
Robot training in virtual environments using
Reinforcement Learning techniques

Natália Souza Soares
Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil

nss2@cin.ufpe.br

João Marcelo X. N. Teixeira
Departamento de Eletrônica e Sistemas

Universidade Federal de Pernambuco
Recife, Brazil

jmxntg@gmail.com

Veronica Teichrieb
Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil
vt@cin.ufpe.br

Abstract—In this work, we propose a framework to train a
robot in a virtual environment using Reinforcement Learning
(RL) techniques and thus facilitating the use of this type of
approach in robotics. With our integrated solution for vir-
tual training, it is possible to programmatically change the
environment parameters, making it easy to implement domain
randomization techniques on-the-fly. We conducted experiments
with a TurtleBot 2i in an indoor navigation task with static
obstacle avoidance using an RL algorithm called Proximal Policy
Optimization (PPO). Our results show that even though the
training did not use any real data, the trained model was able
to generalize to different virtual environments and real-world
scenes.

Keywords—Reinforcement Learning, Robotics, Virtual Envi-
ronments, Simulation

I. INTRODUCTION

Robotics researchers are increasingly recurring to Rein-
forcement Learning (RL) techniques, due to the possibility
of achieving outstanding results where there appears to be no
obvious or easily programmable solution. Furthermore, it can
adapt to new, previously unseen, environments/tasks and is
robust to noise and errors [1]. With this type of learning, the
developer has to specify a scalar reward function that assesses
the robot’s performance, and, during the training process, the
agent ”learns alone” by trial and error, how to perform the
task by maximizing its rewards [2].

However, these algorithms have many details, which make
them sensitive. Thus, it is challenging to implement this type
of technique with an appropriate state and action representa-
tions, efficient observation space (i.e., sensing), an appropriate
reward function for the task, policy parameters, exploration
magnitude and strategy, and the initial policy, which is occa-
sionally necessary [1].

When it comes to RL in robotics, the robot system itself
is another challenging aspect, because it generally has high
dimensional degrees of freedom (DOF), continuous states and
actions, and high noise. Moreover, training by trial and error
with the real robot could seriously damage its hardware and
the environment.

This project aims to develop a framework capable of train-
ing robots in the virtual environment and then transferring the
model to the real world with none or few calibrations in sen-
sors or actuators. Thus, our solution should facilitate the use of

RL techniques in robotics. To validate our hypotheses, we have
conducted experiments with the Proximal Policy Optimization
(PPO) [3] algorithm, which is an RL method widely used in
robotics applications, to teach an indoor navigation task to a
TurtleBot 2i 1. This task has a high impact on the robotics
community, and the robot is a low-cost robotic platform with
open-source software.

II. RELATED WORK

A. Virtual Training

Training in a simulator allows interactions with a wide va-
riety of scenes and is much faster than real world experiences
due to parallel computing. Simulated experiences are also safer
because the agent can explore and learn without the risk of
harming itself or the environment [4].

However, it is challenging to simulate some real domains
with enough fidelity, and this often leads to a problem called
reality gap, i.e., the difference between the agent’s behavior
in a simulator and the real world.

To minimize this problem, some works use domain random-
ization [4]–[7]. The concept of this approach is to train an
agent in a variety of simulated environments to prepare for a
wide range of possible real-world scenarios without additional
training. In these papers, the authors trained the agent in
scenarios with different parameters, such as lighting, objects,
textures, and dimensions. Although they used realistic 3D
meshes, they have designed the set of environments manually.

B. Indoor Navigation

Indoor navigation environments have been the subject of
many recent computer vision works that apply RL techniques
in robotics [6]–[11]. One concern of this task is to avoid the
so-called sparse rewards environments because it is difficult
to perform a task if the agent does not have enough feedback
from the environment [9]. Therefore, the trained task is usually
short-range navigation in controlled environments. Regarding
the RL algorithm choice, the mentioned papers use at least
one of the following:
• Proximal Policy Optimization (PPO) [3]
• Deep Deterministic Policy Gradient (DDPG) [12]

1Official web page: link.

https://www.turtlebot.com/turtlebot2/


• Trust Region Policy Optimization (TRPO) [13]
• Long Short-Term Memory (LSTM) [14]
Among them, PPO stands out because it has all the benefits

of TRPO, another widely used method, but it is more general,
efficient, easy to implement, and easy to tune.

