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Abstract. In this paper, we explore a graph-based method for multidocument opinion 

summarization for Portuguese. The method, which consists of an updated version of 

the well-known Opinosis method (Ganesan et al., 2010), has its results compared to 

those produced by a large language model, Mistral, when performing the same task 

for a small corpus. 

Resumo. Neste artigo, exploramos um método baseado em grafo para sumarização 

de opinião multidocumento para o português. O método, que consiste em uma versão 

atualizada do conhecido Opinosis (Ganesan et al., 2010), tem seus resultados 

comparados aos produzidos por um grande modelo de língua, o Mistral, ao realizar 

a mesma tarefa para um pequeno corpus. 

 

1. Introdução 

Com a quantidade de informação atual, a tarefa de sumarização de textos tem enorme 

relevância. Em Processamento de Linguagem Natural (PLN), há uma grande diversidade 

de métodos de sumarização, incluindo desde abordagens extrativas clássicas até, mais 

recentemente, o uso de grandes modelos de língua (no inglês, Large Language Models - 

LLMs) para produção de abstracts, como apontam Souza et al. (2024).  

  Neste artigo, relatamos um experimento de sumarização de opinião 

multidocumento para o português. Atualizamos um método já clássico de sumarização 

abstrativa baseada em grafos, chamado Opinosis (Ganesan et al., 2010), e comparamos 

seus resultados com aqueles produzidos pelo Mistral, um LLM open source bem 

difundido atualmente, usando um corpus de referência para o português, o OpiSums-PT 

(López Condori et al., 2015). Nossa proposta é investigar o desempenho do Opinosis, 

mais barato que um LLM, identificando suas potencialidades e limitações. 

  A seguir, na Seção 2, apresentamos brevemente o método Opinosis. Na Seção 3, 

descrevemos nosso experimento, os dados utilizados e os resultados alcançados. 

 

2. O método Opinosis 

Nosso método adapta o Opinosis pela adoção do modelo gramatical Universal 

Dependencies (UD) (de Marneffe et al., 2021), usado por mais de 150 línguas. Para obter 

as etiquetas morfossintáticas da UD, utilizamos o modelo pré-treinado Porttinari (Pardo 

et al., 2021; Duran et al., 2023) no UDPipe 2 (Straka, 2018) e desenvolvemos um conjunto 



 

 

de 12 regras, formuladas como expressões regulares sobre sequências de etiquetas. Essas 

regras são projetadas para identificar os trechos sintaticamente bem formados e mais 

informativos dos textos, como construções canônicas de sujeito-verbo-objeto e frases 

nominais complexas, que servirão como candidatos para a construção do grafo que dará 

origem ao sumário/resumo. A Figura 1 ilustra um grafo direcionado construído para as 

frases "Bateria legal, gostei dms.", "A bateria é bem boa, muito legal.", "A tela é top, 

bateria boa tbm." e "A bateria é muito boa, adorei.". Cada nó no grafo representa uma 

palavra única junto de sua etiqueta, e as arestas preservam a ordem original das palavras 

em cada sentença. O algoritmo de sumarização busca por caminhos que possuam alta 

pontuação de redundância (computada pelo número de ocorrências) e sejam 

gramaticalmente válidos. No exemplo da figura, a alta coocorrência de "a", "bateria" e 

"é" cria um caminho com maior peso, levando o Opinosis a gerar o resumo final que 

inclui o trecho "[...] a bateria é bem boa, [...]". 

 

 

Figura 1. Exemplo de grafo produzido pelo método Opinosis adaptado 

 

3. Experimento e resultados 

Utilizamos o corpus OpiSums-PT, desenvolvido para a tarefa de sumarização de opiniões 

em português. O corpus inclui 17 tópicos, sendo 13 sobre livros e 4 sobre produtos 

eletrônicos. Para cada tópico, o corpus traz 10 opiniões de usuários e 10 resumos 

multidocumento criados por humanos, sendo 5 extrativos e 5 abstrativos. Neste trabalho, 

usamos esses resumos como referência, ou seja, "gabarito" (gold standard) em nossa 

avaliação, separando-os em função do tipo de resumo avaliado. 

  Nossa avaliação comparou o desempenho de dois sistemas distintos, o Opinosis 

adaptado e uma versão quantizada do modelo otimizado para instruções Mistral-7B-

Instruct-v0.3 (Mistral AI Team; Jiang et al., 2023), para gerar resumos extrativos e 

abstrativos. Para as gerações com o LLM, utilizamos uma estratégia de decodificação 

gulosa a fim de garantir a consistência e a reprodutibilidade dos resultados. É válido 

ressaltar que, por conta de ser uma versão “menor” do modelo, essa redução pode 

impactar em sua performance. O modelo foi instruído a gerar um resumo de 2 a 4 

sentenças, utilizando exclusivamente as 10 avaliações de cada tópico do corpus como 

fonte. A instrução (prompt) continha uma descrição clara da tarefa e exigia uma saída em 

formato JSON para facilitar o processamento automático. 



