Anaisdo VIII Workshop de Visualizagéo, Evolugdo e Manutencéo de Software (VEM 2020)

Contextual Similarity Among Identifier Names: An Empirical
Study

Remo Gresta', Elder Cirilo'

'Federal University of Sdo Jodo del-rei

Abstract. Identifiers are one of the most important sources of domain informa-
tion in software development. Therefore, it is recognized that the proper use of
names directly impacts the code’s comprehensibility, maintainability, and qual-
ity. Our goal in this work is to expand the current knowledge about names
by considering not only their quality but also their contextual similarity. To
achieve that, we extracted names of four large scale open-source projects writ-
ten in Java. Then, we computed the semantic similarity between classes and
their attributes/variables using Fasttext, an word embedding algorithm. As a
result, we could observe that source code, in general, preserve an acceptable
level of contextual similarity, developers avoid to use names out of the default
dictionary (e.g., domain), and files with more changes and maintained by dis-
tinct contributors tend to have better a contextual similarity.

1. Introduction

The source code readability plays an important role in software comprehension, espe-
cially when documentation is scarce or not available. Indeed, several researchers have
shown the value of readable source code to enhance software quality and their rele-
vance in evolution tasks. In particular, identifiers are the most prevalent entities in the
source code. In any ordinary software, approximately 70% of its tokens are identifiers
[Deissenboeck and Pizka 2006]. Therefore, an important element of software compre-
hension is to understand the underlying concepts embodied in the code by means of de-
coding identifier names [Avidan and Feitelson 2017].

The importance of meaningful identifier names was established in several papers.
For example, Hofmeister et al. [Hofmeister et al. 2017] showed that full word identifiers
may lead to better comprehension than identifiers composed of single letters. However,
as pointed out by Deissenboeck et al. [Deissenboeck and Pizka 2006], a significant pro-
portion of the source code vocabulary can be either acronyms, abbreviations or concate-
nation of terms that can not be easily identified and do not follow any naming convention.
Butler et al. [Butler et al. 2009] also resort to study the connections between identifier
names and bugs. They found statistically significant associations between names with
pour quality and code quality issues reported by static analysis tool (e.g., FindBugs). As
may be expected, names chosen by one developer can not also convey the expected mean-
ing in a working context, impairing software comprehension. Although, Feitelson et al.
[Feitelson et al. 2020] observed that experienced developers tend to use longer and good
quality identifier names, there has been relatively little research investigating to what ex-
tent identifiers names co-existence (e.g., in files, classes or method body). It is, therefore,
appealing to observe how names are chosen together in a specific context (e.g., whether
they tend to be semantically similar or not), and whether the process of choosing mean-
ingful names evolves.

Anaisdo VIII Workshop de Visualizagéo, Evolugdo e Manutencéo de Software (VEM 2020)

Our goal in this work is to expand the current knowledge about identifier names
by considering not only their quality in terms of length or compounded words, but taking
into account their contextual similarity (semantic similarity among identifier names in
the context of a class). To achieve that, we extracted names of four large scale open-
source projects written in Java (i.e., Tomcat, Spring-boot, Jenkins, and Fastjson). Then,
we computed the semantic similarity between class names and their attributes/variables
using Fasttext, an word embedding algorithm.

As a result, we could observe that:

e developers tend to preserve an acceptable level of contextual similarity among
names in the source code.

e developers tend to use existing words to name identifiers, that is, they usually
avoid the use out of the dictionary (e.g., domain) words.

e the number of changes and distinct contributors (i.e., authors) tend to be associated
with better contextual similarity.

2. Background and Related Work

We start this section by presenting the relevance of providing proper identifier names and
how it might affect source code comprehensibility, maintainability, and quality. We also
overview some related work and provide some background about word embedding and
how it is able to give well suited semantic similarity scores to words in a working context.

