
Analyzing embedded pose estimation solutions for
human behaviour understanding

José Gomes da Silva Neto
Universidade Federal de Pernambuco

Voxar Labs
Recife, Brazil

jgsn@cin.ufpe.br

João Marcelo Xavier Natário Teixeira
Universidade Federal de Pernambuco

Voxar Labs
Recife, Brazil

jmxnt@cin.ufpe.br

Veronica Teichrieb
Universidade Federal de Pernambuco

Voxar Labs
Recife, Brazil
vt@cin.ufpe.br

Abstract—This work represents the first phase of a more
complete work that has the goal of using RGB images as
information to make analyses of human behavior. In this phase,
we developed a prototype of hardware/software, capable of esti-
mating human pose using only RGB information. The equipment
chosen was the NVIDIA Jetson Nano, known for having have a
better computational performance compared to Raspberry pi and
Arduino microcontoller alternatives. In the search for important
algorithms for pose estimation, applied to the limited platform as
the Jetson Nano, we found important works such as HyperPose,
TensorRT Pose Estimation, and the used on the project, tf-pose-
estimation. The results show a low FPS performance of the Jetson
Nano, using the chosen algorithm, compared to related hardware,
such as the NVIDIA Jetson TX2 and NVIDIA Jetson Xavier.

Index Terms—Jetson Nano, RGB, Human pose Estimation,
NVIDIA

I. INTRODUCTION

Computer vision techniques that make use of depth im-
ages are a growing area of research, mainly because of the
vast possibilities of applications, including security, industry,
marketing, and mobile robots and cars. But to use these
techniques, it is essential to have more high-level hardware,
such as RGB-D cameras.

Search for an alternative that facilitates the use of this kind
of information, since depth capture devices are make expensive
than rgb cameras, our project aims to develop and evaluate a
prototype of hardware plus software capable of capturing RGB
images and generating a report of the behavior of the people
tracked in the images. This solution can be essential in security
applications because most security cameras are only RGB, so
they do not have depth information.

This paper will present the first part of the project. The
tracking of people using RGB images. For that phase, the
initial point was to choose the hardware. That has to be small
enough to make the solution portable and practical. It requires
a high computational performance because of the analytics of
the scene. It is essential to have deep learning as a possible
solution. To do that, the hardware should have a good CPU
and GPU performance. The conclusion analyzing all the needs
was the open-source NVIDIA Jetson Nano. It has a 4GB 64-
bit LPDDR4 @ 25.6GB/s of memory RAM and a Quad-Core
Arm A57 @ 1.43 GHz processor. That shows it is a more

Identify applicable funding agency here. If none, delete this.

suitable choice the computer Raspberry Pi or an the Arduino
microcontroller .

The remainder of this paper is structured as follows. Section
2 list some of the related works found. Section 3 details
the hardware chosen. Section 4 describes the methodology
adopted while section 5 talks about the results obtained. At
last, Section 6 concludes this first phase of the project.

II. RELATED WORK

This project has two important parts: Hardware and Soft-
ware. After choosing the hardware, we focused on making a
search on state-of-the-art algorithms for human pose detection.
In this search it is important that the algorithms have the
capacity to be used on a limited execution platform, as the
Jetson Nano. An important search made by our work is looking
for works where is compared the performance of the Jetson
Nano with other hardwares, using different algorithms, that
will give us one idea of what is the performance level expected
by the Jetson Nano.

To estimate human pose (in 2D or 3D) refers to locate
the anatomical key parts of the individual ([5], [2], [1],
[7]). Estimating the pose of multiple people using images,
mainly where they are doing some specific activity, is really
challenging. Each image may have an unknown number of
people in any position and size. A normal approach to this
problem ([8], [6]) is to use a person detection algorithm and
after a pose estimation algorithm for each detected person.
These Top-Down approaches are related with works that focus
on pose detection for one person([3], [10]).

The first analysed work was [9], in which the authors
propose a neural network and a tensor decomposition for pose
estimation. In this work it is possible to do the detection of
poses in real time for multiple people. The test was made using
an NVIDIA Titan Xp GPU, and it showed a 30PFS frame rate.

Another important work is [4], which was the first real-time
multi-person system to jointly detect human body, hand, face,
and foot keypoints (in total 135 keypoints) on single images.
The test achieved about 22 FPS running in a machine with an
NVIDIA GTX 1080 Ti.

