
Data-Flow Analysis Heuristic for Vulnerability Detection on
Configurable Systems

Gleyberson Andrade1, Elder Cirilo1, Vinicius Durelli1, Bruno Cafeo2, Eiji Adachi2

1 Federal University of São João del-rei

2Federal University of Mato Grosso do Sul

3Federal University of Rio Grande do Norte

Abstract. Configurable software systems offer a variety of benefits such as sup-
porting easy configuration of custom behaviours for distinctive needs. However,
it is known that the presence of configuration options in source code complicates
maintenance tasks and requires additional effort from developers when adding
or editing code statements. They need to consider multiple configurations when
executing tests or performing static analysis to detect vulnerabilities. Therefore,
vulnerabilities have been widely reported in configurable software systems. Un-
fortunately, the effectiveness of vulnerability detection depends on how the mul-
tiple configurations (i.e., samples sets) are selected. In this paper, we tackle the
challenge of generating more adequate system configuration samples by taking
into account the intrinsic characteristics of security vulnerabilities. We propose
a new sampling heuristic based on data-flow analysis for recommending the
subset of configurations that should be analyzed individually. Our results show
that we can can achieve high vulnerability-detection effectiveness with a small
sample size.

1. Introduction

Configurable software systems offer a variety of benefits such as supporting easy con-
figuration of custom behaviours for distinctive needs. On the other hand, it is known
that the complexity induced by configuration options in the source code complicates
maintenance tasks and requires additional effort from developers when adding or edit-
ing code statements [Brabrand et al. 2013]. The complexity induced by configuration
options also causes developers to make mistakes that lead to more vulnerable code. In
fact, security vulnerabilities have been widely reported in configurable software sys-
tems [Ferreira et al. 2016].

Studies have already proposed techniques for detecting security vulnerabilities in
the source code of software systems [Sampaio and Garcia 2016], but they typically work
only over a single system configuration at a time. In the context of configurable systems,
the configuration space can grow exponentially with the number of configuration options,
so analyzing every individual configuration becomes infeasible [Liebig et al. 2012]. To
cope with this situation, developers might employ sampling heuristics to analyze only a
representative subset of system configurations [Medeiros et al. 2016]. That is, instead
of analysing all possible configurations, developers sample a subset of configurations to
analyze each one individually. Unfortunately, the effectiveness of vulnerability detection
depends on how samples are selected. And many sampling heuristics are only easy to

Anais do VIII Workshop de Visualização, Evolução e Manutenção de Software (VEM 2020)

apply when making strong simplifying assumptions, such as that the configurable system
does not contain constraints or that each file can be analyzed separately. These assump-
tions may not be realistic nor practical for security vulnerabilities detection and may not
provide the desired code coverage. In fact, the lack of adequate sampling heuristics can
lead to both undetected vulnerabilities and time-consuming code analysis.

In this paper, we tackle the challenge of generating more adequate system config-
uration samples by taking into account the intrinsic characteristics of security vulnerabili-
ties. We propose a new sampling heuristic based on data-flow analysis for recommending
the subset of configurations that should be analyzed individually. Our idea is to test or
manually inspect only the system configuration detected as potentially vulnerable accord-
ing to our data-flow analysis heuristic. The goal of our proposed sampling heuristic is to
decrease the sample size while maintain good detection coverage, that is, maintain near to
100% the number of vulnerabilities that can be found only analysing the sampled config-
urations. Therefore, we design and execute an empirical evaluation. It aimed to improve
our understanding about the use of data-flow analysis as a heuristic for creating sampling
sets. Our results show that we can can achieve high vulnerability-detection effectiveness
with a small sample size.

Overall we make the following contributions:

• An experience report of how to employ variability-aware data-flow analysis for
vulnerability detection on configurable systems, based on an existing data-flow
analysis method [Sampaio and Garcia 2016].

• An empirical evaluation that compare the performance of variability-aware data-
flow analysis on detecting secure vulnerabilities with the performance of state-of-
the-art sampling strategies based on web-based configurable systems.

2. Background and Related Work
A security vulnerability is a flaw in a software system that allows attackers to exploit the
system in a way not foreseen by the developer [Anley 2007]. Attackers typically take
advantage of security vulnerabilities for malicious purposes, such as gaining access to
sensitive data or sabotaging the software system operations.