2.1. Identifiers and Names

According to Deissenboeck et al. [Deissenboeck and Pizka 2006], approximately 2/3 of
any regular source code is composed of identifiers. Therefore, identifiers are more than
names to local variables, methods, attributes, and even classes; they are, alongside com-
ments, the main sources of domain information. An identifier’s name can be: a fully
spelled word; the abbreviation of a word; or the combination of two or more words.
Names might also involve words that in fact do not exist or even be single alphabetical
characters. In general, a fully spelled word is more descriptive than a single character.
Indeed, the proper use of names has been recognized as a major issue in software de-
velopment. Lawrie at. al. [Lawrie et al. 2006], have shown that the use of full words
names on identifiers assists developers on maintainability tasks. In their study, developers
were able to better understand code snippets in contexts where full words were chosen as
the name, instead of a single letter variant. Naturally, choosing low-quality or unrelated
names end up resulting in a source code that is more difficult to maintain and that can be
associated with bugs [Butler et al. 2010] [Li et al. 2018] [Kawamoto and Mizuno 2012].

2.2. Source Code as Word Embedding

Learning the intrinsic meaning of a word can be an easy task for a human, but it is not a so
trivial task for computer machines. A solution is to represent words as vectors, or as word
embeddings, as they are often called [Jurafsky and Martin 2000]. In word embeddings,
words are mapped to real number vectors so that words with similar meanings are going
to have similar vectors. Therefore, word embeddings aim to preserve/represent the con-
textual semantic similarities among words [Mikolov et al. 2013]. That is, the meaning of
words can be established using words that are usually close to them.

Anaisdo VIII Workshop de Visualizagéo, Evolugdo e Manutencéo de Software (VEM 2020)

From representatives word vectors we can calculate which we call the seman-
tic similarity among words. The most common ways to realize that are: measuring the
cosine of the angle among vectors; or by calculating the euclidean distance among vec-
tors. The resulting value is going to be to 1 whether the meaning of the words is similar,
and -1 whether they are not. There are popular models designed for generating word
embeddings: word2vec [Mikolov et al. 2013], Global Vector for Word Representations
(GLoVe) [Pennington et al. 2014] and Fasttext by Facebook [Mikolov et al. 2017]. In
this work, we choose by Fasttext as a model to evaluate the semantic similarity among
existing names in the source code of the subject projects.

3. A Method for Evaluating Contextual Similarity in Source Code

This section presents the method which we conducted for evaluating the semantic sim-
ilarity among names in four large scale open-source projects written in Java. We con-
sider that: object-oriented programming encourages developers to use naming conven-
tions which make the source code more understandable and easier to read.

3.1. Extracting Names

We can consider as an identifier: variables, classes, methods, parameters, and attributes.
In this work, we attained to study the semantic similarity among class names, attributes,
and variables. We used Srcml' to extract the studied identifier’s names. Srcml is a multi-
language parsing tool that converts source code into srcML — an XML representation in
which markup tags represent the elements of the language abstract syntax. We created a
tool that read the generated XML files and extracts names from the <name> tags inside
other tags mean class statement declaration, attribute statement declaration, and variable
statement declaration.

3.2. Computing Contextual Similarity

To compute the semantic similarity among the extracted names in a context, we used the
Gensim Library? — an open-source library focused on topic modeling, document indexing
and similarity evaluation in large corpora. Gensim provides already pre-trained and high-
quality word vectors learned from large data-bases. Considering that to calculate the
semantic similarity among words they have to exist in the corpora, we choose by the
corpus Wikipedia 2017, an 1 million words pre-trained model. We are assuming that the
majority of words can be found in our chosen dictionary.

