
Bad Smells in Javascript - A Mapping Study
Aryclenio Xavier Barros

IMD - UFRN
Natal, Brazil

aryclenio.barros.106@ufrn.edu.br

Eiji Adachi
IMD - UFRN
Natal, Brazil

eijiadachi@imd.ufrn.br

ABSTRACT
Javascript is one of the most famous mainstream programming
languages nowadays. It has gained considerable practical relevance
over the last years, with applications in several areas, such as games,
3D rendering, and, mainly, web development. Like any other soft-
ware system, systems developed in Javascript need to keep their
ability to evolve to remain useful and relevant over time. Empiri-
cal evidence has shown that bad smells are possible indicators of
problems hindering software evolvability. In this context, this paper
presents a mapping study investigating if and to what extent bad
smells have been defined for the Javascript language and how the
interest in this topic has evolved. Our study identified 26 different
types of bad smells investigated in the context of Javascript in 8 dif-
ferent works published between 2013 and 2020. This result suggests
that although Javascript has gained practical relevance in recent
years, there is still room for further empirical studies defining and
evaluating the impact of bad smells on Javascript-based software
systems.

KEYWORDS
Javascript, bad smells, code smells, mapping

1 INTRODUCTION
JavaScript, hereafter simply referred to as JS, is a dynamically typed
programming language that has gained considerable practical rel-
evance over the last years. Due to its purpose of working with
web technologies and the incredible popularity this industry has
enjoyed in recent years, the language has become more accessible,
cross-functional, widespread, and updated more frequently [11].
According to data from a survey conducted by the Stack Overflow
website, the language is the most used among all developers for 5
years in a row. 1

With the popularization of JS and its growing adoption in the
development of web systems, it becomes increasingly important
that systems developed with JS technologies are long-lived, i.e., able
to evolve to remain useful over the years [18]. But as the system
evolves, changes to its source code may deteriorate its evolution
ability [4]. Therefore, it is necessary to have the means to early
identify problems that deteriorate the evolvability of software sys-
tems.

Empirical evidence has pointed to bad smells as possible indica-
tors of problems that negatively affect the evolution of software
systems [5]. Bad smells are defined as bad solutions to problems
related to architecture, design, and source code of software applica-
tions [9]. The study by Tahir et al. [22], for example, reports that

1The Stack Overflow Developer Survey 2020. Available at https://insights.stackoverflow.
com/survey/2020

27% of the problems found in applications are somehow related to
bad smells.

In this context, this work aims to carry out a mapping study
to investigate if and to what extent bad smells have already been
investigated in the context of Javascript. More specifically, our study
aims to answer the following research questions:
Q1) Which bad smells have already been investigated in the con-

text of Javascript?
Q2) How has the interest in the topic of bad smells in Javascript

behaved over time?
With these research questions, we explore if and to what extent

bad smells are being investigated in the context of Javascript and
how the interest in this topic has evolved. Our study identified a
total of 8 works investigating bad smells in the context of JS, from
which we extracted 26 different types of bad smells. Our results
show that the number of works investigating bad smells in JS is still
quite limited when compared to the number of works considering
other programming languages, like Java, and no growing trend is
observable. Also, most of the bad smells identified in our study are
“classic” and generic smells adapted from other works; there are still
very few smells defined for features specific to the JS programming
language.

The rest of this paper is structured as follows. In Section 2, we
present the settings of our mapping study. In Section 3 we present
the study of the data obtained to answer the research questions.
In Section 4 we analyze the threats to validate our study. Section
5 shows the related works that based our research. And finally,
section 6shows our conclusion about the research.

2 SYSTEMATIC MAPPING STUDY
This study aims to carry out a mapping study about bad smells
in the context of the Javascript programming language to delimit
the current state-of-the-art in the literature on this topic. For this,
we followed the guidelines defined by Petersen, Vakkalanka, and
Kuzniarz for conducting systematic mappings in Software Engineer-
ing [17]. In the following sections, we detail our search questions,
search string, inclusion and exclusion criteria, and procedure fol-
lowed to conduct our mapping.