To refine the search, we started looking for algorithms tested
on Jetson Nano or similar hardware. One of the initial results

was tf-pose-estimation 1, a human pose estimation algorithm
implemented using Tensorflow. It also provides several vari-
ants that have some changes to the network structure for
real-time processing on the CPU or low-power embedded
devices, that make it a very important work in our context.
This algorithm was tested on Jetson Nano TX2 and Macbook
Pro 15”.

Another important work foung is TensorRT Pose Estimation
2. This project features multi-instance pose estimation acceler-
ated by NVIDIA TensorRT. It is ideal for applications where
low latency is necessary. This work was tested in NVIDIA
Jetson Nano and NVIDIA Jetson Xavier, which makes it very
important to have an expectation about the performance of
NVIDIA Jetson Nano compared with other hardware.

A most recent project is HyperPose 3, a library for building
human pose estimation systems that can efficiently operate in
the wild. This work is important because it makeperformance
comparasion with the tf-pose estimation cited before.

III. HARDWARE DETAILING

It is crucial to evaluate the performance of the Jetson Nano,
compared to other possible hardware. Following the NVIDIA
Jetson line, we have two hardware, which are already used as
a benchmark for the Jetson Nano, in the works cited in the
related works section. They are NVIDIA Jetson Xavier and
NVIDIA Jetson TX2, and their specifications are shown in
table I. The corresponding performances are shown in Table
II.

IV. METHODOLOGY

In the first phase of this project, the goal is to develop a
hardware and software solution, capable of estimating human
pose. For that was chosen the NVIDIA Jetson Nano as the
hardware and the algorithm chosen was the tf-pose-estimation,
to be a variation of Open Pose, a widely used algorithm in the
human pose estimation task.

The tf-pose-estimation has a few important dependencies:
Python3; Tensorflow 1.4.1+; opencv3; protobuf; python3-tk;
slidingwindow. After installing all these dependencies, you
can install the tf-pose-estimation library. These dependencies
highlight the need to have hardware of high considerable
computational performance.

It is important to highlight the three possible model graphs:
mobilenetThin (trained in 432x368); mobilenetV2Large
(trained in 432x368); mobilenetV2Small (trained in 432x368).
Each model graph can be used, but some can demand more
computational performance than another, and by consequence,
the least demanding are less accurate. The input for tf-pose-
estimation are of two types: Images or video. The outputs are a
heatmap, Vectormap-x; Vectormap-y; Pose estimation, as seen
in Figure 1, for images, and an FPS information with the pose
estimation for video.

1https://github.com/ildoonet/tf-pose-estimation
2https://github.com/NVIDIA-AI-IOT/trt pose
3https://github.com/tensorlayer/hyperpose

The tests were performed in two phases: Images as input;
Video as input, for all these phases was evaluated the perfor-
mance, in this case, the FPS, and the accuracy. For the case
they were using images as input we used images with multi-
person and people with occlusion of some part of their body.
It also was tested on four different graph models, to check
how was the real impact of using each one. The performance
results were also compared with the benchmark provided by
the project.

V. RESULTS

The results are divided into two phases: Images as input
and Video as input. In the first case, we will show only the
result of the pose estimation, because it is the most important
information for our project.

A. Image as Input

In this phase, we chose three types of pictures: 1. One
person without occlusion; 2. One person with occlusion; 3.
Multiple people without occlusion; 4. Multiple people with
occlusion. The results obtained are shown in Figures 2, 3, 4
and 5.

B. Video as Input

In this phase, we evaluate based on FPS, to each graph
model, to determine how is the performance of each one in the
Jetson Nano, and be able to compare that with the performance
of the Jetson TX2. The performance results are shown in Table
III.

C. Trained models Evaluation

In this test, we evaluated the accuracy of each one of the
three possible Trained modelss available on tf-pose-estimation
algorithm: 1. MobilenetThin; 2. mobilenetV2Large; 3. mo-
bilenetV2Small. To evaluate the accuracy, we ran each Trained
models with the same images. The chosen images are with
one people without occlusion and multiple persons without
occlusion. The results can be seen in Figures 6, 7, 8, 9, 10
and 11.

VI. CONCLUSION

This work is the first phase of a project that has the goal of
developing a smart camera applied to human behavior recogni-
tion. This initial phase focused on improving the prototype of
hardware and software, capable of estimating human pose. The
hardware chosen was the NVIDIA Jetson Nano for its good
computational performance and being portable and practical.
After that, we did a review on the state-of-art of works of
human pose estimation to find an algorithm capable of being
used on a limited platform of development. The test focuses
on evaluating the algorithm performance on Jetson Nano.