To evaluate the contextual similarity among names we designed two metrics:

e Internal Similarity: it means the semantic similarity among names present in a
file. For each class in a file, we proceed by computing the similarity between its
name and the name of all of its attributes and variables; and so, the median of
the resulting similarities. The result is a score varying from -1 to 1, where: 1
means a high internal similarity; and -1 means a low Internal Similarity. For ex-
ample, consider the class Ext ractResources in Figure 1. As we can observe,
the names resourceName (attribute - Line 2) and resource (variable - Line
8) are both well aligned with the class name Ext ractResource. Indeed, the

'www.srcml.org

2radimrehurek.com/gensim/

Anaisdo VIII Workshop de Visualizagéo, Evolugdo e Manutencéo de Software (VEM 2020)

01 |public class ExtractResources extends DefaultTask {
02 private final Map<String, String> properties = new HashMap<>();
03 private List<String> resourceNames = new ArrayList<>();

05 @TaskAction
06 void extractResources () throws IOException {
07 for (String resourceName : this.resourceNames) ({

09 String resource = FileCopyUtils
10 .copyToString (new InputStreamReader (resourceStream,
11 StandardCharsets.UTF 8));

01 |public class MavenConsoleAnnotator extends

02 LineTransformationOutputStream.Delegating {
03 private final Charset charset;

04 ce

05 @Override

06 protected void eol (byte[] b, int len) throws IOException ({
07 Matcher m = MavenMojoNote.PATTERN.matcher (line);

08 if (m.matches())

09 new MavenMojoNote () .encodeTo (out) ;

10

11 }

12 |}

Figure 1. Example of classes with high and low semantic similarities respectively

ExtractResource class has a high internal similarity, equals to 0.43658462.
In contrast, the class MavenConsoleAnnotator (see Figure 1) has a low in-
ternal similarity, equals to -0.09242306. There is almost any similarity among
names in this example. The names charset and m have little or no similarity to
the name MavenConsoleAnnotator.

e External Similarity it means the semantic similarity among names and existing
words in the dictionary (i.e., or domain words). To compute this metric, we pro-
ceed by calculating how similar names in a file are to their top three most similar
words in the corpora. Finally, the external similarity is the median of the resulting
similarities. For example, both classes in Figure 1 (ExtractResources and
MavenConsoleAnnotator) has high external similarity because all names
(e.g., resource, charset) indeed exists in the dictionary.

4. Empirical Study

We conducted an empirical study to quantitatively characterize the semantic similarity
among names in large-scale open source-projects. In particular, we investigated how often
developers use names that are semantically similar or names outside of the dictionary;
and also whether the change history poses any effect on names semantic similarity across
source code evolution and maintenance.

4.1. Goal and Research Questions

Our goal is to shed some light on the semantic similarity among names found in four large
scale open-source projects. We used the organization proposed by the Goal/Question/-
Metric (GQM) [Basili and Rombach 1988] to define the goals of our study. According

Anaisdo VIII Workshop de Visualizagéo, Evolugdo e Manutencéo de Software (VEM 2020)

Table 1. Analyzed projects

Project LoC | Num. Classes | Num. Attributes | Num. Variables
Tomcat 463178 3252 13629 24563
Spring-boot | 376275 4576 11783 20754
Fastjson 199655 5139 16240 16693
Jenkins 320479 2016 6775 13845

to the proposed goal definition template, the scope of our study can be summarized as
described below. In addition, based on our goal, we came up with three research ques-
tions (RQs) — presented below.

Analyze semantic similarity among names

with the purpose of characterization

with respect to attributes and variable names in object-oriented source code
from the point of view of the developers

in the context of five large-scale open source projects.

e RQ;: Do developers use names that are semantically similar?
e RQ:: Do developers use names outside of the dictionary?
e RQ;: Do code change history exert influence on names semantic similarity?

We frame our discussion around our RQs and present the quantitative results in
terms of the metric’s internal similarity and external similarity (see Section 3.2). The
studied subject projects (see Table 1) ranges from 199K to 463K lines of code. We have
analyzed the amount of 14,983 classes and their contextual similarity considering 48,427
attributes and 75,855 variables.