2.1. Security Weakness with Input Dependency
Most security vulnerabilities in web-based software systems stem from input dependency
weaknesses. According to OWASP Top 10 Security Risks 1, the most critical weaknesses
in web-based software systems are the ones associated to improper input validation. They
are characterized by missing validation or incorrect verification of input properties that
are required to process data safely. We can cite as examples of which are considered as
security weakness with input dependency: (i) Injection: Injection weakness (e.g SQL
injection) occurs when untrusted input is provided to an interpreter as part of a command
or query; and (ii) Cross site scripting: XSS weakness occurs whenever a software sys-
tem receive untrusted input and sends it to a web browser without proper validation or
escaping.

Figure 1 illustrates an example of a potential security weakness with input de-
pendency. The statement in Line 10, in the UpdateEmployeeDataService class,

1owasp.org/www-project-top-ten/

Anais do VIII Workshop de Visualização, Evolução e Manutenção de Software (VEM 2020)

Figure 1. Relevant points
public class UpdateEmployeeDataService extends Command {

...
public void execute() throws Exception {

Employee employee = request.get(Login.EMPLOYEE);

updateEmployeePassword(employee);

employeeRepository.save(employee);
}

public void updateEmployeePassword(Employee employee) {
String newPassword = request.getInput("newPassword");

 employee.setPassword(newPassword);
}

}

01
02
03
04
05
06
07
08
09
10
11
12
13

public class EmployeeRepository extends Repository {
...
public void save(Employee employee) throws Exception {

...

sql += "'" + employee.getPassword() + "')";

...
stmt.executeUpdate(sql);
stmt.close();

}
}

01
02
03
04
05

06
07
08
09
10

[UResetPassword]

execute

[UResetPassword]

[UResetPassword]

executeUpdate

employee = request.get(…)

newPassword = request.getInput(…)

employee.setPassword(…)

sql += … employee.getPassword() …

retrieves from the request object the parameter ‘‘newPassword’’ and assigns it
to the newPassword string variable. The input retrieved from the request object
flows to the Line 05, in the EmployeeRepository class, without any input valida-
tion. Thus, an untrusted input from an attacker can trick the interpreter into executing
unintended commands or accessing critical data.

2.2. Techniques for detecting security vulnerabilities

Proper input validation is the most common technique applied in practice to avoid un-
trusted input and can be applied to raw data (e.g., strings, numbers) or even to headers
in order to ensure that inputs can be safely processed by the source code. There exist
other techniques which attempt to transform dangerous input into ones safer as filtering
or encoding/escaping. However, whether to introduce or not input validation can be by na-
ture a unwieldy decision, specially when input dependency weakness can be included by
unanticipated variability as illustrated in Figure 1. We can classify vulnerability detection
techniques as:

• manual inspection: code review conducted by developers in order to uncover
potential weakness. Code review has been massively applied in practice however
it still be prone to errors.

• static analysis: a method which attempt to uncover potential weakness by em-
ploying static analysis techniques as Taint Analysis and Data Flow Analysis. The-
ses techniques aim to collect dynamic information about software systems while
they are in a static state.

• dynamic analysis: a method which dynamically exercises the software systems
behaviour using the same techniques that hackers and malicious individuals might
adopt when trying to breach the source code security.

Regardless studies in the literature suggest that static analysis tools are effi-
cient even when they report false positives [Sampaio and Garcia 2016], input depen-
dency vulnerabilities are usually more effectively detected by dynamic analysis tech-
niques [Aggarwal and Jalote 2006]. However, when we consider large numbers of vari-
ants in configurable system, exercising every possible input is not possible or impractical.

Anais do VIII Workshop de Visualização, Evolução e Manutenção de Software (VEM 2020)

Also, creating and maintaining large test suites demands many human resources and might
take too long. Therefore, as pointed out by [Medeiros et al. 2016], large samplings pose
complex challenges to developers as testing several products variations is costly.

2.3. Sampling and Variability-aware Analysis
Dynamically exercising software systems is a costly task, but this may become impracti-
cal when it comes to configurable systems as variants grow exponentially as the number of
variability increases. Therefore, in general, classic analysis methods do not scale in prac-
tice and researchers have begun to develop a new category of variability-aware analyses.
Their aim at reduce analysis effort by exploit the similarities among variants. In contrast,
sampling strategies handle the exponential grow of variants suggesting that, in the place
of analyzing all variants, one selects a representative subset to be analyzed individually,
one by one.

