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ABSTRACT
During the evolution of a database schema, some schema-changing
operations (e.g., the “ALTER TABLE” command) require the under-
lying database management system to lock tables until the opera-
tion is finished. We call these schema-changing operations blocking
operations. During the execution of blocking operations, a soft-
ware application may behave abnormally, varying from a slow page
loading to an error caused by a web request taking too long to
return. Despite their potential negative impact on important qual-
ity attributes, blocking operations have not yet been empirically
investigated in the context of software evolution. To fill this gap, we
conducted a large industrial case study in the context of a Brazilian
software company. We analyzed 1,499 atomic schema-changing
operations from a period of 6 years to explore which blocking oper-
ations the developers frequently performed during the evolution of
the database schema of a target system. The intention behind this
case study is better understanding the problem in its original con-
text to outline strategies to correct or mitigate it in the future. Our
results show that blocking operations were very common, though
not all of them seemed to cause observable downtime periods. We
also present some mitigating strategies already in use by the devel-
opment team of the target system to cope with blocking operation
during software evolution, avoiding their negative impact.

KEYWORDS
blocking operations, database schema, schema evolution, software
evolution, case study

1 INTRODUCTION
Software evolution is a natural phenomenon in any minimally
long-lived software system [10]. When new features, bug fixes, or
perfections to existing features are implemented in a system, both
the source code and the database schema, which is the blueprint of
the logical organization of data in a database, need to be modified
to meet these demands [8]. During the modification of the database
schema, some operations, such as an “ALTER TABLE” command,
require the underlying database management system to lock the
table until the operation is executed by the database, blocking reads
or writes to that table [6]. In this paper, we call schema-changing
operations that block other database clients to perform read/write
operations concurrently as blocking operations.

Most of the time, web applications are reading or writing data
into the database. In this sense, if the database cannot perform a
read/write operation until the end of a schema-changing operation,
the web application is prevented from running seamlessly. To the

final user of a software application, the impact of blocking opera-
tions can vary from a slow page loading to an error caused by a web
request taking too long to return. Thus, blocking operations have
the potential to hinder software quality attributes, like performance,
usability, or availability [9].

Despite their potential negative impact on important quality
attributes, blocking operations have not yet been empirically in-
vestigated in the context of software evolution. So far, empirical
studies have investigated the evolution of the database schema
alone [2, 3, 12] or the joint evolution of the database and applica-
tion source code [7, 8]. But none of these works have investigated
the occurrence of blocking operations during database schema evo-
lution.

To fill this gap, we conducted a large industrial case study in the
context of a Brazilian software company to explore which blocking
operations the developers performed during the evolution of the
database schema of a target system. The intention behind this case
study is better understanding the problem in its original context to
outline strategies to correct or mitigate it in the future.

Our case study analyzed 1,499 atomic schema-changing opera-
tions during an evolution period of 6 years, comprising the period
between January-2015 and March-2021, of one target system imple-
mented in Python using the Django Web framework. We observed
a total of 11 different types of atomic schema-changing operations,
from which 7 are blocking operations. We also observed that there
existed at least one blocking operation in 87.5% of the analyzed
months, so blocking operations were very common in our case
study. On the other hand, we observed that not all blocking oper-
ations seemed to cause downtime periods and very few months
(5.5%) had blocking operations potentially causing downtime pe-
riods. We identified some mitigating strategies already in use by
the development team to cope with blocking operations during
software evolution, avoiding their negative impact.

The main contributions of this paper are: (i) We present a large
case study assessing the occurrence of blocking operations during
database schema evolution; (ii) We observed that blocking oper-
ations with visible downtime periods are those that need to scan
all records in a table; and (iii) We found that some short-duration
blocking operations alone do not cause visible downtime periods,
but when the database executes them sequentially, they might cause
visible downtime periods.

2 CASE STUDY DESIGN
We performed this case study in the context of the ANON company,
a small-sized company based in Brazil, working on the development
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of management systems in the accounting area.1 In recent years,
large clients acquired the company’s main product, increasing the
demand for better levels in service quality attributes, especially
software availability. Even with the adoption of continuous inte-
gration and continuous delivery practices, the system update in
the production environment has become a critical factor affecting
software availability. In some scenarios, service interruptions are
observed during a system update, especially when the database
performed blocking operations. We detail the settings of our case
study in the next sections, following the guidelines provided by
Runeson et al. [11].