4.2. Results and Discussions

4.2.1. RQ;: Do developers use names that are semantically similar?

We resort to the internal similarity metric to characterize whether developers use names
that are semantically similar. As mentioned in Section 3.2, the internal similarity metric
varies from -1 to 1 (positive score is considered to have at least a reasonably good internal
similarity). For all projects (see Table 2), we observed that developers use semantically
similar names: the internal similarity median is around 0.30 &= 0.27. Moreover, more than
90% of all files have an internal similarity greater than O (zero). However, only a small

Table 2. Similarity scores table

Project Min | Max | Median | Mean | Sd | -1 | <-05| <0 | >=0| >0.5

Tomcat -1 [0.69 | 0.30 0.22 | 0.28 | 78 85 150 | 1754 | 4

Spring-boot | -1 1 0.34 0.32 | 0.15| 21 22 65 | 2645 | 34

Jenkins -1 071 | 0.30 024 1022 | 18 23 | 100 | 936 9

Fastjson -1 1079 | 0.28 |0.076 | 0.45 | 356 | 374 | 600 | 2103 | 11

Anaisdo VIII Workshop de Visualizagéo, Evolugdo e Manutencéo de Software (VEM 2020)

Table 3. Most similar words score table
Project Min | Max | Median | Mean | Sd | -1 | <-0.5 | <0 | >=0 | >0.5

Tomcat -1 {096 | 0.76 072 | 022 |27 | 27 41 | 1863 | 1863
Spring-boot | -1 | 0.90 | 0.77 0.76 | 0.12 | 9 9 24 | 2686 | 2686
Jenkins -1 1088 | 0.77 0.78 | 0.10| 2 2 7 | 1029 | 1029
Fastjson -1 {092 0.76 072 1021 |35] 35 51 | 2652 | 2652

fraction can be considered as having proper internal similarity (scores greater than 0.5).
These results indicate that developers tend to always give good names to identifiers — ones
that are at least a bit related between themselves. Only a small portion of the files have
a negative internal similarity. In these cases, we consider that developers are not using
existing words; or are using abbreviations and completely unrelated words. It is worth
noting that an even smaller fraction of files turns out to have internal similarity equals to
-1. In such cases, names are were all unrelated or even do not exists.

4.2.2. RQ;: Do developers use names outside of the dictionary?

According to the word embeddings principle, existing words in the corpus will be always
correlated to other words that also exist in the corpus, therefore, whether we managed
to find words (in the corpus) similar to existing names in the source code, these names
definitely exist in the dictionary. Therefore, we adopt the external similarity metric to
understand whether developers use names out of the dictionary or not.

In Table 3 we can observe that the large majority of files have a positive score
greater than 0.5. Therefore, we can conclude that developers in most cases resort to words
that exist in the dictionary (median is around 0.77 4= 0.16). These results corroborate with
Lawrie et al. [Lawrie et al. 2006] results showing that the use of dictionary words makes
identifiers easier to read and understand. Indeed, only a small fraction of the files did not
have positive scores. Files with external similarity equal to -1 have names that we could
not find similar words in our subject corpus.

4.2.3. RQ3: Do code change history exert influence on names semantic similarity?
During software development, developers make changes in the source code, either to add

new features, to resolve existing bugs, or to improve code quality (e.g., refactoring). In-
evitably, some of these changes may induce changes in the semantic similarity among

Table 4. Changes made up by authors

Projects Changes Authors

W p-values W p-values
Tomcat 88536 0.001601 92080 0.02346
Spring-Boot | 7891.5 0.002768 7944.5 0.003022
Jenkins 40424 7.07e-06 42933 0.0005925
Fastjson 580628 0.02746 542314 2,60E-05

Anaisdo VIII Workshop de Visualizagéo, Evolugdo e Manutencéo de Software (VEM 2020)

names. Therefore, in order to better understand whether change history exerts influence
on names semantic similarity, we use the git Log> capability to collect: (i) the number
of changes per file; and (i1) the number contributor (i.e., authors) per file. To answer this
question, we use the Wilcoxon Rank Sum Test. This test allows us to decide whether two
populations (in our study, low and high semantic similarity) are identical or not without
assuming that the populations follow a normal distribution. To ensure statistical signifi-
cance, we adopted the customary .05 significance level (p — value < 0.05) for this test.