There are several algorithms that aim at to generate the best subset: the one which
maximize our chances of finding bugs and has the fewest number of variants. Two
classical sampling algorithms are one-enabled and one-disabled. The one-enabled pro-
duces the subset by selecting all variants that has only one variability enabled. In the
other way around, the one-disabled proceeds by selecting all variants which has only one
variability disabled. The resulting samplings are of the size N in terms of the number
of variability. LSA [Medeiros et al. 2016] is another sampling algorithm which gener-
ates system configuration samples which size grows linearly in terms of the number of
variability, in contrast to t-wise algorithms [Medeiros et al. 2016]. The LSA algorithm
have been presenting goods result in terms of bug-detection capabilities and sample set
sizes [Medeiros et al. 2016].

3. Data-Flow Analysis Heuristic in the Presence of Variability
Our heuristic uses a variability-aware parser to create an abstract syntax tree (AST) en-
hanced with variability information. Next, it applies a traditional data-flow analysis to
suggest a subset of variants to be tested or manually inspected. In this section, we present
our sampling heuristic detailing the generation of the variable AST (Section 3.1) and the
variable data-flow analysis heuristic (Section 3.2).

3.1. Variable Abstract Syntax Tree
In contrast to other sampling strategies, our strategy aims at employing a vulnerability de-
tection method that analyzes the complete set of variants and selects a subset to be tested
or manually inspected. Therefore, we adopted a compact representation of abstract syn-
tax tree (AST) as commonly used in other variability-aware analyses [Liebig et al. 2012].
Such a representation is called variable AST [Ferreira et al. 2015] and contains variability
information about all variants. The variable AST as proposed by [Liebig et al. 2012] re-
assemble a non-variability aware AST, however it additionally includes information about
whether a path should be considered as included in one variation or not. This represen-
tation is compact because it shares almost all paths that are common across variants. As
stated by Liebig et al. [Liebig et al. 2012] it makes variability-aware analysis faster than
any brute-force solution.

To build the variable AST we proceed by walking in the tree and, based on
the configuration knowledge, stamping nodes with the variability active at that point

Anais do VIII Workshop de Visualização, Evolução e Manutenção de Software (VEM 2020)

in the source code. We illustrate variable source code in Figure 1. In principle, we
can use simple nodes in AST to represent mandatory statements, as the one in Line 04
(UpdateEmployeeDataService). Mandatory nodes do not carry out any informa-
tion about variability. To reason about variability, we additionally stamp in the AST which
sub trees have to be included in which variants. As an example, in Figure 1, the statement
in Line 10 – UpdateEmployeeDataService, is only included whether Feature User
Reset Password (UResetPassword) is selected. In our example, presence conditions
refer only to a single Feature (UResetPassword), however more complex presence
conditions are possible and common in practice.

3.2. Variable Data-Flow Analysis Heuristic

To perform data-flow analysis for vulnerability detection in the presence of variability,
we construct a variable data-flow graph (DFG) which incorporates all possible paths in
the configurable system. A data-flow graph is a model where nodes represent opera-
tions and predicates applied to data, and edges represent communication channels which
moves data from a producing node to a consuming node. In DFGs, control- and data-
flow are represented in one integrated model. Therefore, as pointed out by Liebig et
al. [Liebig et al. 2012], variable data-flow graphs are conservative static approximations
of the real behavior of the configurable software system.

In a variable DFG, nodes corresponds to statements in the variable AST
and edges represents how data flows among statements. As in configurable sys-
tems the successors of a statement may differ across variants, we resort to in-
clude variability knowledge about successors nodes sets in the variable DFG. For ex-
ample, in Figure 1 we illustrate an excerpt of the corresponding variability-aware
DFG. The successor of the assignment statement employee = request.get()
in Line 04 (UpdateEmployeeDataService) vary across variants: whether
Feature UResertPassword is selected, assignment statement newPassword
= request.getInput() in Line 10 (UpdateEmployeeDataService) is
the direct successor; whether Feature UResertPassword is not selected,
stmt.executeUpdate() in Line 07 EmployeeRespositoy is the only succes-
sor. By evaluating the variability on edges we can analyze individually the DFG of each
variant in a compact and general manner as proposed by [Liebig et al. 2012].

