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Abstract. In this paper, we explore a graph-based method for multidocument opinion
summarization for Portuguese. The method, which consists of an updated version of
the well-known Opinosis method (Ganesan et al., 2010), has its results compared to
those produced by a large language model, Mistral, when performing the same task
for a small corpus.

Resumo. Neste artigo, exploramos um método baseado em grafo para sumarizagdo
de opinido multidocumento para o portugués. O método, que consiste em uma versao
atualizada do conhecido Opinosis (Ganesan et al., 2010), tem seus resultados
comparados aos produzidos por um grande modelo de lingua, o Mistral, ao realizar
a mesma tarefa para um pequeno corpus.

1. Introducao

Com a quantidade de informacao atual, a tarefa de sumarizacdo de textos tem enorme
relevancia. Em Processamento de Linguagem Natural (PLN), h4 uma grande diversidade
de métodos de sumarizacao, incluindo desde abordagens extrativas cldssicas até, mais
recentemente, o uso de grandes modelos de lingua (no inglés, Large Language Models -
LLMs) para producao de abstracts, como apontam Souza et al. (2024).

Neste artigo, relatamos um experimento de sumarizagdo de opinido
multidocumento para o portugués. Atualizamos um método ja cléssico de sumarizagdo
abstrativa baseada em grafos, chamado Opinosis (Ganesan et al., 2010), e comparamos
seus resultados com aqueles produzidos pelo Mistral, um LLM open source bem
difundido atualmente, usando um corpus de referéncia para o portugués, o OpiSums-PT
(Lopez Condori et al., 2015). Nossa proposta ¢ investigar o desempenho do Opinosis,
mais barato que um LLM, identificando suas potencialidades e limitagoes.

A seguir, na Secdo 2, apresentamos brevemente o método Opinosis. Na Secao 3,
descrevemos nosso experimento, os dados utilizados e os resultados alcangados.

2. O método Opinosis

Nosso método adapta o Opinosis pela adogdo do modelo gramatical Universal
Dependencies (UD) (de Marneffe et al., 2021), usado por mais de 150 linguas. Para obter
as etiquetas morfossintaticas da UD, utilizamos o modelo pré-treinado Porttinari (Pardo
etal.,2021; Duran et al., 2023) no UDPipe 2 (Straka, 2018) e desenvolvemos um conjunto



de 12 regras, formuladas como expressdes regulares sobre sequéncias de etiquetas. Essas
regras sao projetadas para identificar os trechos sintaticamente bem formados e mais
informativos dos textos, como construgdes candnicas de sujeito-verbo-objeto e frases
nominais complexas, que servirdo como candidatos para a construgdo do grafo que dara
origem ao sumario/resumo. A Figura 1 ilustra um grafo direcionado construido para as
frases "Bateria legal, gostei dms.", "A bateria ¢ bem boa, muito legal.", "A tela ¢ top,
bateria boa tbm." e "A bateria ¢ muito boa, adorei.". Cada n6 no grafo representa uma
palavra tnica junto de sua etiqueta, e as arestas preservam a ordem original das palavras
em cada sentenca. O algoritmo de sumarizagdao busca por caminhos que possuam alta
pontuagdo de redundancia (computada pelo numero de ocorréncias) e sejam
gramaticalmente validos. No exemplo da figura, a alta coocorréncia de "a", "bateria" e
"¢" cria um caminho com maior peso, levando o Opinosis a gerar o resumo final que
inclui o trecho "[...] a bateria € bem boa, [...]".
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Figura 1. Exemplo de grafo produzido pelo método Opinosis adaptado

3. Experimento e resultados

Utilizamos o corpus OpiSums-PT, desenvolvido para a tarefa de sumarizacao de opinides
em portugués. O corpus inclui 17 topicos, sendo 13 sobre livros e 4 sobre produtos
eletronicos. Para cada topico, o corpus traz 10 opinides de usudrios e 10 resumos
multidocumento criados por humanos, sendo 5 extrativos e 5 abstrativos. Neste trabalho,
usamos esses resumos como referéncia, ou seja, "gabarito" (gold standard) em nossa
avaliacdo, separando-os em fun¢do do tipo de resumo avaliado.

Nossa avaliagdo comparou o desempenho de dois sistemas distintos, o Opinosis
adaptado e uma versdo quantizada do modelo otimizado para instru¢des Mistral-7B-
Instruct-v0.3 (Mistral Al Team; Jiang et al., 2023), para gerar resumos extrativos e
abstrativos. Para as geracdes com o LLM, utilizamos uma estratégia de decodificagdao
gulosa a fim de garantir a consisténcia e a reprodutibilidade dos resultados. E valido
ressaltar que, por conta de ser uma versao “menor” do modelo, essa redugdo pode
impactar em sua performance. O modelo foi instruido a gerar um resumo de 2 a 4
sentencgas, utilizando exclusivamente as 10 avalia¢des de cada topico do corpus como
fonte. A instrucdo (prompt) continha uma descricdo clara da tarefa e exigia uma saida em
formato JSON para facilitar o processamento automatico.



