skip to main content
10.1145/3625008.3625017acmotherconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Automating the audit of the Brazilian electronic ballot operation: A new dataset for 6DoF pose estimation of the voter terminal based on domain randomization

Published:06 January 2024Publication History

ABSTRACT

Performing detection and pose estimation of objects in six degrees of freedom (6-DoF) is a widely studied challenge in virtual and augmented reality, robotics and computer vision. For simulation and testing of the Brazilian voter terminal, its pose could allow automatic testing/auditing with robotics arms or virtual reality applications to simulate the voting process. For pose estimation using deep learning, it is necessary to generate large amounts of annotated real data, which is a costly task in time and resources. One way to avoid this issue is to create synthetic data through domain randomization, using 3D object modeling, to train the pose estimation technique with a reduced amount of annotated real data. In this work, domain randomization was utilized to generate a synthetic dataset, starting from a 3D model of the voter terminal, varying the lighting settings, camera position and distract insertion, to verify what impact this randomization has on training a single shot algorithm to perform the detection and pose estimation of this terminal in a different scenario. The new dataset with real and synthetic data from the voter terminal was built and will be publicly available.

References

  1. Blender Foundation (2002). 2022. About Blender. https://www.blender.org/about/.Google ScholarGoogle Scholar
  2. Autodesk. 2022. Inventor: software avançado de projeto mecânico para suas ideias mais ambiciosas. https://www.autodesk.com.br/products/inventor/overview.Google ScholarGoogle Scholar
  3. João Borrego, Atabak Dehban, Rui Figueiredo, Plinio Moreno, Alexandre Bernardino, and José Santos-Victor. 2018. Applying Domain Randomization to Synthetic Data for Object Category Detection. arxiv:1807.09834 [cs.CV]Google ScholarGoogle Scholar
  4. Kelvin Batista Da Cunha. 2019. Detecção de objetos em 6-DoF em tempo real utilizando técnicas de aprendizagem profunda. Master’s thesis. Universidade Federal de Pernambuco.Google ScholarGoogle Scholar
  5. Kelvin B. Da Cunha, Caio Brito, Lucas Valença, Lucas Figueiredo, Francisco Simões, and Veronica Teichrieb. 2022. The impact of domain randomization on cross-device monocular deep 6DoF detection. Pattern Recognition Letters 159 (2022), 224–231. https://doi.org/10.1016/j.patrec.2022.04.008Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. K. B. da Cunha, C. Brito, L. Valenca, F. Simoes, and V. Teichrieb. 2020. A Study on the Impact of Domain Randomization for Monocular Deep 6DoF Pose Estimation. In 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE Computer Society, Los Alamitos, CA, USA, 332–339. https://doi.org/10.1109/SIBGRAPI51738.2020.00052Google ScholarGoogle ScholarCross RefCross Ref
  7. F2Wang. 2021. Object Dataset Tools. https://github.com/F2Wang/ObjectDatasetTools.Google ScholarGoogle Scholar
  8. Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. 1993. Comparing images using the Hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence 15, 9 (1993), 850–863.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Kendall, M. Grimes, and R. Cipolla. 2015. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. In 2015 IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society, Los Alamitos, CA, USA, 2938–2946. https://doi.org/10.1109/ICCV.2015.336Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. Ramnath, S. N. Sinha, R. Szeliski, and E. Hsiao. 2014. Car make and model recognition using 3D curve alignment. In 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE Computer Society, Los Alamitos, CA, USA, 285–292. https://doi.org/10.1109/WACV.2014.6836087Google ScholarGoogle ScholarCross RefCross Ref
  11. Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6517–6525. https://doi.org/10.1109/CVPR.2017.690Google ScholarGoogle ScholarCross RefCross Ref
  12. Artem Rozantsev, Vincent Lepetit, and Pascal Fua. 2015. On rendering synthetic images for training an object detector. Computer Vision and Image Understanding 137 (2015), 24–37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Mallick Satya. 2016. Head Pose Estimation using OpenCV and Dlib. https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/Google ScholarGoogle Scholar
  14. Yongzhi Su, Jason Rambach, Alain Pagani, and Didier Stricker. 2021. Synpo-net—Accurate and fast CNN-based 6DoF object pose estimation using synthetic training. Sensors 21, 1 (2021), 300.Google ScholarGoogle ScholarCross RefCross Ref
  15. Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. 2018. Real-Time Seamless Single Shot 6D Object Pose Prediction. arxiv:1711.08848 [cs.CV]Google ScholarGoogle Scholar
  16. Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. 2017. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE Computer Society, Los Alamitos, CA, USA, 23–30. https://doi.org/10.1109/IROS.2017.8202133Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci, S. Boochoon, and S. Birchfield. 2018. Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE Computer Society, Los Alamitos, CA, USA, 1082–10828. https://doi.org/10.1109/CVPRW.2018.00143Google ScholarGoogle ScholarCross RefCross Ref
  18. TSE. 2020. Veja como é feita a auditoria de funcionamento das urnas eletrônicas. https://www.tse.jus.br/comunicacao/noticias/2020/Dezembro/veja-como-funciona-a-auditoria-de-funcionamento-das-urnas-eletronicas. (Accessed on 10/10/2022).Google ScholarGoogle Scholar
  19. TSE. 2022. Plenário do TSE triplica número de urnas eletrônicas auditadas no dia da eleição. https://www.tse.jus.br/comunicacao/noticias/2022/Marco/plenario-do-tse-triplica-base-amostral-de-urnas-eletronicas-auditadas-no-dia-da-eleicao. (Accessed on 2023/01/16).Google ScholarGoogle Scholar
  20. A. Veeraraghavan, R. Chellappa, O. Tuzel, and M. Liu. 2010. Fast directional chamfer matching. In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 1696–1703. https://doi.org/10.1109/CVPR.2010.5539837Google ScholarGoogle ScholarCross RefCross Ref
  21. Mei Wang and Weihong Deng. 2018. Deep visual domain adaptation: A survey. Neurocomputing 312 (2018), 135–153. https://doi.org/10.1016/j.neucom.2018.05.083Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Xu, K. Lin, G. Zhang, X. Wang, and H. Li. 2022. RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust Correspondence Field Estimation and Pose Optimization. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 14860–14870. https://doi.org/10.1109/CVPR52688.2022.01446Google ScholarGoogle ScholarCross RefCross Ref
  23. Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. 2023. Domain Generalization: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 4 (2023), 4396–4415. https://doi.org/10.1109/TPAMI.2022.3195549Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Automating the audit of the Brazilian electronic ballot operation: A new dataset for 6DoF pose estimation of the voter terminal based on domain randomization

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            SVR '23: Proceedings of the 25th Symposium on Virtual and Augmented Reality
            November 2023
            315 pages
            ISBN:9798400709432
            DOI:10.1145/3625008

            Copyright © 2023 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 6 January 2024

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited
          • Article Metrics

            • Downloads (Last 12 months)6
            • Downloads (Last 6 weeks)2

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format