2.1 Research Questions
This paper aims to investigate the research questions below:
Q1) Which bad smells have already been investigated in the con-

text of Javascript?
Q2) How has the interest in the topic of bad smells in Javascript

behaved over time?
With the growing popularity of the Javascript language, espe-

cially in the development of systems for the Web, and with the
relevance of bad smells in the context of software maintenance and

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

VEM ’21, September 2021, Virtual Barros and Adachi

evolution, we sought with these research questions to investigate
whether and to what extent studies on bad smells in the context
of Javascript have been performed in scientific works. Thus, with
the first research question, we aim to map the bad smells already
investigated in the literature, helping to organize the current body
of knowledge on this topic. With the second research question,
we aim to observe how the interest in the topic has behaved over
time, possibly identifying trends in scientific studies that follow the
popularity that the Javascript language has gained over the last few
years.

2.2 Search String and Data Source
To build the search string for our study, the intersection of the terms
Javascript and bad smell was used as a basis. For each of these
terms, we defined some synonyms to expand the search scope.
For the term Javascript, we use as a synonym the term “ECMA
Script“, which is the official name of the language, as specified by
the European Computer Manufacturers Association (ECMA). As for
the term Bad smell, we use the terms “code smell“, “design smell“,
and “architecture smell“ as synonyms. With these synonyms, we
seek to expand the scope of our study to the strands of studies on
bad smells related to software architecture, design, or source code.
Thus, the resulting search string for our mapping was as follows:

("bad smell*" OR "code smell*" OR "design smell*" OR
"architecture smell*") AND ("Javascript" OR "Java script"

OR "ecma script" OR "ecmascript")

This search string was used in the Scopus (Elsevier) database to
collect the data for our mapping study. The search engine of Scopus
was configured to analyze the search string based on the title of
the article, abstract content, and keywords. The data collection was
performed in May-2021.

2.3 Inclusion and Exclusion Criteria
The definition of the inclusion and exclusion criteria was guided
by the theme, language, number of pages, type of publication, and
publication year of the items returned by the search engine. Thus,
the inclusion criteria aim to select works that: (I1) focus on bad
smells; (I2) analyze systems implemented using the Javascript pro-
gramming language; (I3) were published book chapters, conference
proceedings, or journals; (I4) were written in English. Moreover,
The exclusion criteria aim to exclude works: (E1) With less than
four pages; (E2) Published before 2000.

These criteria take into account our topic of interest (bad smells in
JS), works published in peer-reviewed venues, in English, and after
2000 (included), since the first popular stable version of Javascript
was launched only around the year 2000.

After executing the search string in the search engine, the ex-
clusion criteria were first applied to the returned items. Then, the
inclusion criteria were applied to the title and abstract of the works
that were not excluded in the previous step.

Finally, for each work that passed the inclusion criteria, we ap-
plied the backward snowballing technique [13] to its list of refer-
ences, applying the same exclusion and inclusion criteria.

3 DATA ANALYSIS
Executing the search string defined in Section 2 in the search engine
of the Scopus (Elsevier) database, a total of 16 items were returned.
After applying the inclusion and exclusion criteria, 8 works were
considered for analysis [1, 7, 14, 16, 19, 20, 22, 24]. The other 8
items returned have been discarded; 7 of them because they are not
works, but documents with the index of the annals of congresses
where the works were published. A single paper violated the page
exclusion criteria as it had only 3 pages. We applied the snow balling
technique to the 8 works considered for analysis, but no new work
was identified.

In the following sections, we present the analysis that answer
our research questions.

3.1 List of Javascript Bad Smells
To answer the first research question of our study, we analyzed
each of the selected papers identifying which bad smells each paper
defined in the context of Javascript. It was observed if there was
at least one mention in the paper that reported a bad smell in the
Javascript language. Some data aggregation were carried out on the
data extracted from the papers for the identification and counting
of bad smells:

• Bad smells referring to classes or objects were aggregated
together, since depending on the Javascript version, objects
were used to interpret classes in the language.

• Bad smells that included code complexity were aggregated
in the Cyclomatic complexity count.

• We list the bad smells “Double code” and “Unused code” as
synonyms for “Duplicated code” and “Unused declaration”,
respectively.

Based on our analyses, a total of 26 distinct bad smells were
detected, which are presented in Table 1. Of the 26 bad smells iden-
tified in the 8 works analyzed, the bad smells “Chained Callbacks”
(6 occurrences), “Long Method” (5 occurrences), and “Switch State-
ment” (4 occurrences) were most frequently observed. These bad
smells are also at the top of the incidence list of smells occurrence
in other works [8, 23].