III. TECHNICAL BACKGROUND

In this section, we briefly present a theoretical background
regarding Reinforcement Learning and PPO, which was the
RL technique chosen for our proof of concept application.

A. Reinforcement Learning

In RL, one concern is with finding an optimal behaviour
such that the expected sum of rewards on a given task is
maximized. The behaviour of an agent is often referred to
as a sequence of actions or policy. Thus, an agent interacts
within an environment and learns to act optimally through
trial and error by maximizing scalar reward signals [2], [15].
This closed-loop interaction is illustrated in Figure 1. The
environment is modeled as a Markov Decision Process (MDP)
[2] with transition probability p(st+1|st, at) and in general a
non-deterministic reward function modeled as p(rt+1|st, at).
The agent may have full or partial access to its current state
st , based on which action at is chosen, resulting in a real-
valued reward r(st, at) = rt+1 ∼ p(rt+1|st, at), and a next
state transition st+1 ∼ p(st+1|st, at).

Fig. 1. The agent-environment interaction in an RL algorithm [2].

The main components of a reinforcement learning problem
are the following:
• State space: a choice of representation for current state
st in the given environment. For example, for an agent
aiming to balance a pole attached to a cart, the observable
current state could include the current position and ve-
locity of the cart and the angular position and velocity of
the pole, resulting in a four-dimensional vector st ∈ R4

[2].
• Action space: a choice of representation of an action
at that is performed by the agent on the environment.
For the same pole balancing example, the action could
be represented as a force applied horizontally to the cart
at ∈ R.

• Reward function: the reward function rt+1 = r(st, at)
ultimately must encode the task the agent is meant to
achieve, it represents a performance index to be opti-
mized. It can be an arbitrary deterministic real-valued

function of state and action, or a non-deterministic func-
tion, in which case r(st, at) ∼ p(rt+1|st, at). For in-
stance, to balance a pole, one could define a deterministic
reward function such that it returns −1 whenever balanc-
ing fails, and 0 otherwise. This means that maximum
reward is zero if the agent finds a stable policy, as a
sequence of forces is applied to a cart to keep the pole
balanced.

B. Proximal Policy Optimization

PPO algorithm is a policy gradient method that works in an
Actor-Critic Style. The Actor model chooses the agent action
based on the current state, and the Critic model evaluates
this action and gives feedback to the first one. The main
contributions of this method are: improves training stability,
through limitations in policy updates, and improves training
efficiency by allowing multiple iterations of stochastic gradient
ascent during policy updates.

The objective function of PPO (Equation 3) aggregates the
objective function of the Actor model (Equation 1) and the
Critic model (Equation 2). Êt is an expectation operator,
i.e., an empirical average over a finite batch of samples
(minibatch), θ is the stochastic policy, i.e., a neural network
that receives inputs from the environment and returns the
actions to be taken, and Ât is the advantage function. This
function evaluates how well the action taken by the agent was
in comparison to what was estimated by the Critic model. For
that purpose, one may use a version of the algorithm known
as Generalized Advantage Estimation (GAE).

Lt
CLIP (θ) = Êt[min(rt(θ) · Ât,

clip(rt(θ), 1− ε, 1 + ε) · Ât)] (1)

Lt
V F (θ) = (R− V (st)) (2)

Lt
PPO = Êt[Lt

CLIP (θ)− c1 ·LtV F (θ)+ c2 ·S[πθ](st)] (3)

In this version of the GAE algorithm, as shown in Equa-
tion 4, a delta value δ(t) is defined for each instant t in the
given interval [0, T]. This value is the difference between
the received reward (rt) and its estimated value by the Critic
model (V (st)), incorporated to a fraction of the estimated
value of the next state (V (st+1)). The future reward values
received a discount because a current reward is more valuable
than a future one. The delta values are then weighted aggre-
gated to calculate Ât, as shown in Equation 5. These weights
reduce the influence of the estimated values, which can be
noisy.

