Prototype for Project North Star Validation Protótipo para Validação do Project North Star

Franklin L. N. Fracaro¹, Gustavo C. Domingues¹, Fabiana F. F. Peres¹, Claudio R. M. Maurício¹

¹Centro de Engenharias e Ciências Exatas – Universidade Estadual do Oeste do Paraná – Foz do Iguaçu, PR – Brazil

{frafracaro, gustavo.domingues, ffrata, crmmauricio}@gmail.com

Abstract. Augmented reality has significant potential for application in the teaching and learning process, serving as an alternative to assist students who struggle with traditional approaches to learning. Exploratory learning is a pedagogical approach that can be employed in an augmented reality-based system, as it channels learners' curiosity in a playful manner. Thus, this article outlines the development of a prototype tailored for the field of astronomy education, utilizing the Project North Star MK1 augmented reality glasses.

Resumo. A realidade aumentada tem um grande potencial para aplicação no processo de ensino-aprendizagem, sendo uma alternativa para auxiliar estudantes com dificuldades em aprender através de abordagens clássicas. O aprendizado exploratório é uma abordagem pedagógica que pode ser utilizada em um sistema baseado em realidade aumentada, já que direciona a curiosidade dos aprendizes de modo lúdico. Desse modo, este artigo descreve o desenvolvimento de um protótipo de validação, voltado para a área de educação de astronomia, fazendo uso do óculos de realidade aumentada Project North Star MK1.

1. Introdução

A Realidade Aumentada (RA) é a combinação de elementos sintéticos 3D, gerados por computação gráfica, com o ambiente real de forma com que o usuário possa interagir com esses. Tanto a combinação quanto a interação devem ocorrer em tempo real [Azuma 1997]. Sob esta ótica, pode-se entender a RA como a ampliação da percepção humana. Esta definição de RA não impõem limitações quanto às tecnologias utilizadas e por isso existem diversas disponíveis para tal, como *Head Mounted Displays* (HMD) [Billinghurst et al. 2015].

Os HMDs são acessórios equipados na cabeça que, a partir da classificação do método utilizado, posicionam as informações na visão do usuário [Carmigniani et al. 2011]. Existem duas classificações, sendo elas as *video see-through* e *Optical See-Through* (OST). O primeiro exige que câmeras capturem o mundo real onde serão combinados os objetos virtuais. Já a segunda utiliza sistema de espelhamento com lentes especiais, a qual utiliza de técnicas de reflexão e ilusão para inserir elementos virtuais [Azuma 1997].

Uma das maiores dificuldades para o estudo da RA utilizando a abordagem OST é o alto custo dos dispositivos disponíveis comercialmente. Nesse sentido, embora diversas

propostas de dispositivos tecnológicos tenham surgido ao longo dos anos, as limitações quanto à forma de visualização, interação, poder de processamento e principalmente custo, tem impedido a disseminação desta tecnologia. Nesse contexto os projetos abertos são financeiramente mais acessíveis do que os dispositivos comerciais.

O Project North Star [LeapMotion 2023] é um projeto aberto com licença GPL 3.0 [GNU 2023] de um dispositivo de RA do tipo OST de baixo custo, que utiliza impressão 3D e componentes eletrônicos básicos encontrados em lojas de equipamentos eletrônicos. O projeto foi disponibilizado pela *startup* desenvolvedora do *Leap Motion Controller* [UltraLeap 2023a] em junho de 2018.

O grupo de Pesquisa DETAE desenvolveu a versão simplificada do *Project North Star* MK1 [UltraLeap 2023b], com o objetivo de obter o acesso a esta tecnologia de baixo custo e possibilitar experimentá-la no contexto da educação [Fracaro et al. 2019]. A RA tem um grande potencial para contribuir no processo de ensino-aprendizagem, auxiliando estudantes a desenvolver habilidades e conhecimentos, podendo inclusive ajudar aqueles que possuem dificuldades em aprender através de abordagens clássicas. Dentre as diferentes abordagens pedagógicas que podem ser utilizadas em um sistema baseado em RA pode-se citar o aprendizado baseado em jogos, simulações, aprendizado baseado na solução de problemas e na exploração [Wu et al. 2013]. Este artigo descreve o desenvolvimento de um protótipo voltado para a área de educação, com intuito de futura aplicação e testes na educação básica, para validação do óculos Project North Star MK1, utilizando a abordagem exploratória.

2. Protótipo

Entre os diversas áreas de conhecimento interessantes para explorar com a RA, escolheuse utilizar a astronomia, mais especificamente o Sistema Solar como tema para o protótipo. A Astronomia, de acordo com as orientações da Base Nacional Comum Curricular (BNCC) [Brasil 2023], é uma das ciências fundamentais para o ensino básico brasileiro. Um dos conteúdos centrais recomendados é a busca e organização de informações sobre cometas, planetas e satélites do sistema Solar com o objetivo de ajudar a elaborar uma concepção de Universo. Sob esta ótica, percebe-se dentro destas diretrizes um foco muito alto em estudos dirigidos e exploratórios, de forma que o papel do educador seja direcionar a curiosidade dos aprendizes em relação ao universo, com objetivo de entender o funcionamento desses sistemas, e não decorá-los. Levando em consideração a BNCC procurou-se extrair diversas informações relevantes sobre o Sistema Solar, a partir do conteúdo do website da Nasa [NASA 2023] para desenvolvimento deste protótipo.