A qualidade dos resumos gerados foi medida com a ROUGE (Lin, 2004) — em
suas variantes ROUGE-1 e ROUGE-L — e com a BLANC (Vasilyev et al., 2020). A
ROUGE ¢ obtida pela contagem de n-gramas em comum entre 0 resumo automatico e
o(s) humano(s), enquanto a BLANC mede o quanto os resumos ajudam um modelo de
lingua a prever palavras ocultas em um texto, refletindo sua utilidade e coeréncia.

A Figura 2 mostra os resultados médios da ROUGE. O LLM se sai melhor na
producdo de resumos extrativos, mas perde para o Opinosis no caso dos resumos
abstrativos. As hipdteses para explicar esse comportamento sdo que o LLM faz uma
escolha melhor das sentengas que compor&o o extrato e, no caso dos resumos abstrativos,
0 LLM é penalizado pela ROUGE (que privilegia sobreposicdo lexical com os resumos
humanos de referéncia, situacdo em que o LLM tem desvantagem, pois este nédo
necessariamente utiliza as mesmas palavras da referéncia humana).
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Figura 2. Analise de desempenho pela ROUGE (F1-Score)

A analise da métrica BLANC, exibida na Tabela 1, revela que o Opinosis obteve
desempenho melhor, superando o LLM nas duas variacdes da métrica (score geral - tune
- e alinhamento positivo - help).

Tabela 1. Resultados médios da métrica BLANC

Sistema BLANC Tune (Média + DP) BLANC Help (Média + DP)
Opinosis 0,09 +0,08 0,13+0,05
LLM Extrativo 0,07 £ 0,07 0,12 £ 0,05

LLM Abstrativo 0,06 + 0,07 0,11 +0,05




Este resultado indica que os resumos gerados pelo Opinosis sao, em média, mais fiéis ao
conteudo original, provavelmente por sua abordagem ser ligada a extracao e combinagao
de trechos originais, conseguindo manter uma conexao mais forte com o conteudo fonte
do que o LLM. Adicionalmente, o alto desvio padrao observado em todos os sistemas
sugere que a qualidade final dos resumos foi fortemente influenciada pelas caracteristicas
das opinides de cada topico.

Como exemplo do material produzido automaticamente, mostramos resumos
abstrativos gerados para o livro “Fala Sério, Amor!”. Nota-se que o resumo do LLM ¢
normalmente mais fluente, o que pode estar evidenciando uma das hipoteses anteriores,
de que o LLM foi prejudicado na avaliacdo pelas métricas usadas. Se a avaliacdo
abordasse qualidade linguistica, ele potencialmente se sairia melhor.

- Opineosis: otimo livro pra quem quer dar boas risadas e com cada situagdo vivida por a protagonista;
apaixona o publico adolescente com as historias de os namorados de nossa mais uma vez protagonista;
tiver mais que 20 anos vai achar o livro, porém para adolescentes é realmente bom,; bem engracadas e
com a linguagem descontraida e informal que thalita utiliza em suas obras.

- Resumo abstrativo gerado por LLM: O livro 'Fala Sério, Amor' é uma cole¢do de historias divertidas
e engragadas sobre as aventuras amorosas de uma adolescente chamada Malu. As historias sdo escritas
em uma linguagem informal e descontraida, e retratam situagées tipicas que podem acontecer em uma
vida adolescente, como se apaixonar por o melhor amigo, ficar com um loco em o carnaval, ir em a casa
de o namorado por a primeira vez, entre outras. O livro é considerado engracado e divertido, e é
recomendado para adolescentes.

Também foi conduzido um teste de concordancia de polaridade de sentimentos (positiva
ou negativa) entre resumos utilizando o TeenyTinyLlama-460m-IMBD (Correa et al.,
2024), dada a importancia desse tipo de informacao ao se lidar com resumos de opinides.
Avaliaram-se separadamente os resumos abstrativos e extrativos gerados por LLM,
comparando-os com a moda (polaridade mais frequente) dos resumos humanos
correspondentes. Os resumos extrativos obtiveram 82,35% de concordancia, enquanto os
abstrativos alcancaram 88,24%, superando por ampla margem o Opinosis (70,59% e
58,82%, respectivamente).

Ao cruzar os resultados, emerge um claro trade-off. O LLM aparenta produzir
resumos abstrativos com maior semelhanga ao estilo humano e com mais concordancia
de polaridade, enquanto o Opinosis alcanga resultados de avaliacdo melhores em termos
das métricas ROUGE e BLANC. Assim, em certas situagdes, o Opinosis pode se mostrar
uma alternativa interessante (por consistir em um método mais simples e
computacionalmente mais barato).
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