We conduct our variability-aware data-flow analysis by selecting potentially in-
secure paths in the variable DFG. We consider a path as potentially insecure when
it starts in a statement which receives external input data (source-point) and stops
in a method call whose output goes beyond the boundaries of the configurable soft-
ware system (sink-point), without passing through any input validation (sanitization-
point). In Figure 1, we can observe a potentially insecure path which starts in
the assignment statement in Line 10 (UpdateEmployeeDataService) and reach
reach Line 07 (EmployeeRepository) without any input validation. That is, there
is no sanitization-point between the source-point employee = request.get()
and the sink-point stmt.executeUpdate(). As discussed by Sampaio and Gar-
cia [Sampaio and Garcia 2016], such a heuristic drastically decrease the rate of false pos-
itives and present satisfactory results on detecting vulnerability in web-based software
systems.

Anais do VIII Workshop de Visualização, Evolução e Manutenção de Software (VEM 2020)

4. Experiment Setup
In this section we present the experiment we carried out to improve our understanding of
how data-flow analysis can be used as a heuristic for creating sampling sets. To perform
our study, we instantiated our strategy as a plug-in for a variability-aware tool. We chose
two medium-sized, Java web applications: Health Watcher (HW) 2 and NCO 3. These
two web-based applications are configurable systems similar to the ones used in previous
work. Additionally, we selected three common sampling strategies: one-enable, one-
disabled and LSA. An in-depth discussion of the chosen sampling strategies is provided
by [Medeiros et al. 2016].

4.1. Research Questions

As mentioned, our goal is to shed some light on the use of data-flow analysis as a heuristic
for creating sampling sets in the context of configurable software systems. To this end,
we devised the following research questions (RQs):

• RQ1: How effective are the chosen sampling algorithms at detecting vulnerabili-
ties?

• RQ2: Which is the most cost effective sampling algorithm in terms of the size of
the resulting sample?

• RQ3: How many test paths have to be taken into account when employing each
of the sampling algorithms?

4.2. Corpus of Vulnerabilities

We used the fault injection method to estimate the effectiveness of our sampling strategy.
To answer our RQs, we used fault-seeding: that is, we injected faults (i.e., vulnerabilities)
into the two web applications in our sample. Specifically, we inserted three types of data
flow related vulnerabilities: (i) data used in object instantiation – an untrusted data is used
as parameter in object instantiation; (ii) data used as method parameter – an untrusted data
is used as parameter in a method call; and (iii) data as method return – an untrusted data
returned by a method is used in assignment statements or method call. Overall, the corpus
of vulnerability comprises 25 injected in the HW and 23 injected in the NCO.

5. Results and Discussion
In this section, we present and discuss our results in terms of the RQs (Section 4.1).

5.1. RQ1: How effective are the chosen sampling algorithms at detecting
vulnerabilities?

We found that all sampling strategies detected more than 90% of the vulnerabilities in the
configurable software systems in our sample. One-enabled detected the lowest number of
vulnerabilities, while all vulnerabilities in our corpus can be detected by exercising only 3
products in HW and NCO as selected by GVD. In the worst scenario, one-enabled missed
13 vulnerabilities in HW because it requires developers to select some variability and
disable all the others. We observed that to detected some vulnerabilities it is necessary to

2ptolemy.cs.iastate.edu/design-study/hw/HealthWatcherOOall.tar.gz
3www.inf.puc-rio.br/ lsampaio/nco/nco.zip

Anais do VIII Workshop de Visualização, Evolução e Manutenção de Software (VEM 2020)

HW
Strategy Num. Variants Vulnerabilities Vulnerable Paths Paths Total
GVD 3 28/28 46/46 46/1632
One-enabled 61 15/28 25/46 651/1632
One-disabled 61 25/28 43/46 1403/1632
LSA 124 25/28 43/46 1403/1632

NCO
Strategy Num. Variants Vulnerabilities Vulnerable Paths Paths Total
GVD 3 24/24 78/78 78/2672
One-enabled 37 22/24 54/78 2286/2672
One-disabled 37 24/24 78/78 2672/2672
LSA 76 24/24 78/78 2672/2672

Table 1. Health Watcher and NCO results

explore specific combinations of code blocks, which is not always achieved by existing
traditional algorithms. Considering NCO, most of the sampling algorithms performed
well, detecting all the vulnerabilities. In contrast, HW has configuration constraints that
render some combinations impossible to be generated by traditional sampling algorithms
to perform poorly.

