θ

)
(see Eq. 1 in Sec. 2) is the joint likelihood, f(θ) is a de-

fined prior distribution (see [Bassett and Deride 2016]) and Qp is the number of quadra-
ture points for numerical integration. INEP reported[INEP 2021] to use Qp = 40 and
f(θ) = N (0, 1) (standard-normal distribution). The EAP score is a weighted average
across all plausible proficiency levels, where each level is weighted by how likely it is,
given the observed responses (likelihood) and prior assumptions about the ability distri-
bution: f(θ). The estimation was executed independently for each LLM result from Step
(i), producing 54 distinct θj scalars.

Step (iii): 3-PL MIRT model. The item discrimination (a), difficulty (b) and guessing
(c) parameters were estimated with a four-dimensional 3-PL MIRT model fitted to the
complete binary response matrix derived from the datasets described in Section 4.1 (iii).
While INEP uses the Expectation-Maximization (EM) algorithm in uni-dimensional IRT
(see [INEP 2021]), the present study opts for the Quasi–Monte Carlo EM (QMCEM)
algorithm (see [Chalmers 2012]), for its faster convergence. Iterations stopped when the
maximum relative parameter change dropped below 10−4 or after 100 cycles. Parallelism
was enabled via mirtCluster (mirt v. 1.3, R v. 4.4.0) to distribute threads without
duplicating the response matrix.

8https://github.com/leonardotaschetto/enem-mirt-eval/
9https://github.com/piresramon/gpt-4-enem
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The experiments ran for 11h on a 24-core Ryzen 9, with 64 GB RAM. Factor
correlations were moderate (Languages — Human Sciences 0.48; Natural Sciences –
Mathematics 0.42; cross-domain |ρ| < 0.30). The final set of 358 calibrated (a, b, c)
items was persisted to a parquet file, keyed by the official booklet code and item position.

Step (iv): Multidimensional θ estimation. The EAP routine described in Step (ii) is
generalized to estimate D-dimensional ability vectors Θ̂j ∈ RD. Given the ai, bi, ci item
parameters from Step (iii), the intuition is analogous to Step (ii): MIRT computes Θ̂j

as weighted averages over multi-dimensional proficiency profiles. It retains the same
Qp = 40 and f(Θ) = N (0, I). Formally, Θ̂j ≈

∑
k θk Lj(Xj |θk)wk∑
k Lj(Xj |θk)wk

, where Lj is the joint
likelihood for configuration j, wk is the k-th Gauss–Hermite weight, and each vector θk

encodes a specific combination of proficiency levels across the four latent dimensions.

This work adopts D = 4 (section 4), with each MIRT dimension aligned to one of
ENEM’s knowledge domains: Human Sciences (HS), Natural Sciences (NS), Languages
and Codes (LC) and Mathematics (MT). Running calculations for the 54 configurations
generated in Step (i) yields a set of four-dimensional estimates that we stack row-wise into
the matrix Θ ∈ R54×4 where Θ(j) =

(
Θ

(j)
HS,Θ

(j)
NS,Θ

(j)
LC,Θ

(j)
MT

)
. Row j records the latent

abilities for configuration j, with the columns corresponding to the ENEM domains.

6. Results
Table 1 lists raw LLM accuracies from Step (i); the respective uni-dimensional IRT scores
θ from Step (ii); and the accuracies and MIRT estimates ΘMT , ΘNS , ΘHS and ΘLC cal-
culated in Step (iv) for the D = 4 ENEM domains.

Table 1. Models’ accuracy, IRT and MIRT-based proficiencies.

Model
IRT MIRT (D = 4)

(uni-dim) Math Natural Sc. Human Sc. Languages
acc. θ acc. ΘMT acc. ΘNS acc. ΘHS acc. ΘLC

O3 94.44 2.74 84.44 2.68 95.56 2.64 100.00 2.79 97.78 2.32
O1 91.67 2.25 80.00 2.34 93.33 2.39 97.78 2.06 95.56 1.99
O3 Mini 90.50 2.24 84.09 2.37 93.33 2.67 97.78 2.56 86.67 1.38
O4 Mini 84.44 1.74 73.33 2.02 93.33 2.49 91.11 1.25 80.00 0.98
DeepSeek R1 75.42 1.27 68.18 1.69 66.67 1.70 82.22 1.20 84.44 1.22
GPT-4 1 74.86 1.73 29.55 -0.42 80.00 1.79 95.56 2.04 93.33 1.83
DeepSeek V3 72.07 1.70 36.36 0.41 77.78 1.81 82.22 1.07 91.11 1.47
GPT-4o Mini 63.13 1.20 20.45 -0.86 62.22 1.23 82.22 1.17 86.67 1.31
Llama 4 Maverick 58.10 0.74 31.82 -0.62 44.44 0.34 77.78 0.97 77.78 1.12
Llama 4 Scout 52.51 0.74 27.27 0.80 28.89 -0.56 80.00 0.86 73.33 0.81

The LLMs with the second and the third highest general accuracy – O3 Mini
(90.5 %) and O1 (91.7 %) – achieve almost identical uni-dimensional θ (2.24 vs 2.25).
However, MIRT reveals that O3 Mini is slightly stronger than O1 in Mathematics
(ΘMT = 2.37) and much more in Natural Sciences (ΘNS = 2.67), while O1 has its
edge in NS (ΘNS = 2.39). Conversely, GPT-4o and DeepSeek R1 differ by less than one
percentage point in accuracy (74.9% vs 75.4%), but GPT-4o’s ΘMT = −0.42 contrasts
with DeepSeek R1’s solid +1.69, reversing their ranking for any math-heavy use case.