We observed that most smells identified are related to code el-
ements with extreme size or complexity – 11 out of the 26 smells
identified reside in this category: Cyclomatic complexity, Depth,
Duplicated Code, Extra Bind, Large/God/Brain Class/Object, Lengthy
Lines, Long Method, Long Parameter List, Refused Bequest Spaghetti
Code, and Switch Statement. So there seems to be, so far, more
attention to this type of problem.

We also noticed the presence of Javascript context-specific bad
smells – Extra Bind and This Assign. Such smells handle errors in
the scope of the language and its functionality, as in the case of
bind and this.

We also observed that 4 smells are indicators of actual defects
in the source code – Argument Count Mismatch, Argument Type
Mismatch, Empty Catch and Negative Array Index. Therefore, these
bad smells might be more problematic than the others.

Moreover, there are only two bad smells related to the way meth-
ods or functions collaborate to perform specific functionality. Bad
smells in this category, like Intensive Coupling, Disperse Coupling,
or Shotgun Surgery [15] are commonly investigated in other works

Bad Smells in Javascript - A Mapping Study VEM ’21, September 2021, Virtual

Table 1: List of Javascript Bad Smells

Bad Smell Definition Papers

Chained/Nested Callbacks When a function call implies multiple other external function calls nested
within its scope

[1] [7] [14] [16] [19] [24]

Long Method A class method has big and/or complex definitions ahead of his main re-
sponsibility

[7] [14] [16] [19] [22]

Cyclomatic complexity A code that has a cyclic and holds extreme complexity using the language
artifacts

[1] [14] [19] [20]

Duplicated Code A code that is often duplicated into other areas of the application [1] [7] [20] [22]
Switch Statement A complex Switch statement or a sequence of If statements [7] [14] [19] [22]
Large/God/Brain Class/Object The names brain, large, and god class/object refer to a class that is somehow

connected with other classes of the project that are previously independent
[1] [7] [22]

Lengthy Lines A line of the code that has an expressive amount of characters [14] [16] [24]
Long Parameter List A function or class that has an expressive amount of parameters [14] [19] [24]
Spaghetti Code Pejorative phrase for unstructured and difficult-to-maintain source code [20] [22] [24]
Depth Smell occurs when the number of nested blocks of code (or the level of

indentation) is too high.
[14] [19]

Extra Bind When you bind a function multiple times in the same code scope [14] [19]
This Assign When the this is reassigned to force code scope change. [14] [19]
Undeclared Variables Variables that are called but not yet declared in code scope (some languages

like JS support use of variables that are called before defined).
[1] [7]

Unused declaration A declared variable or function that is not used [1] [7]
Unreachable Code A code that is not reached because is below a break or return statement [1] [7]
Argument Count mismatch When a function is called with an incorrect number of arguments [1]
Argument Type mismatch When a function is called with the incorrect type of arguments [1]
Array length Assignment When a length array property is changed after definition [1]
Closure Long scope chaining and/or this operations inside closures [7]
Empty catch TryCatch statement with empty or missing catch fallback for error handling [7]
Feature Envy A class, function, or object tries to implement a feature that is already

implemented in another block of code
[22]

Global variable Use of global variables within the code, making it difficult to observe their
content in the numerous system scopes and routines.

[7]

Middle Man When a class exists as an intermediator to call a feature that is already in
another class

[22]

Negative Array index When the code tries to get a negative unit of the array [1]
Primitive Property Assignment Use of primitive types to assign a variable [1]
Refused Bequest This smell occurs when a subclass uses only a few methods of its inherited

superclass, making substitution impossible.
[7]

[21], but no similar smell was identified in our mapping study. The
only smells identified in our mapping study in this category are
Chained/Nested Callbacks, which refers to cases where an excessive
number of callback functions are chained or nested, and Closure
which includes couplings within closures. Another observation we
make is the lack of bad smells related to problems with inheritance
and class abstraction, such as the classic smells Refused Parent Be-
quest and Tradition Breaker [15]. Although Javascript currently
supports object-oriented programming, the concept of classes as
we know them in other programming languages was only officially
defined in JS in version 5 of Ecmascript [3], which was launched in
2015; before that, they were previously used in the form of objects
and functions to adapt the language to the OO paradigm. This fact
may explain why works published close to or before the year 2015
do not have information about bad smells related to the object-
oriented programming paradigm, starting its first mention in the
work of Saboury [19], in 2017.