Table 4 presents the results that support this research question. We observe that
changes in source code exert a statistically significant influence on names semantic sim-
ilarity. Thus, the number of changes in a file is a promising indicator to distinguish be-
tween files with distinct levels of internal similarity — there is a tendency that the more
developers modify a file in a project, the more they improve identifiers similarity. We
also observed a statistically significant influence on names semantic similarity when we
consider the number of distinct contributors. Therefore, assuming distinct developers
contributing to the same files in a project can be a good practice to improve names and
consequently the understandability of the source code.

5. Conclusion and Future Works

In this work, we resort to expand the current knowledge about identifiers by taking into
consideration a novel dimension: the contextual similarity among them. To achieve such
a goal we extracted and analyzed the semantic similarity among 139,265 identifier names
distributed over four open-source projects. As a result, we were able to observe some
patterns involving contextual similarity and the proper use of identifier names in source
code. First, we could figure out that overall, classes tend to have at least a minimum
level of contextual similarity; meaning that developers often name identifiers (e.g., vari-
ables/attributes) using words well aligned to the surrounding context. Second, the vast
majority of the names used as identifiers can be found in the dictionary. This result might
indicate the developer’s awareness about naming conventions, even if they’re not related
to the rest of the class. Third, we could observe that files that suffer more changes tend
to have better contextual similarity than those ones which do not change often. Consid-
ering the number of contributors per file, we observe the same pattern: those maintained
by several contributors tended to preserve a better semantic similarity among identifier
names.

As future works, we aim to continue studying the semantics similarity among
identifiers and its effect on source code quality. Our objective is to observe the actual
impact of contextual similarity in software development in maintainability. To do so, we
intend to investigate how bugs are directly related to the absence of appropriated contex-
tual similarity in classes. Moreover, we also set out to study to what extent contextual
similarity exerts some influence on source code comprehensibility.

References

Avidan, E. and Feitelson, D. G. (2017). Effects of variable names on comprehension:
An empirical study. In 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC), pages 55-65. IEEE.

3git-sem.com/docs/git-log

Anaisdo VIII Workshop de Visualizagéo, Evolugdo e Manutencéo de Software (VEM 2020)

Basili, V. R. and Rombach, H. D. (1988). The tame project: Towards improvement-
oriented software environments. [EEE Transactions on software engineering,
14(6):758-773.

Butler, S., Wermelinger, M., Yu, Y., and Sharp, H. (2009). Relating identifier naming
flaws and code quality: An empirical study. In 16th Working Conference on Reverse
Engineering, pages 31-35.

Butler, S., Wermelinger, M., Yu, Y., and Sharp, H. (2010). Exploring the influence of
identifier names on code quality: An empirical study. In 2010 14th European Confer-
ence on Software Maintenance and Reengineering, pages 156—165. IEEE.

Deissenboeck, F. and Pizka, M. (2006). Concise and consistent naming. Software Quality
Journal, 14(3):261-282.

Feitelson, D., Mizrahi, A., Noy, N., Ben Shabat, A., Eliyahu, O., and Sheffer, R. (2020).
How developers choose names. IEEE Transactions on Software Engineering, pages
1-1.

Hofmeister, J., Siegmund, J., and Holt, D. V. (2017). Shorter identifier names take longer
to comprehend. In 2017 IEEE 24th International conference on software analysis,
evolution and reengineering (SANER), pages 217-227. IEEE.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition.

Kawamoto, K. and Mizuno, O. (2012). Predicting fault-prone modules using the length of
identifiers. In 2012 Fourth International Workshop on Empirical Software Engineering
in Practice, pages 30-34. IEEE.

Lawrie, D., Morrell, C., Feild, H., and Binkley, D. (2006). What’s in a name? a study
of identifiers. In /4th IEEE International Conference on Program Comprehension
(ICPC’06), pages 3—12. IEEE.

Li, G., Liu, H., Liu, Q., and Wu, Y. (2018). Lexical similarity between argument and
parameter names: An empirical study. IEEE Access, 6:58461-58481.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and Joulin, A. (2017). Advances in
pre-training distributed word representations. arXiv preprint arXiv:1712.09405.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532—1543, Doha, Qatar. Association for
Computational Linguistics.