Figure 2 enables comparison of human and LLM performance on the four do-
mains, in the official ENEM score scale (300 – 1000). The 5th–95th percentile of human



candidates is in translucent cyan; darker close to the median. For each model, the solid
line links its latent abilities, while the dashed line links its accuracies on the four domains,
projected into the same scale. For most models and domains, the ability score (Θ) is lower
than the respective accuracy projected in the same scale. One exception is O3 in Math,
highlighting its superior abilities.
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Figure 2. Four-domain abilities versus accuracies of ENEM candidates and LLMs

Figure 3 compares MIRT results from Step (iv) with a baseline of 665 421 can-
didates who were tested in the same booklet codes used for model evaluation, yielding
a mean accuracy of 39.8% and P75 = 47.8%. In each panel the vertical axis shows
raw item-level accuracy (0–1), while the horizontal axis shows the multidimensional-IRT
score mapped to the official ENEM scale (300–1000). Once raw accuracies are projected
onto the ENEM proficiency scale, top-tier models (e.g.,O3) cluster within the top one hu-
man percentile, yet the grey student cloud reveals that many weaker candidates can share
the same score band if they happen to guess well on high-information items.

Domain-wise, five LLMs exceed 95% accuracy where students average 28% and
49%, respectively. Mathematics remains the most challenging section; while leading
engines break 80%, GPT-4o Mini and the two Llama variants fall below the human mean
of 34%, highlighting a persistent gap in quantitative reasoning.

Table 2 quantifies how much the joint D = 4 MIRT model re-weights profi-
ciency with respect to the conventional, domain-isolated approach adopted by INEP. The
domain-specific columns of the four-factor MIRT output were aligned and subtracted
from their uni-dimensional counterparts, yielding the difference matrix. Positive values
(∆> 0 ) indicate that the joint model up-weights the ability estimate after borrowing in-
formation from inter-domain covariance; negative values mean that the uni-dimensional
model was overly optimistic once cross-domain evidence is considered.

7. Conclusions and Future Work
This study demonstrates two key advantages of IRT scoring over raw accuracy when
evaluating LLMs on the ENEM:

(i) Uni-dimensional IRT: weighting each response according to item difficulty, discrim-
ination, and guessing, produces global proficiency scores that are substantially



Figure 3. Accuracy x MIRT score of ENEM students and language models.

Table 2. Domain-wise comparison between independent uni-dimensional IRT
(θUni) and joint 4-factor MIRT (Θ). ∆ = Θ− θUni.

Model Math (MT) Natural Sc. (NS) Human Sc. (HS) Languages (LC)

θUni Θ ∆ θUni Θ ∆ θUni Θ ∆ θUni Θ ∆

O3 2.63 2.68 +0.05 2.54 2.64 +0.10 2.69 2.79 +0.10 2.22 2.32 +0.10
O1 2.29 2.34 +0.05 2.31 2.39 +0.08 1.96 2.06 +0.10 1.89 1.99 +0.10
O3 Mini 2.32 2.37 +0.05 2.59 2.67 +0.08 2.46 2.56 +0.10 1.33 1.38 +0.05
O4 Mini 2.00 2.02 +0.02 2.41 2.49 +0.08 1.17 1.25 +0.08 0.93 0.98 +0.05
DeepSeek R1 1.71 1.69 –0.02 1.72 1.70 –0.02 1.15 1.20 +0.05 1.17 1.22 +0.05
GPT-4 1 –0.30 –0.42 –0.12 1.74 1.79 +0.05 1.94 2.04 +0.10 1.75 1.83 +0.08
DeepSeek V3 0.51 0.41 –0.10 1.79 1.81 +0.02 1.02 1.07 +0.05 1.39 1.47 +0.08
GPT-4o Mini –0.74 –0.86 –0.12 1.25 1.23 –0.02 1.12 1.17 +0.05 1.26 1.31 +0.05
Llama 4 Maverick –0.52 –0.62 –0.10 0.42 0.34 –0.08 0.95 0.97 +0.02 1.10 1.12 +0.02
Llama 4 Scout 0.92 0.80 –0.12 –0.44 –0.56 –0.12 0.81 0.86 +0.05 0.79 0.81 +0.02

more reliable and comparable to human results than simple percent-correct.
(ii) Four-factor MIRT: retains that reliability while decomposing proficiency into four

domains: MT (Mathematics), NS (Natural Sciences), HS (Human Sciences), and
LC (Languages and Codes). This profile highlights domain-specific strengths and
weaknesses that a single-number IRT score may conceal.

Future work includes a deeper statistical comparison of the MIRT 3-PL model
with the official uni-dimensional (e.g., using likelihood-ratio tests, information criteria,
and item/ability fit plots) model providing visual and numerical diagnostics that clarify
when the richer multidimensional view materially changes conclusions about model or
human proficiency; it might also extend the calibration to other ENEM years and examine
how specific prompting strategies interact with latent abilities across domains.
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