Finally, it is worthmentioning that it was not observed framework-
specific bad smells. Much of the popularity that the Javascript lan-
guage has received in recent years is due to the growing popularity
of frameworks and runtime environments (RTE) aimed at devel-
oping web systems, both those aimed at back-end development,
such as NodeJS, and for front-end development, such as ReactJS,
VueJS, Angular and Svelte. Despite the growing popularity of these
tools, our mapping study about bad smells in JS did not identify
any smell specifically defined for framework or RTE concepts. The
definition of bad smells specific to frameworks and programming
languages has been explored in other works, such as Kotlin and
the Android ecosystem [10, 12], Python and its web framework
Django [6] and Java and its web framework Spring-MVC [2]. The
targeting of works aimed at bad smells specific to frameworks in
the Javascript language is still non-existent and demonstrates a
possible theme of study in the future.

VEM ’21, September 2021, Virtual Barros and Adachi

Figure 1: Works Addressing Bad smells in Javascript Over
Time

3.2 Interest in the bad smells topic in JS over
the years

To answer the second research question of our mapping study, we
collected the year of publication of the papers that passed the inclu-
sion and exclusion criteria to observe the incidence of publications
on the topic of interest each year. The line chart shown in Figure 1
presents the count of works in our data set by year of publication,
starting from the year the first paper was published, in 2013 [7] to
the last paper found, published in 2020 [22].

There is an average of 1.125 articles per year. Considering the
period between 2013 and 2020, there was no paper about bad smells
in Javascript in the years 2014, 2016, and 2018. So there is no growth
trend or increasing interest in this topic in recent years, despite
the increasing popularity of Javascript and increasing interest for
investigations regarding bad smells.

It was also observed the emergence of bad smells being adapted
to Javascript as the year of publication progressed, such as Middle
Man and Feature Envy, found only in the work of Almashfi, pub-
lished in 2020 [1], and which may indicate new areas of interest in
the language such as the structures of previously mentioned OO
paradigm, promoting a greater incidence of smells not seen at the
time of construction of this work.

4 THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our study
according to the guidelines presented by Petersen, Vakkalanka, and
Kuzniarz for conducting systematic mappings in Software Engi-
neering [17].

Descriptive validity. This threat relates to the extent to which
observations are accurately and objectively described. In the context
of our mapping study, this threat regards mainly to researcher bias,
which could be present in the selection and extraction of data
from the mapped studies. We mitigated this threat by having one
researcher conducting the data extraction using a data collection
form and a different researcher reviewing the extracted data.

Theoretical validity. This threat relates to the ability of prop-
erly capturing the concept that was the target of the investigation.

Thus, in the context of our study, one dimension of this threat re-
gards the studies about bad smells in Javascript that could have been
missed by our search strategy. We may have missed some studies
due to the terms used in the search string, which may have been too
strict or may have missed an important keyword, and also because
we only used one search engine (Scopus-Elsevier). We mitigated
this threat by applying the backward snowballing technique [13],
which led to no new study being added. We plan to expand our
search space by adapting and executing our search string in other
search engines in future work.

Generalizability validity. Threats to internal generalizability
(generalization within a group) of our study refer to the extent to
which the conclusions apply to the mapped studies. We mitigate
this threat by following a unique and well-defined process for ana-
lyzing the data collected and aggregated from the mapped studies
so that conclusions were solely based on data collected from the
mapped studies. Threats to external generalizability (generaliza-
tion between different groups) are related to the extent to which
the conclusions apply to studies other than those mapped by our
studies. We consider this a less relevant threat in the context of
our study, as we intend to generalize only to studies in the context
of bad smells and Javascript and not to other groups of studies in
different programming languages.

Interpretive validity. In our study, this threat is mainly influ-
enced by research bias. The first author of the study has worked
for 4 years as a software developer and his practical experience
may have influenced the discussions and conclusions inferred from
the data. To alleviate this effect, the other researcher, who is an
academic, discussed and revised the first author’s analyzes and con-
clusions, seeking to keep the conclusions grounded on the collected
data. Finally, this study will also undergo a thorough peer-review
process that will help mitigate this threat.

