
Investigating vulnerability datasets
Rodrigo Andrade

Universidade Federal do Agreste de Pernambuco
Garanhuns, Brazil

rodrigo.andrade@ufape.edu.br

Vinícius Santos
Universidade Federal do Agreste de Pernambuco

Garanhuns, Brazil
v.santos0406@gmail.com

ABSTRACT
Insecure software can cause severe damage to user experience and
privacy. Therefore, developers should be able to prevent software
vulnerabilities. However, detecting such problems is expensive and
time consuming. To mitigate this issue, researchers propose vul-
nerability datasets to make it easier to investigate its properties. In
this work, we investigate one dataset to better understand common
vulnerabilities, the authors who introduce them to open-source
projects, and commit properties. Thus, we use as case study the
Big-Vul dataset to help us answering the six research questions we
define for this work. Our preliminary results indicate that the most
common vulnerabilities occur in the Chromium project. Further-
more, mostly experienced authors are responsible for introducing
these vulnerabilities. Last but not least, we conclude that such find-
ings could help developers on detecting vulnerabilities.

KEYWORDS
Vulnerability; Datasets; Commits; CVE.

1 INTRODUCTION
Security is a major concern for software developers. Insecure soft-
ware is expensive to maintain and it is harmful for user experience
and privacy [3]. Thus, properly dealing with security is important.

To build secure software, developers rely on preventing soft-
ware vulnerabilities [15]. They are instances of an error in the
specification, development, or configuration of software such that
its execution can violate a security policy. Software vulnerabilities
might have consequences that go beyond the annoyance of common
software system failures [12]. The exploitation of vulnerabilities
can affect the privacy of users and have disastrous effects.

Unfortunately, finding software vulnerabilities requires expertise
in the specific system and in software security [1, 14]. Thus, finding
and fixing vulnerabilities are costly and time consuming [19]. To
circumvent this problem, researchers propose a number of solutions
such as tools to automatically detect certain kinds of vulnerabili-
ties [11, 18] and datasets of disclosed vulnerabilities [7, 10, 19]. In
particular, these datasets are a collection of vulnerabilities records
usually linked to an existing vulnerability database such as the
Common Vulnerabilities and Exposures (CVE) [4]. Thus, they allow
developers and researchers to investigate a number of properties
related to vulnerabilities.

In this context, our goal is to investigate, initially, the most
common vulnerabilities, characteristics of authors who introduced
them, properties of their commit messages, and possible relation
between vulnerable commits and vulnerability severity. Therefore,
the results of our assessment could help developers and researchers
to find software vulnerabilities.

To achieve this goal, we select a dataset called Big-Vul [7], which
contains more than three thousand vulnerability records across

more than three hundred open-source projects. Then, we define
six research questions regarding our investigation goals aforemen-
tioned. We answer these questions by querying Big-Vul to gather
relevant data, such as the number of CVEs occurrences within this
dataset. We also calculate metrics related to the number of commits
submitted by authors to help answering our research questions.

Our results indicate that the most common CVEs happen for the
Chromium project1. Indeed, four out of five CVEs are from this
project even though other highly supported projects have vulner-
ability records (e.g., Linux and Git). As a consequence, we define
hypotheses to explain this fact, which we aim at validating in future
work. Moreover, our results show that experienced developers are
more likely to introduce the most common vulnerabilities. Since
this is an ongoing work, we should have more interesting results
soon. For example, our preliminary data indicate that small size
commits tend to introduce the most severe vulnerabilities.

We also provide a discussion on our current results and the
benefits of our outcomes. For instance, our findings could help
developers to improve their productivity on detecting vulnerabil-
ities by knowing that experienced developers are more prone to
introduce issues.

To sum up, our contribution in this work is the following:
• An experience report on investigating the Big-Vul dataset;
• Findings about the most common CVEs in Big-Vul;
• Discussion on properties of authors who introduced vulner-
abilities;

The remainder of this work is organized as follows. Section 2
explains concepts for better understanding, such as software vulner-
abilities. And also discusses related work. In Section 3, we introduce
our research method. In particular, we explain our case study and
research questions. Section 4 contains the explanation of our results
as well as a discussion about them. At last, Section 5 concludes our
study and discusses future work.