5.2. RQ2: Which is the most cost effective sampling algorithm in terms of the size
of the resulting sample?

The sizes of the sample sets range from 3 to 124 in HW and from 3 to 76 in NCO.
According to our results, GVD was the sampling strategy that yielded the smallest sample
sets. LSA selected the largest sample sets considering both configurable software systems
in our sample. These results raise one major issue: these sampling strategies are not
enough to cope with large configuration spaces because most of them yield a large number
of configurations that need to be tested properly. However, the number of configurations is
often too large for exhaustive testing and generating test inputs for testing all combinations
is in general unwieldy. This supports our assumptions that sampling strategies should
mainly take into account the intrinsic characteristic of vulnerable code, instead of taking
into account only the information in configurable files or feature models.

5.3. RQ3: How many test paths have to be taken into account when employing each
of the sampling algorithms?

The total number of paths corresponds to the the number of paths that have to be exer-
cised when we have to execute the N products recommended by the sampling strategy.
For example, for HW, 651 paths out of 1632 are covered by exercising the 61 products
recommended by one-enable. It is worth noting that these paths are the ones that start in
a source-point and reach a sink-point. We can observe that there is a redundancy issue
associated with the variants selected by traditional sampling algorithms. For example,
when traversing only 46 paths, as recommended by GVD, we were able to detected all 28
vulnerabilities in HW. In contrast, when exercising the 1403 paths yielded by LSA, we we
able to detect only 25 out of 28 vulnerabilities in HW. The same behavior can be observed
in NCO – exercising 2286 out of 2672 paths turned out not to be enough for detecting all
vulnerabilities.

Anais do VIII Workshop de Visualização, Evolução e Manutenção de Software (VEM 2020)

6. Concluding Remarks
In this paper, we tackle the challenge of cost-effective vulnerability detection by selecting
more adequate system configuration samples by taking into account the intrinsic charac-
teristics of security vulnerabilities. We propose and evaluated a new sampling heuristic
based on data-flow analysis for recommending the subset of configurations that should
be analyzed individually. To do so, we analyzed the behaviour of our proposed sampling
heuristic in comparison with three common sampling strategies (one-enable, one-disabled
and LSA) considering 48 vulnerabilities injected in two configurable systems. Our results
show that we can can achieve high vulnerability-detection effectiveness with a small sam-
ple size.

Several avenues for future exploration are possible. As mentioned, our results
suggests that enhancing weakness detection heuristics with variability information could
be a better sampling strategy than generating sample sets by solely considering variability
information. Therefore, as a future work, it would be interesting to investigate whether
other bug detection heuristics can be also enhanced with variability information. Addi-
tionally, since our results show that a reduced number of paths might have to be taken into
account when testing a configurable software, we believe that existing test case generation
strategies can take advantage of such observation.

References
Aggarwal, A. and Jalote, P. (2006). Integrating static and dynamic analysis for detecting

vulnerabilities. In Computer Software and Applications Conference, 2006. COMP-
SAC’06. 30th Annual International, volume 1, pages 343–350. IEEE.

Anley, C. (2007). The Shellcoder’s Handbook: Discovering and Exploiting Security
Holes. Wiley, 2nd edition.

Brabrand, C., Ribeiro, M., Tolêdo, T., Winther, J., and Borba, P. (2013). Intraprocedu-
ral dataflow analysis for software product lines. In Transactions on Aspect-Oriented
Software Development X, pages 73–108. Springer.

Ferreira, G., Kästner, C., Pfeffer, J., and Apel, S. (2015). Characterizing complexity of
highly-configurable systems with variational call graphs: Analyzing configuration op-
tions interactions complexity in function calls. In Proceedings of the 2015 Symposium
and Bootcamp on the Science of Security.

Ferreira, G., Malik, M., Kastner, C., Pfeffer, J., and Apel, S. (2016). Do ifdefs influence
the occurrence of vulnerabilities? an empirical study of the linux kernel. In Interna-
tional Systems and Software Product Line Conference (SPLCâ16).

Liebig, J., Von Rhein, A., Kästner, C., Apel, S., Dorre, J., and Lengauer, C. (2012).
Large-scale variability-aware type checking and dataflow analysis.

Medeiros, F., KÃstner, C., Ribeiro, M., Gheyi, R., and Apel, S. (2016). A comparison of
10 sampling algorithms for configurable systems. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE), pages 643–654.

Sampaio, L. and Garcia, A. (2016). Exploring context-sensitive data flow analysis for
early vulnerability detection. Journal of Systems and Software, 113:337–361.

Anais do VIII Workshop de Visualização, Evolução e Manutenção de Software (VEM 2020)