2.1 Goal and Research Questions
Database schema evolutions are necessary and may eventually re-
quire the execution of blocking operations. In the ANON company,
the developers observed problems caused by blocking operations,
such as slow pages loading or errors caused by web requests taking
too long to return, in some scenarios of database schema evolutions.
However, there is still limited empirical knowledge regarding the
occurrence of database blocking operations during database schema
evolution.

The goal of our case study is to explore which blocking opera-
tions the database frequently performed during the evolution of
the database schema of our target system. To achieve our research
goal, we investigate the following research questions:

RQ1: Which atomic operations were performed on the database
schema along with its evolution?

RQ2: How often were blocking operations performed along with
the database schema evolution?

The first question is more exploratory and serves the purpose of
characterizing how the database schema has evolved, helping us
to characterize which different atomic operations, including both
blocking and non-blocking operations, the database frequently
performed during the period analyzed in our study. The second
question is more analytical and complements the first one by con-
ducting a more specific analysis regarding the blocking nature of
atomic operations observed during the evolution period analyzed.

2.2 The Case and The Units of Analysis
The ANON company organizes its work in software products, with
the YMS system being its main product marketed to client compa-
nies.2 Therefore, we choose the YMS as the case of our study. The
YMS system is a web-based application written in Python using the
Django Web Framework and storing its data in a PostgreSQL 9.6
database. The YMS system has been in development since 2015 and,
its current version, in March-2021, has 123 database tables and 999
columns. Moreover, the units of analysis of our investigation are
the atomic schema-changing operations performed in the database
schema of the YMS system over the period from January-2015 to
December-2020.

1For the sake of anonymity, we will use the alias “ANON” to refer to the company.
2For the sake of anonymity, we will use the alias “YMS” to refer to the company’s
main product.

2.3 Concept Operationalization
Typically, in Django-based web application development, develop-
ers do not explicitly implement Structured Query Language (SQL)
nor Data Description Language (DDL) commands. Instead, they rely
on the framework Object-Relational Mapping (ORM) mechanism
to automatically map the application’s entities to the correspon-
dent database tables. Django’s ORM mechanism also provides the
concept of “Migrations” to manage the evolution of model entities.
In simple terms, when developers change the application’s model
entities mapped by the ORM feature, Django’s Migration system
identifies what has changed and stores these changes to a new
“Migration File”, which is a Python script listing schema-changing
operations.

This way, we recovered the atomic schema-changing operations
performed during YMS evolution, which are our units of analysis,
by analyzing a sequence of “Migration Files”. We analyzed the
extracted migration files using the sqlmigrate tool, provided by
the Django framework itself.3 This tool processes a given migration
file and produces the exact DDL commands intended to be executed
in the database schema.

3 DATA ANALYSIS
We collected 248 migration files created in the period between
January-2015 and March-2021. From these 248 migration files, we
extracted a total of 1,499 atomic operations. Then, we categorized
each operation by reusing the list of categories of atomic operations
proposed by Qiu et al. [8]. The tablerefnewqiucodes depicts the list
of atomic operations and their respective category.

We extended the original list proposed byQiu et al. by adding two
new operations (A16 - Add Constraint and A17 - Drop Constraint)
since we observed this type of operation in our study. We also ex-
tended it by categorizing each atomic operation by its blocking/non-
blocking nature; the Table 1 presents this categorization in the col-
umn “Blocking Operation”. It is worth mentioning that the blocking
nature of each atomic operation refers to the behavior of the opera-
tions as implemented by the version of the PostgreSQL used in the
application used as our case. Finally, we designed and implemented
a tool to capture and parse the output of “sqlmigrate” to categorize
each DDL command according to the codes presented in Table 1.4
Next, we detail our analysis that answer our research questions.

3.1 RQ1: Which atomic operations were
performed on the database schema along
with its evolution?

To answer our first research question, we analyzed the distribution
of the 1,499 operations according to their category, as listed in
Table1. The chart in Figure 1 shows that distribution.