Repeatability validity. To mitigate the threats to the repeata-
bility of our study, we strictly followed the procedures defined by
Petersen, Vakkalanka, and Kuzniarz[17] and we detail as much as
possible the process we follow.

5 RELATEDWORKS
The most similar related work to ours is the work conducted by
Sobrinho et al. [21], who performed a systematic review of the lit-
erature on bad smells. The authors applied the concept of the 5W’s
(Which, When, What, Who, Where) to conduct their systematic re-
view about bad smells, but differently from us, they did not impose
any restriction of programming languages. The authors analyzed
the bad smell types, interest over time, their goals and discoveries,
the influential researchers in the field, and the distribution of related
articles. In their work, “Duplicated code” was the most recurrent
smell among the bad smells analyzed. In our mapping study, this
bad smell tied for fourth place as the most recurrent smell among
those identified for JS. This can demonstrate that, despite its large
occurrence, the Javascript scenario can emphasize certain smells
with a greater incidence to detriment of others more common in
languages with a different focus. An example case is on smells re-
lated to classes, a fact that cannot be intrinsically observed in works
focusing on multiple languages as seen in Sobrinho et al. in which
only 10 of the smells found are also mentioned in the respective

Bad Smells in Javascript - A Mapping Study VEM ’21, September 2021, Virtual

work. This observation can justify the absence of the remaining
bad smells because they are focused on the JS environment or have
different nomenclature among the authors.

Another work related to ours is the work carried out by Fernan-
des et al.[8], who performed a systematic review study on bad smell
detection tools, addressing their techniques for obtaining smells
and which types were identified by each application. In their work,
a total of 89 tools were identified and only 29 were available for
download. In addition, the main programming languages supported
by these 89 identified tools are C++, and Java: 34 tools support bad
smell detection in Java and 24 tools in C++. To the detection of
bad smells in Javascript, it was observed a total of 13 tools with
support for this language, being the third highest occurrence in the
work in question, representing 15% of the tools. Despite keeping
a considerable number of tools, and, together with our study of
the growing interest in bad smells in the language, it is possible
to observe that the language still needs a greater growth in the
tools to support the detection of smells and a greater number of
works focusing on the area in question, when compared to other
programming languages.

6 CONCLUSION
We conducted a mapping study about bad smells in the Javascript
programming language. The main objective of the work was to
observe which types of bad smells appear more frequently in studies
related to language and analyze the growth of the theme over the
years.

We identified 8 works that passed the list of inclusion and exclu-
sion criteria, from which we extracted a total of 26 bad smells. We
observed that most smells investigated in the context of Javascript
systems are “classic” bad smells adapted from other works; there are
still few smells defined for specific constructs of the Javascript pro-
gramming language. We also observed that works about bad smells
in Javascript are still limited when compared to other languages,
like Java, and no growing trend is observable in recent years.

Finally, we intend to expand this mapping study by adapting
our search string and executing it in other search engines and
by answering new research questions. We also plan to conduct
future works on the definition of new bad smells related to specific
constructs of the Javascript language and investigate the negative
impacts that these smells might have in real systems.

REFERENCES
[1] Nabil Almashfi and Lunjin Lu. 2020. Code Smell Detection Tool for Java Script Pro-

grams. In 5th International Conference on Computer and Communication Systems
(ICCCS). 172–176.

[2] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen. 2018. Code
smells for Model-View-Controller architectures. Empirical Software Engineering
23, 4 (2018), 2121–2157.

[3] Vincenzo Arceri, Isabella Mastroeni, and Sunyi Xu. 2020. Static analysis for
ECMAscript string manipulation programs. Applied Sciences (Switzerland) 10, 9
(2020), 148.

[4] Ajay Bandi, Byron J. Williams, and Edward B. Allen. 2013. Empirical evidence of
code decay: A systematic mapping study. In 20th Working Conference on Reverse
Engineering (WCRE). 341–350.

[5] Aloisio S. Cairo, Glauco de F. Carneiro, and Miguel P. Monteiro. 2018. The
impact of code smells on software bugs: A systematic literature review. Issue 11.
https://doi.org/10.3390/info9110273

[6] R. Correia and E. Adachi. 2019. Detecting design violations in django-based
web applications. In 10th ACM International Conference Proceeding Series (ACM).
33–42.