2 BACKGROUND & RELATEDWORK
GitHub is a platform for source code storage and collaboration
among a number of developers. Nowadays, it has more than 70 mil-
lion users and 220 million repositories [9]. Many of these reposito-
ries are public, thus anyone can view the developers’ activities. The
available activities are mainly, but not limited to, actions around is-
sues, pull requests, and commits. It is also possible to view property
of repositories, such as number of stars, forks, and contributors.

The large amount of public data on GitHub makes it possible
for researchers to easily mine the repository data [6]. A number of
tools and datasets are available to assist researchers in mining such
data [2, 8, 21]. Researchers can use such datasets for a number of dif-
ferent purposes. One important goal is investigating vulnerabilities
for open-source software [10].
1https://github.com/chromium

https://github.com/chromium

VEM ’21, September 2021, Virtual Rodrigo Andrade and Vinícius Santos

In particular, a few available datasets assist researchers to mine
repositories with the goal to better understand software vulnerabili-
ties [7, 10, 13, 18, 19]. Investigating characteristics of vulnerabilities
for open-source software can provide findings that should lead to
the development of more secure systems [10].

In this context, in Section 2.1, we explain software vulnerabilities,
whereas Section 2.2 discusses datasets for software vulnerabilities.
At last, Section 2.3 explains previous work on repository analysis
regarding software vulnerability.

2.1 Software vulnerabilities
Software vulnerabilities are instances of errors that violate an im-
plicit or explicit security policy (e.g., a user cannot read someone
else’s password) [12]. The key to secure software lies when devel-
opers are able to prevent such vulnerabilities [15].

In this context, we can classify vulnerabilities by some of their
characteristics: availability, integrity, and confidentiality impact,
access complexity, type, description, and so on. For instance, Table 1
shows a vulnerability record and some of its details2.

Table 1: Vulnerability record details

Description Memory leak in mm/hugetlb.c in the Linux kernel
before 3.4.2 allows local users to cause a denial of
service (memory consumption or system crash) via
invalid MAPHUGETLB mmap operations. Memory
leak in mm/hugetlb.c in the Linux kernel before 3.4.2
allows local users to cause a denial of service
(memory consumption or system crash) via
invalid MAPHUGETLB mmap operations.

Confidentiality impact None
Integrity impact None
Availability impact Complete
Type Denial of Service
Access Complexity Low
Severity (CVSS) [5] 4.9

The description states that a memory leak occurs in a particular
file in the Linux kernel for versions prior to 3.4.2. The availability
impact is complete because there might be a total shutdown of the
system when attackers exploit this Denial of Service vulnerability.
Furthermore, there is no impact for integrity and confidentiality.

The example of Table 1 is a software vulnerability because attack-
ers are able to violate an implicit security policy such as local users
cannot execute invalid mmap operations. Developers fixed this issue
by defining a new function to check for invalid mmap operations as
showed in Listing 1. The if statement in line 4 prevent users from
inappropriately provoking a memory leak, as stated in Table 1.

Listing 1: CVE-2012-2390 fix
1 s t a t i c void resv_map_put (s t ruc t vm_a r e a_ s t r u c t ∗vma)
2 {
3 s t ruc t resv_map ∗ r e s e r v a t i o n s = vma_resv_map (vma) ;
4 i f (! r e s e r v a t i o n s)
5 return ;
6 k r e f _ pu t (& r e s e r v a t i o n s −> r e f s , r e s v_map_ r e l e a s e) ;
7 }

Understanding these software vulnerabilities along with their
addition and fix during software development is important to build
software more secure [10]. One way to achieve this goal is to in-
vestigate datasets for software vulnerabilities.
2https://www.cvedetails.com/cve/CVE-2012-2390/

2.2 Datasets for software vulnerabilities
Datasets for software vulnerabilities allow researchers to inves-
tigate projects for software defects regarding security. The data
collection usually starts from an existing vulnerability database,
such as the Common Vulnerabilities and Exposures (CVE) [4] and
the National Vulnerability Database (NVD) [17]. For example, the
CVE program maintains a list of records where each one contains
an identification number, a description, and at least one public refer-
ence for publicly known vulnerabilities3. Any party can feed these
databases by updating a vulnerability record they have found in
their projects.

From such databases, researchers can crawl their records to
gather useful information such as the CVE identification, vulner-
ability classification, publish date and etc. Then, they can select
CVE or NVD records that have reference links of publicly GitHub
repositories [7, 13]. These links lead to actual code commits contain-
ing the addition of a known vulnerability to a given project stored
on GitHub. From these commits, researchers can gather specific
and useful information around the vulnerability. For instance, code
commit date, author, commit message, files changed, programming
language, time frame before and after the fix, and etc.