Of the total 26 operations types listed in Table1, we observed
11 operations in the data collected from the migration files. From
these 11 operations, 7 are blocking operations. We observed that
approximately 90% of the atomic operations analyzed in our case
study are concentrated in 7 different categories: A18 - Add Index, A2
- Add Column, A12 - Add Foreign Key, A21 - Drop Column Default
3The documentation of the sqlmigrate tool is available in https://docs.djangoproject.
com/en/3.2/ref/django-admin
4Scripts and datasets used in this work available in https://gitlab.com/cptx032/mde

https://docs.djangoproject.com/en/3.2/ref/django-admin
https://docs.djangoproject.com/en/3.2/ref/django-admin
https://gitlab.com/cptx032/mde
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Table 1: Atomic Operations for Database Schema Evolution. Source: adapted and extended from Qiu et al. [8]

Ref. Atomic Operation Category DDL Postgres Blocking Operation
A1 Add Table CREATE TABLE t_name; No
A2 Add Column ALTER TABLE t_name ADD c_name; Yes
A3 Add View CREATE VIEW v_name AS ... No
A4 Drop Table DROP TABLE t_name No
A5 Rename Table ALTER TABLE o_t_name RENAME n_t_name No
A6 Drop Column ALTER TABLE t_name DROP COLUMN c_name No
A7 Rename Column ALTER TABLE t_name CHANGE COLUMN o_c_name n_c_name No
A8 Change Column Datatype ALTER TABLE t_name MODIFY COLUMN c_namec_def Yes
A9 Drop View DROP VIEW v_name No
A10 Add Key ALTER TABLE t_name ADD KEY k_name Yes
A11 Drop Key ALTER TABLE t_name DROP KEY k_name No
A12 Add Foreign Key ALTER TABLE t_name ADD FOREIGN KEY fk_name ... Yes
A13 Drop Foreign Key ALTER TABLE t_name DROP FOREIGN KEY fk_name No
A14 Add Trigger CREATE TRIGGER trig_name ... ON TABLE t_name ... No
A15 Drop Trigger DROP TRIGGER trig_name No
A16 Add Constraint ALTER TABLE t_name ADD CONSTRAINT c_name ... Yes
A17 Drop Constraint ALTER TABLE t_name ADD CONSTRAINT c_name ... No
A18 Add Index ALTER TABLE t_name ADD INDEX idx_name Yes
A19 Drop Index ALTER TABLE t_name DROP INDEX idx_name No
A20 Add Column Default Value ALTER TABLE t_name MODIFY COLUMN c_name SET DEFAULT value No
A21 Drop Column Default Value ALTER TABLE t_name MODIFY COLUMN c_name DROP DEFAULT No
A22 Change Column Default Value ALTER TABLE t_name MODIFY COLUMN c_name SET DEFAULT value No
A23 Make Column Not NULL ALTER TABLE t_name MODIFY COLUMN c_name NoT NULL Yes
A24 Drop Column Not NULL ALTER TABLE t_name MODIFY COLUMN c_name NULL No
A25 Add Stored Procedure CREATE PROCEDURE pro_name ... No
A26 Drop Stored Procedure DROP PROCEDURE pro_name No
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Figure 1: Themost common operations found in the “Migra-
tion Files”.

Value, A1 - Add Table, A6 - Drop Column and A10 - Add Key where
4 are blocking operations: A18 - Add Index, A2 - Add Column, A12 -
Add Foreign Key and A10 - Add Key.

As the YMS evolves, the creation of new database entities is ex-
pected, in this sense, the developers create new tables and columns
regularly. This regular database entity creation is expressed in the
number of new columns (A2 - Add Column). Since Django ORM
creates a separated atomic operation to set foreign and primary
keys in the newly created columns, we understand why the high
number of Add Column is accompanied by a high number of A12 -
Add Foreign Key and A10 - Add Key atomic operations.

The presence of A18 - Add Index and A21 - Drop Column Default
Value operations are less intuitive. Examining the situations where
the A21 - Drop Column Default Value operations appeared we noted
that, curiously enough, when the developer sets a default value to
a column, the Django ORM creates an atomic operation defining
the default value in the database but, right after that, removes it.
According to the Django documentation, this behavior aims to fill
the NULL values present in the column, but because of the design
choice of Django ORM, the default value must not remain at the

database level.5 Lastly, we found that the high number of A18 -
Add Index operations are the sum of all regular columns that the
developer has marked to have an index and the indexes that the
Django ORM creates automatically in the creation of primary and
foreign keys.