2.1. Materiais e Métodos

Para o desenvolvimento da solução, foram utilizados o óculos de RA Project North Star MK1 desenvolvido pelo grupo DEATE [Fracaro et al. 2019]; Unity 3D; Visual Studio Code; Arduino IDE; Arduino Nano; MIMU (MPU-9250/6500); Um metro de cabos de fios par-trançados; Conector mini-USB de 2 metros; Duas mini protoboards (170 pontos); Biblioteca MPU-9250; Biblioteca Arduino Serial Command; Leap Motion Software Developer Kit 4.0.0 + 52238; Leap Motion Unity Core Modules 4.4.0. Como metodologia de desenvolvimento do protótipo foi utilizado um processo *ad-hoc* iterativo e incremental conforme mostrado na Figura 1, baseando-se no processo unificado – análise de requisitos, documentação e prototipação [Maxim and PRESSMAN 2021].

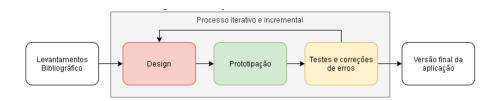


Figura 1. Etapas do desenvolvimento.

A partir das informações obtidas através dos levantamentos bibliográficos foi possível dividir o processo de desenvolvimento em três etapas principais: design, prototipação, testes e correções de erros. Durante a etapa de design, fabricaram-se protótipos de baixa fidelidade permitindo verificar como a interface gráfica se comportaria de forma rápida, sem comprometer muito o tempo de desenvolvimento. A fase de prototipação consistiu na solidificação das decisões de design no formato de código, elicitou-se os requisitos da aplicação e as tarefas atreladas. Conforme partes da aplicação entravam na fase de testes, foi possível validar o funcionamento do que foi desenvolvido com possíveis erros que remetem ao processo de design sendo utilizados como ponto de partida para uma nova iteração.

2.2. Desenvolvimento do protótipo para astronomia

O protótipo contém dois módulos de apresentação, sendo que um realiza a exibição do sistema solar completo, incluindo as rotas de translação e rotação, e o outro demonstra as informações de cada planeta de modo isolado.

Para a transição entre módulos, a fim de providenciar maior conforto e ergonomia, foi utilizado o menu vestível virtualmente (*Virtually wearable menu*), o qual permite ao usuário um acesso para o menu de opções mais dinâmico, sendo necessário apenas uma interação especifica para aparecer, conforme é visto na Figura 2. Além disso, o menu de controle permite a manipulação da opção selecionada, permitindo para o primeiro módulo apresentação dos nomes de cada planeta e a pausa da movimentação do sistema, e para o segundo a transição entre planetas e a demostração das informações do planeta escolhido.

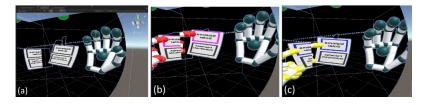


Figura 2. Sinais visuais do botão: (a) botão normal, (b) botão próximo à mão e (c) botão selecionado.

3. Conclusões

Durante o desenvolvimento do conteúdo educacional, pode-se perceber o possível potencial para a utilização deste tipo de tecnologia para complementar o processo de ensino-aprendizagem, indo além de ser somente uma forma diferente de apresentar conteúdo educacional, o que será averiguado em futuras pesquisas e protocolos de testes. A RA permite uma oportunidade única de interação com materiais que em muitos casos estariam fora

do alcance de uma escola normal, seja por razões financeiras e/ou pela impraticabilidade em trazer estes elementos para dentro da sala de aula.

Nesse sentido, deve-se atentar que a aplicação desenvolvida apesar de poder ser utilizada sem nenhum planejamento, cogita-se que seu potencial máximo possa ser alcançado caso ela seja parte de uma atividade pedagógica com objetivos específicos, sem deixar de lado a exploração espontânea que pode ocorrer por parte do usuário. Desse modo, permitindo assim uma melhor integração entre tecnologia, educador, aprendizes e o conteúdo abordado pela aplicação.

Por fim, as diversas diretrizes de design de aplicações de RA educacionais e de usabilidade, influenciaram positivamente no processo de desenvolvimento. Assim, permitindo analisar de forma mais crítica como a ergonomia do óculos poderia afetar o usuário ao utilizar algumas funcionalidades da aplicação, como certas interações poderiam causar desconfortos além de terem permitido enxergar a necessidade do planejamento de uma experiência de uso geral para o usuário, de forma que gestos, interações e elementos gráficos sejam consistentes na aplicação inteira.

References

- Azuma, R. T. (1997). A survey of augmented reality. *Presence: teleoperators & virtual environments*, 6(4):355–385.
- Billinghurst, M., Clark, A., Lee, G., et al. (2015). A survey of augmented reality. *Foundations and Trends® in Human–Computer Interaction*, 8(2-3):73–272.
- Brasil (2023). Base nacional comum curricula. http://basenacionalcomum.mec.gov.br.
- Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., and Ivkovic, M. (2011). Augmented reality technologies, systems and applications. *Multimedia tools and applications*, 51:341–377.
- Fracaro, F. L. N., Peres, F. F. F., and Mauricio, C. R. M. (2019). Montando o project north star: Um dispositivo de visualização de baixo custo baseado em visao optica direta. In *Anais Estendidos do XXI Simpósio de Realidade Virtual e Aumentada*, pages 23–24. SBC.
- GNU (2023). General public license v3.0. https://www.gnu.org/licenses/gpl-3.0.html.
- LeapMotion (2023). About project north star. https://docs.projectnorthstar.org.
- Maxim, B. and PRESSMAN, R. S. (2021). Engenharia de software: uma abordagem profissional.
- NASA (2023). Solar system exploration. https://solarsystem.nasa.gov/solar-system/our-solar-system/overview/.
- UltraLeap (2023a). Leap motion controller. https://www.ultraleap.com/leap-motion-controller-whats-included/.
- UltraLeap (2023b). Project north star release 1. https://docs.projectnorthstar.org/mechanical/northstar-v1.
- Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., and Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. *Computers & education*, 62:41–49.