It is possible to conclude in the case where images are
used as input, the algorithm deals well with situations with-
out occlusion, even in multi-person cases. But in situations
with occlusion, the performance is very compromised. Where
videos are used as input, the FPS is very low compared with
other hardware; this was already expected due to the work

TABLE I
COMPARATIVE HARDWARE’S SPECIFICATION

Specification Hardware
Jetson TX2 Jetson Xavier Jetson Nano

AI Performance 1.33 TFLOPs 6 TFLOPs 427 GFLOPs
GPU 256-core NVIDIA Pascal 512-Core GPU with Tensor Cores 128-core NVIDIA Maxwell
CPU Dual-core Denver 2 64-bit 8-Core ARM v8.2 64-Bit Quad-Core ARM Cortex-A57 MPCore

Memory 4 GB 128-bit LPDDR 51,2GB/s 32 GB 256-Bit LPDDR4x — 137 GB/s 4 GB 64-bit LPDDR4 25,6GB/s

Fig. 1. Tf-pose-estimation output.

TABLE II
COMPARATIVE HARDWARE’S PERFORMANCE

Algorithm Hardware
Jetson TX2 Jetson Xavier Jetson Nano

tf-pose-estimation 10 FPS - -
TrT Pose Estimation - 251 FPS 22 FPS

TABLE III
JETSON NANO PERFORMANCE ON TF-POSE-ESTIOMATION ALGORITHM.

Hardware Trained models Performance
Jetson Nano MobilenetThin 1.6 - 2.9 FPS
Jetson Nano mobilenetV2Large 1,8 - 2.5 FPS
Jetson Nano mobilenetV2Smal 1.5 - 3.9 FPS

findings in the state-of-art review. It is possible to improve the
FPS frame rate, changing the model graphic, but the accuracy
will be compromised. The FPS performance also can be
improved using other possibles algorithms as the HyperPose.
The witch has a performance ten times better compared with

Fig. 2. One person without occlusion.

Fig. 3. One person with occlusion.

Fig. 4. Multiple persons without occlusion.

Fig. 5. Multiple persons with occlusion.

the tf-pose-estimation.
The next steps of the project are to improve the algorithm

performance, if not possible, test other available algorithms,
and begin the smart phase of the project. That means associate
the human pose estimation in real-time with artificial intelli-
gence to make possible behavior analytics.

Fig. 6. tf-pose-estimation running with MobilenetThin Trained models .

Fig. 7. tf-pose-estimation running with MobilenetThin Trained models.

REFERENCES

[1] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. Pictorial structures
revisited: People detection and articulated pose estimation. In 2009 IEEE
conference on computer vision and pattern recognition, pages 1014–
1021. IEEE, 2009.

[2] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. Monocular 3d
pose estimation and tracking by detection. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages
623–630. IEEE, 2010.

[3] Vasileios Belagiannis and Andrew Zisserman. Recurrent human pose
estimation. In 2017 12th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2017), pages 468–475. IEEE, 2017.

[4] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Openpose: realtime multi-person 2d pose estimation using part affinity
fields. arXiv preprint arXiv:1812.08008, 2018.

Fig. 8. tf-pose-estimation running with mobilenetV2Large Trained models.

Fig. 9. tf-pose-estimation running with mobilenetV2Large Trained models.

[5] Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial structures for
object recognition. International journal of computer vision, 61(1):55–
79, 2005.

[6] Georgia Gkioxari, Bharath Hariharan, Ross Girshick, and Jitendra Malik.
Using k-poselets for detecting people and localizing their keypoints. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3582–3589, 2014.

[7] Leonid Pishchulin, Mykhaylo Andriluka, Peter Gehler, and Bernt
Schiele. Poselet conditioned pictorial structures. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
588–595, 2013.

[8] Leonid Pishchulin, Arjun Jain, Mykhaylo Andriluka, Thorsten
Thormählen, and Bernt Schiele. Articulated people detection and pose
estimation: Reshaping the future. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3178–3185. IEEE, 2012.

[9] Luiz José Schirmer Silva, Djalma Lúcio Soares da Silva, Alberto Bar-

Fig. 10. tf-pose-estimation running with mobilenetV2Small Trained models.

Fig. 11. tf-pose-estimation running with mobilenetV2Small Trained models.

bosa Raposo, Luiz Velho, and Hélio Côrtes Vieira Lopes. Tensorpose:
Real-time pose estimation for interactive applications. Computers &
Graphics, 85:1–14, 2019.

[10] Alexander Toshev and Christian Szegedy. Deeppose: Human pose
estimation via deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1653–
1660, 2014.