δt = rt + γ · V (st+1)− V (st) (4)

Ât = δt + (γ · λ) · δt+1 + ...+ (γ · λ)T−t+1 · δT−1 (5)



The loss function presented in Equation 1 is a lower bound
version of the vanilla policy gradient method since it calculates
the minimum between its objective function and a surrogate
one. This function improves training stability by limiting the
policy updates at each iteration. It uses the probability ratio
rt(θ) = πθ(at|st)

πθold(at|st) , and the hyperparameter ε to clip the
values of rt(θ) to the safe interval [1− ε, 1+ ε]. This prevents
changes in the policy that may lead to worse behavior, which
is common in vanilla policy gradient methods with large step
size values.

The loss function presented in Equation 2 is a mean square
error of the estimated and real reward values. Equation 3 joins
these two objective functions, adding a term of randomness,
called entropy term, which ensures that the agent performs
enough exploration during training.

IV. FRAMEWORK

Our proposed framework, illustrated in Figure 2, was de-
veloped in Python 3 using a notebook with Ubuntu 18.04 and
consist of three main modules:
• Back end: this module comprehends several RL algo-

rithms through RLlib [16], such as PPO and TRPO. It also
contains implementations of training environments, and
back end support for physics engines, robots, sensors, and
actuators. The module offers support to two ML training
libraries: TensorFlow and Pytorch.

• Communication: this module uses a version of ROS 2
(Dashing) [17] to communicate the back end with the
simulation (front end) or with the real robot.

• Simulation: this module is the front end of the frame-
work. It uses Gazebo with ODE to simulate the robot
and its behaviors. It is also possible to run the training
without the graphic interface.

Fig. 2. Proposed framework. On the left side, is the module with the learning
algorithms and back-end support. At the center, is the module responsible for
the communication between the learning algorithm and the agent, supported
by ROS. On the right side, there is the visualization and physics engine, which
simulate the robot in the virtual environment.

The structure of our framework is described in more detail
in the class diagram shown in Figure 3. We have implemented
some base classes (shown in green in the diagram) to facilitate
the implementation of new environments, robots, physics
engines, and scenarios. It is also possible to programmatically
change the training and environment parameters, making it
easy to implement domain randomization techniques on-the-
fly. We implemented some objects, sensors, actuators, robots,
and environments that were used in the experiments. They are
presented in blue in the class diagram exhibited in Figure 3.

Fig. 3. Class diagram of the framework. The objects in blue were implemented
for the proposed training/test environments.

A. Training Environment - Indoor Navigation with Obstacle
Avoidance

Regarding the indoor navigation task proposed, we have
simulated a room with objects inside, used as static obstacles.
The training only requires information about positions and
velocities provided by the physics engine. However, we have
also used the initial environment description, i.e., its dimen-
sions, name, and positions of the objects and the robot, to
programmatically implement the graphic interface shown in
Figure 4.

To reduce the dimensions of the neural network’s inputs, the
observation space of the robot was represented by a vector with
the eight shortest distances read from a depth camera. We used
this vector to train the model responsible for learning what
action to take under a particular observed state, the so-called
Actor model. This model returns a vector of probabilities of
length equals to three, which rates the actions in the action
space: go forward, to the right, or the left.

We designed the reward function, outlined in Table I, to
severely penalize collisions and near-collisions. The reward
function has a discount for navigation because if we give a
positive reward for the robot just for walking, it could also
end up spinning around its axis, to avoid collisions as much
as possible [9]. Moreover, sideways navigation could lead to
the robot spinning around its axis. Therefore, to prevent this
behavior, we have a greater punishment for these actions than
forwarding navigation. We also give the agent a cumulative



Fig. 4. Layout of the environment used for training the model. The robot is
initially located in the center of the virtual environment.

bonus if it gets a positive reward, and it is not near any
obstacle. In the same way, we give an extra punishment if
it is near some object and going forward to hit it.