Atomic operations related to the management of triggers, views,
and stored procedures are not present in our extracted data. This is
because the Django ORM framework does not support this kind of
database entity through its ORM. Although possible to use these
database entities in Django, the management of these entities is in
charge of the programmer and not of the Django ORM. The lack of
built-in support for these entities in the framework ORM discour-
ages their use in the development of Django-based applications.

The operations A11 - Drop Key, A17 - Drop Constraint, and A19 -
Drop Index are not present in the DDL generated by the migration
files because most of the indexes, keys, and constraints are gener-
ated by Django automatically when creating foreign and primary
keys, and they cannot be removed directly by the programmer us-
ing the ORM. Lastly, the operations A22 - Change Column Default
Value and A23 - Make Column Not Null were absent for no specific
reason; these column settings in the YMS database just happened
to not change over time in the period studied.

Results 1) More than 70% of all atomic operations in the YMS
application are database entity additions. 2) The YMS application
often uses primary and foreign keys and, because of that, exists a
high number of indexes in the database of the YMS application. 3)
Influenced by the lack of support for some database entities in the
Django framework, triggers, views, and stored procedures are not
present in the analyzed “Migration Files”.

5https://docs.djangoproject.com/en/3.2/ref/models/fields/#default

https://docs.djangoproject.com/en/3.2/ref/models/fields/#default
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Figure 2: Blocking Operations Over Months.

3.2 RQ2: How often were blocking operations
performed along with the database schema
evolution?

As we mentioned before, we classified the DDL operations by their
blocking nature. To answer our second research question, we used
our tool to extract data about the number of operations over time,
categorizing the operations in terms of their blocking/non-blocking
nature. Figure 2 shows how both the aggregated number of blocking
and non-blocking operations occurred along with the database
schema evolution.

We noted that of the 72 months shown in Figure 2, 8 months
(11.1%) do not contain any operation and 63 months (87.5%) con-
tained at least one blocking operation. We also noted that in 10
months (13.9%) the number of blocking and non-blocking oper-
ations were equal, in 36 months (50%) the number of blocking
operations exceeds the number of non-blocking operations, and in
18 months (25%) the number of non-blocking operations exceeds
the number of blocking operations.

It is worth mentioning that a high number of blocking opera-
tions does not necessarily mean that a visible downtime will occur.
Further investigations are necessary to better characterize which
blocking operations, or which combinations of blocking opera-
tions, result in significant downtime periods. We observed that
long downtimes are associated with operations that need to scan all
the records in a table. Also, many sequential short-duration block-
ing operations can increase the chance of a perceptible downtime
period because the Django migration system performs the DDL op-
erations sequentially, and being so, the total time taken to perform
them is the sum of the time of each one. In the ANON company,
we noted that, in some production environments, the PostgreSQL
database takes 18.5 milliseconds to perform short duration database
operations, whose duration does not depends on the number of
records in a table. Considering that 1 second of database downtime
is perceptible, we can conclude that 55 sequential operations are
enough to cause a visible blocking in the data access of the YMS
application. We noted that 4 months had more than 55 blocking
operations: January-2015 with 68 operations, December-2015 with
98 operations, August-2017 with 71 operations, and April-2020 with
85 operations. Since the company does not hold logs registering
how the system behaved during these events of database schema

update, we could not confirm if these batches of sequential blocking
operations indeed caused perceptible downtime periods.

Results 1) There were blocking operations in 87.5% of the ana-
lyzed months. 2) Fewmonths (5.5%) had enough sequential blocking
operations to cause downtime just by performing them sequentially.

4 DISCUSSION
We noted that a visible blocking scenario happens in two situations.
The first type of situation is when many database operations take
place one after another. As mentioned before, the time of each oper-
ation is summed once the Django performs them sequentially. The
time needed to perform a single short-duration operation depends
only on the processing power of the server running the YMS appli-
cation. Due to the rarity of this kind of event and the low duration
of it (the worst case we found, 98 sequential operations, may have
led to a duration of 1.8 seconds), the ANON company can accept
them without problems.

The second situation is when a single database operation scans
all the records (i.e., a full table scan) in a table with many records.
The duration of that operation depends mainly on the number of
records in the table. An example of that operation is the inclusion
of primary keys constraints in existing columns, so the PostgreSQL
will need to perform a full scan in the table to verify if all recordsmet
the primary key criteria. Initial results of preliminary experiments
in the production environment of the YMS application show that a
simple ADD COLUMN operation performed in a table with 1 million
records can take up to 11 seconds to complete, on average.