 

 

  A qualidade dos resumos gerados foi medida com a ROUGE (Lin, 2004) – em 

suas variantes ROUGE-1 e ROUGE-L – e com a BLANC (Vasilyev et al., 2020). A 

ROUGE é obtida pela contagem de n-gramas em comum entre o resumo automático e 

o(s) humano(s), enquanto a BLANC mede o quanto os resumos ajudam um modelo de 

língua a prever palavras ocultas em um texto, refletindo sua utilidade e coerência. 

  A Figura 2 mostra os resultados médios da ROUGE. O LLM se sai melhor na 

produção de resumos extrativos, mas perde para o Opinosis no caso dos resumos 

abstrativos. As hipóteses para explicar esse comportamento são que o LLM faz uma 

escolha melhor das sentenças que comporão o extrato e, no caso dos resumos abstrativos, 

o LLM é penalizado pela ROUGE (que privilegia sobreposição lexical com os resumos 

humanos de referência, situação em que o LLM tem desvantagem, pois este não 

necessariamente utiliza as mesmas palavras da referência humana). 

 

 

Figura 2. Análise de desempenho pela ROUGE (F1-Score) 

 

A análise da métrica BLANC, exibida na Tabela 1, revela que o Opinosis obteve 

desempenho melhor, superando o LLM nas duas variações da métrica (score geral - tune 

- e alinhamento positivo - help). 
 

Tabela 1. Resultados médios da métrica BLANC 

Sistema BLANC Tune (Média + DP) BLANC Help (Média + DP) 

Opinosis 0,09 ± 0,08 0,13 ± 0,05 

LLM Extrativo 0,07 ± 0,07 0,12 ± 0,05 

LLM Abstrativo 0,06 ± 0,07 0,11 ± 0,05 



 

 

Este resultado indica que os resumos gerados pelo Opinosis são, em média, mais fiéis ao 

conteúdo original, provavelmente por sua abordagem ser ligada à extração e combinação 

de trechos originais, conseguindo manter uma conexão mais forte com o conteúdo fonte 

do que o LLM. Adicionalmente, o alto desvio padrão observado em todos os sistemas 

sugere que a qualidade final dos resumos foi fortemente influenciada pelas características 

das opiniões de cada tópico. 

  Como exemplo do material produzido automaticamente, mostramos resumos 

abstrativos gerados para o livro “Fala Sério, Amor!”. Nota-se que o resumo do LLM é 

normalmente mais fluente, o que pode estar evidenciando uma das hipóteses anteriores, 

de que o LLM foi prejudicado na avaliação pelas métricas usadas. Se a avaliação 

abordasse qualidade linguística, ele potencialmente se sairia melhor. 

- Opinosis: ótimo livro pra quem quer dar boas risadas e com cada situação vivida por a protagonista; 

apaixona o público adolescente com as histórias de os namorados de nossa mais uma vez protagonista; 

tiver mais que 20 anos vai achar o livro, porém para adolescentes é realmente bom; bem engraçadas e 

com a linguagem descontraída e informal que thalita utiliza em suas obras. 

- Resumo abstrativo gerado por LLM: O livro 'Fala Sério, Amor' é uma coleção de histórias divertidas 

e engraçadas sobre as aventuras amorosas de uma adolescente chamada Malu. As histórias são escritas 

em uma linguagem informal e descontraída, e retratam situações típicas que podem acontecer em uma 

vida adolescente, como se apaixonar por o melhor amigo, ficar com um loco em o carnaval, ir em a casa 

de o namorado por a primeira vez, entre outras. O livro é considerado engraçado e divertido, e é 

recomendado para adolescentes. 

 

Também foi conduzido um teste de concordância de polaridade de sentimentos (positiva 

ou negativa) entre resumos utilizando o TeenyTinyLlama-460m-IMBD (Correa et al., 

2024), dada a importância desse tipo de informação ao se lidar com resumos de opiniões. 

Avaliaram-se separadamente os resumos abstrativos e extrativos gerados por LLM, 

comparando-os com a moda (polaridade mais frequente) dos resumos humanos 

correspondentes. Os resumos extrativos obtiveram 82,35% de concordância, enquanto os 

abstrativos alcançaram 88,24%, superando por ampla margem o Opinosis (70,59% e 

58,82%, respectivamente). 

  Ao cruzar os resultados, emerge um claro trade-off. O LLM aparenta produzir 

resumos abstrativos com maior semelhança ao estilo humano e com mais concordância 

de polaridade, enquanto o Opinosis alcança resultados de avaliação melhores em termos 

das métricas ROUGE e BLANC. Assim, em certas situações, o Opinosis pode se mostrar 

uma alternativa interessante (por consistir em um método mais simples e 

computacionalmente mais barato). 
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