TABLE I
REWARD VALUE, r(st, at), GIVEN THE STATE AND ACTION.

State (st) Action (at) Reward Value

Collision detected Forward,
left or right −100

No collision detected
and near from obstacles Forward 0.4− 0.2(1/min(st))

No collision detected
and near from obstacles Left or right 0.6− 0.2(1/min(st))

No collision detected
and far from obstacles Forward 0.6− 0.2(1/min(st))

No collision detected
and far from obstacles Left or right 0.4− 0.2(1/min(st))

V. EXPERIMENTS AND RESULTS

Our framework was validated through training using the
PPO algorithm and a TurtleBot 2i. We used the virtual
environment for an indoor navigation task with static obstacle
avoidance, described in subsection IV-A, as our main case
study because of its vast popularity within the robotics com-
munity, as mentioned in section I.

A. Training Setup

The robot was trained with the hyperparameters showed in
Table II. We have initially set these values accordingly to
those mentioned in [3] and them performing a fine tuning.
As stopping criterion, we used the maximum number of
Trialsmax = 1, 500. The training was performed on CPU
and took about 2 hours in a notebook with an Intel® Core™
i7-7500U CPU @ 2.70GHz × 4 and 16GB of RAM.

Regarding the Actor model and the Critic model, we chose
to use a Multilayer Perceptron (MLP) architecture commonly
used in literature [18]. This neural network has only two dense
layers with 64 neurons and uses as an activation function, the
LeakyReLU . The difference between these two networks is
in the output layer. As the Actor model returns a probability
distribution, its output layer has three neurons (representing the
three possible actions), and its activation function is Softmax.
The Critic model, on the other hand, outputs a real number.
Therefore, its output layer has only a single neuron, and its
activation function is Tanh.

TABLE II
VALUES OF PPO HYPERPARAMETERS USED IN TRAINING.

Hyperparameter Description Value
Num. iterations
(Trials)

Number of trials of learning
(model updates). 1, 500

Horizon (T )

Limit for the amount of interactions
with the environment (episodes)

before the policy update. If the horizon
is reached, a reward is calculated, but
the environment is not reset.

100

Learning rate The step size at each iteration while
updating the model. 0.001

Num. epochs Number of times to perform stochastic
gradient ascent updates. 10

Batch size The number of training examples used
in one stochastic gradient ascent update. 128

Discount
factor (γ)

MDP discount factor. Used to give more
importance to the most recent rewards. 0.99

GAE
parameter (λ)

Smoothing parameter used in the GAE
algorithm. Used to reduce the training
variance, making it more stable.

0.95

Epsilon (ε)
Clipping parameter. Used to keep the
step from the old policy to the new
policy within a safe range.

0.2

B. Virtual Training

As illustrated in Figure 5, the robot learns, in simulation, a
policy that returns a good enough reward mean per episode, so
it does not make significant policy updates. Since the reward
means has reached a plateau, we could conclude that the
training converges, and the robot has learned how to navigate
without colliding with any obstacle.

Fig. 5. Reward mean value received per episode during the training of an
indoor navigation task with a TurtleBot 2i and the PPO algorithm.

C. Virtual and Real Inference

After training in the virtual environment, we tested the
trained model in a new scenario, shown in Figure 6. This



scenario was reproduced in the virtual and real world. As illus-
trated in Figure 7, in both cases, the TurtleBot 2i autonomously
navigated while avoiding the obstacles in the way. This result
is also available on video. However, before testing the model
in the real robot, it was necessary to calibrate the value of
speed commands sent to it, because they were not enough to
move the robot in the real world.

Fig. 6. Layout of the environment used to make the inference of the trained
model.

Fig. 7. Images captured during the inference of the trained model in a
new environment in the real world (top), and in simulation (bottom). Despite
having been trained only in a different simulated scenario, the TurtleBot 2i
was able to navigate avoiding the static obstacles in both environments, with
a similar behavior.