Over time, the practitioners in the ANON company developed
many strategies to avoid full table scans in PostgreSQL. One tech-
nique is to scan the table concurrently, i.e., without preventing
other operations in that table to be performed. A example is the
creation of a new column with a default value (e.g., ALTER TABLE
X ADD COLUMN Y INTEGER DEFAULT 0;). PostgreSQL will scan all
records in the table to fill the default values in the already existing
records. To avoid that full table scan, the developers add a column
in the table without a default value and, after that, they do other
operations updating chunks of records with the default value. This
method works because the first operation has an aggressive lock,
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i.e., completely prevents the table access, but has a very short dura-
tion, and the following operations have soft locks, i.e., they do not
prevent some table accesses.

These techniques for coping with blocking operations require a
degree of control over the database operations and a detailed ana-
lyzes of the blocking operation in question. On this, we found that
the developer does not control the database directly if he is using the
Django ORM. The control made by the Django Framework over the
database is suitable to guarantee compatibility over multiple data-
base systems, making it easy to switch between different vendors,
for example. On other hand, this excessive control makes inflexible
the operations that Django will perform and consequently, which
database locks the PostgreSQL will create.

5 RELATEDWORK
The literature has works on database schema evolution and works
on techniques to overcome the database downtimes. The first type
of work has many representatives [2, 3, 7, 8, 12]. Recent software
technologies have better approaches to store database schema mod-
ifications, like the database schema version control applications,
but legacy software has database schema definitions mixed with
application code which makes it difficult to recover the database
schema. We believe that this difficulty explains why these works
have a high focus on static code analysis and database schema ex-
traction from source code. As the YMS application uses the Django
schema version control, the extraction step in our analysis was
relatively easy. In this sense, our interest in these works was the
database schema analysis process. Qiu et al. work [8] work gave us
a way to categorize the atomic operations and Cleve et al. work [2]
gave us another view of database schema evolution looking aspects
like table lifetimes. Their analysis includes details that are unique
to each application, making it hard to reproduce and generalize
the same experiment in other software systems. Additionally, these
works do not focus on the impacts of the schema evolution in the
database availability when deploying blocking operations.

The second type of work is on deployment techniques devel-
oped to avoid outages in software in the deployment time. In these
papers, the database is one of many different pieces of software
that can make difficult the seamless operation of the application
when deploying software. On this topic, De Jong [4] reviews many
techniques used to make possible deploys without outages, propos-
ing another technique to achieve the desired “zero-downtime” SQL
database. The paper retrieved controlled results from experiments
made by the authors, writing random data to some tables to repro-
duce long-downtimes, aiming to measure the efficiency of the new
technique proposed. The work of De Jong et al. [5] examines the
problems that the database schema evolution brings to continuous
deployment techniques. In that paper, the authors found two main
problems introduced by the databases in a continuous deployment
scenario: 1) the need for a backward-compatible database schema
evolution and 2) the long blocking operations made in schema evo-
lution. The method used by this last paper to avoid long downtimes
in the database schema evolution is made in general, without tak-
ing into account the particularities of each table, just replicating
the schema and data in what they named as “ghost tables”. The
operation of data copying can be expensive if the tables have lots

of data [1]. Additionally, we base our work on the analysis of a real
database schema with real database data, which makes it possible
to analyze which parts of the schema can impact an outage in a
real-world application context.

6 CONCLUSION AND FUTUREWORK
In this paper, we report our analysis on database schema evolution
using a real-world case of industry, focusing on the blocking op-
erations performed in the application. With the available data, we
identified sources of possible database downtime over time. With
the identification of which types of blocking operation occur and in
which frequency will be possible to choose which technique to use
to perform database schema evolution techniques. Our work shows
that the Django ORM helps developers by abstracting the burden of
writing SQL statements, but it also hides the operations being made
under the covers, which can lead to negative consequences, such as
downtime periods caused by blocking operations. Future research
may be interested in data surrounding the deployment stage as
deployment duration, running application interruptions, outage
duration, and statistics on which tables the user are interacting
frequently. Future work may apply similar experiments to other
Django projects in applications with databases available for analy-
sis. A study on existing and new tools to gather more information
about the deployment and to help developers to understand the
impacts of a database change over deployment outages duration,
focusing on more complex and real cases, should be an interesting
focal point for future works.
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