[7] Amin Milani Fard and Ali Mesbah. 2013. JSNOSE: Detecting JavaScript code
smells. In 13th International Working Conference on Source Code Analysis and
Manipulation (SCAM 2013). 116–125.

[8] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. 2016. A review-based comparative study of bad smell detection tools.
In 20th ACM International Conference Proceeding Series (ACM). 458.

[9] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

[10] A. Gong, Y. Zhong, W. Zou, Y. Shi, and C. Fang. 2020. Incorporating Android
Code Smells into Java Static Code Metrics for Security Risk Prediction of Android
Applications. In 20th International Conference on Software Quality, Reliability, and
Security (QRS 2020). 30–40.

[11] Sharath Gude, Munawar Hafiz, and AllenWirfs-Brock. 2014. JavaScript: The used
parts. In 12th ACM International Conference Proceeding Series (ACM). 466–475.

[12] G. Hecht, N. Moha, and R. Rouvoy. 2016. An empirical study of the performance
impacts of Android code smells. In 16th Proceedings - International Conference on
Mobile Software Engineering and Systems, MOBILESoft 2016 (ICMESES). 59–69.

[13] Samireh Jalali and Claes Wohlin. 2012. Systematic literature studies: database
searches vs. backward snowballing. In Proceedings of the 2012 ACM-IEEE inter-
national symposium on empirical software engineering and measurement. IEEE,
29–38.

[14] David Johannes, Foutse Khomh, and Giuliano Antoniol. 2019. A large-scale
empirical study of code smells in JavaScript projects. Software Quality Journal
27, 20 (2019), 1271–1314.

[15] Michele Lanza and RaduMarinescu. 2007. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media.

[16] Frolin S. Ocariza, Karthik Pattabiraman, and Ali Mesbah. 2017. Detecting un-
known inconsistencies in web applications. In 32nd IEEE/ACM International
Conference on Automated Software Engineering (IEEE/ACM 2017). 566–577.

[17] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update. In
3rd Information and Software Technology Symphosium (IST). 1–18.

[18] Václav T. Rajlich and Keith H. Bennett. 2000. A staged model for the software
life cycle. Computer 33, 7 (2000), 66–71.

[19] Amir Saboury, Pooya Musavi, Foutse Khomh, and Giulio Antoniol. 2017. An em-
pirical study of code smells in JavaScript projects. In 5th International Conference
on Computer and Communication Systems (ICCCS 2020). 294–305.

[20] Ian Shoenberger, Mohamed Wiem Mkaouer, and Marouane Kessentini. 2017. On
the use of smelly examples to detect code smells in JavaScript. In 20th European
Conference on the Applications of Evolutionary Computation (EvoApplications 2017).
20–34.

[21] Elder Vicente De Paulo Sobrinho, Andrea De Lucia, and Marcelo De Almeida
Maia. 2021. A Systematic Literature Review on Bad Smells-5 W’s: Which, When,
What, Who, Where. IEEE Transactions on Software Engineering 47, 32 (2021),
17–66.

[22] Amjed Tahir, Jens Dietrich, Steve Counsell, Sherlock Licorish, andAiko Yamashita.
2020. A large scale study on how developers discuss code smells and anti-pattern
in Stack Exchange sites. Information and Software Technology 125, 30 (2020), 256.

[23] Gustavo Vale, Eduardo Figueiredo, Ramon Abilio, and Heitor Costa. 2014. Bad
smells in software product lines: A systematic review. In 8th Brazilian Symposium
on Software Components, Architectures and Reuse (SBCARS). 84–94.

[24] Xiao Xiao, Shi Han, Charles Zhang, and Dongmei Zhang. 2015. Uncovering
JavaScript Performance Code Smells Relevant to Type Mutations. , 335-355 pages.
https://doi.org/10.1007/978-3-319-26529-2_18

https://doi.org/10.3390/info9110273
https://doi.org/10.1007/978-3-319-26529-2_18

	Abstract
	1 Introduction
	2 Systematic Mapping Study
	2.1 Research Questions
	2.2 Search String and Data Source
	2.3 Inclusion and Exclusion Criteria

	3 Data Analysis
	3.1 List of Javascript Bad Smells
	3.2 Interest in the bad smells topic in JS over the years

	4 Threats to validity
	5 Related Works
	6 Conclusion
	References