With these experiments, it was possible to validate the
developed prototype’s effectiveness, since we efficiently use
an RL technique to train a robot and test the trained model,
both in simulation and reality, using a single platform. Another
positive point was the robustness of the trained model, which
was able to obtain good results in a new scenario and did
not present severe gaps between the simulated and the real
behavior.

VI. CONCLUSION

We have presented a framework built upon adaptations of
existing technologies and solutions proposed to correlated
problems to apply RL techniques in robotics easily. We
conducted experiments with the PPO algorithm, an indoor
navigation task, and the TurtleBot 2i that help to validate the
hypothesis that virtual training in an integrated framework

could facilitate the use of RL techniques in robotics. The
trained model obtained remarkable results in totally new
scenarios and did not present significant gaps between the
robot’s behavior on simulation and real environments.

As a limitation of our work, we can mention the inference
in the real robot without the need to use an external computer.
With our current solution, the model’s efficiency was impaired
when deployed on the Turtlebot 2i. Thus, we intend to opti-
mize it so that it can be successfully applied in edge devices as
future work. We are also planning to implement new features,
such as dynamic objects and new training environments with
different lighting conditions and sensors noise.

REFERENCES

[1] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning
in robotics: Applications and real-world challenges,” Robotics, vol. 2,
no. 3, pp. 122–148, 2013. 1

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018. 1, 2

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017. 1, 4

[4] K. Bousmalis and S. Levine, “Closing the simulation-to-reality gap for
deep robotic learning,” Google Research Blog, 2017. 1

[5] F. Sadeghi, A. Toshev, E. Jang, and S. Levine, “Sim2real view invariant
visual servoing by recurrent control,” arXiv preprint arXiv:1712.07642,
2017. 1

[6] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” arXiv preprint arXiv:1611.04201, 2016. 1

[7] J. Kua, N. Corso, and A. Zakhor, “Automatic loop closure detection
using multiple cameras for 3d indoor localization,” in Computational
Imaging X, vol. 8296, p. 82960V, International Society for Optics and
Photonics, 2012. 1

[8] A. Francis, A. Faust, H.-T. Chiang, J. Hsu, J. C. Kew, M. Fiser,
and T.-W. E. Lee, “Long-range indoor navigation with prm-rl,” IEEE
Transactions on Robotics, 2020. 1

[9] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navigation
behaviors end-to-end with autorl,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 2007–2014, 2019. 1, 3

[10] L. Xie, S. Wang, S. Rosa, A. Markham, and N. Trigoni, “Learning
with training wheels: speeding up training with a simple controller for
deep reinforcement learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), pp. 6276–6283, IEEE, 2018. 1

[11] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven
exploration for mapless navigation with deep reinforcement learning,”
arXiv preprint arXiv:1804.00456, 2018. 1

[12] S. Li, Y. Wu, X. Cui, H. Dong, F. Fang, and S. Russell, “Robust
multi-agent reinforcement learning via minimax deep deterministic
policy gradient,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 4213–4220, 2019. 1

[13] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, pp. 1889–1897, 2015. 2

[14] B. Bakker, “Reinforcement learning with long short-term memory,” in
Advances in neural information processing systems, pp. 1475–1482,
2002. 2

[15] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013. 2

[16] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed
reinforcement learning,” in International Conference on Machine Learn-
ing, pp. 3053–3062, 2018. 3

[17] ROS.org, “The robot operating system (ros),” 2017. 3
[18] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and

D. Meger, “Deep reinforcement learning that matters,” arXiv preprint
arXiv:1709.06560, 2017. 4

https://drive.google.com/file/d/1MrvLcPJPAJk9qL96q6k_6uGBgs5RJogt/view?usp=sharing

	Introduction
	Related Work
	Virtual Training
	Indoor Navigation

	Technical Background
	Reinforcement Learning
	Proximal Policy Optimization

	Framework
	Training Environment - Indoor Navigation with Obstacle Avoidance

	Experiments and Results
	Training Setup
	Virtual Training
	Virtual and Real Inference

	Conclusion
	References