Moreover, we can use these datasets to better understand how de-
velopers added and fixed a given vulnerability within open-source
software stored on GitHub. For example, we can determine the
most common type of vulnerability for a given project and the rea-
sons why it happened (e.g., inexperienced author altering critical
security related files). Developers can benefit from such knowledge
to prevent adding new vulnerabilities, which leads to more secure
software [10].

2.3 Repository analysis for software
vulnerabilities

Meneely et al. conduct an analysis on code repository that re-
lates vulnerabilities to version control commits [15]. In this con-
text, they find 124 commits that introduced vulnerabilities in the
Apache HTTP server. Additionally, they analyze characteristics of
these commits like their size and author profile. However, these
researchers manually analyze the Apache HTTP server instead
of using an existing dataset. Thereby, this work approaches only
one project. In another related work, Meneely et al. investigate
the relation between collaborative code reviews and vulnerabili-
ties [16]. They analyze a number of code reviews and commits of
the Chromium browser project to conclude that lack of collabora-
tor familiarity and security experience are risk factors to miss a
vulnerability.

Zaman et al. study how security and performance issues differ
from other types of problems in the Firefox project [20]. The authors
conclude that security-related bugs are fixed faster, involve more de-
velopers, and impact more files. They collect bug information from
CVS and Bugzilla, which allows a manual classification of bug types
and fixes. Unlike our work, they do not investigate vulnerability
properties such as integrity, confidentiality, and availability.

Besides collecting a dataset, Liu et al. analyze whether vulnera-
bility occurrence location, time, type, author, and dependency could

3https://www.cvedetails.com/cve/CVE-2009-1194/

https://www.cvedetails.com/cve/CVE-2012-2390/
https://www.cvedetails.com/cve/CVE-2009-1194/

Investigating vulnerability datasets VEM ’21, September 2021, Virtual

facilitate its detection [13]. They draw interesting findings such as
stating that a higher complexity of code cannot necessarily induce
more vulnerabilities. Different from our work, the authors use only
their own dataset. Our goal in this work is to use a larger sample
of dataset to confirm or reject previous conclusions like those in
Liu et al. work.

3 RESEARCH METHOD
In this section, we explain how we conduct our work. In particular,
we present our case study in Section 3.1 and we discuss our research
questions in Section 3.2.

3.1 Case study: Big-Vul
Currently, we conduct our work using Big-Vul [7]. It is a large
dataset containing vulnerability records of open-source GitHub
projects written in C/C++. In addition, this dataset also relates the
vulnerability occurrence with the corresponding CVE identifica-
tion [4]. In total, it has 3754 code vulnerabilities from 348 open-
source projects encompassing 91 different vulnerability types.

Big-Vul is intended to enable analysis on the characteristics of
different vulnerabilities and code changes that introduces them as
well as improving the detection and fixing of vulnerabilities [7].
Besides the CVE identification, Big-Vul’s record contains details
about availability, integrity, confidentiality, publish date, summary,
vulnerability classification, commit hash and message that intro-
duced the issue, files changed, language (C or C++), project name,
and commit hashes from before and after the fix.

We choose the Big-Vul as the first dataset of our work because it
is free of cost and contains scripts to help unpacking and analyzing
the data. Additionally, it has more than 3000 vulnerability records,
which is a large number comparing to others [13, 18, 19].

To analyze this dataset for our purpose, we define scripts to
parse its data to a MySQL database. This way, we could simplify the
queries we need to execute in order to gather the necessary data
for this work. The resulting database contains 3542 tuples where
each one represents a different vulnerability record. Furthermore,
these vulnerabilities occurred throughout 322 different projects.
As future work, we plan to also conduct our study for additional
datasets.

3.2 Research questions
As mentioned in Section 1, our goal is to investigate commits that
introduce vulnerabilities. Thus, we propose the following research
questions:

• RQ1: What are the five mostly introduced CVE regarding
the selected dataset?
RQ1.1: How distributed across different projects these

CVEs are?
RQ1.2: How experienced are the authors who committed

the CVEs?
RQ1.3: What are the main properties of the commits that

introduce the CVEs?
• RQ2: Can we predict a vulnerable commit based on its com-
mit message?

• RQ3: What properties regarding a vulnerable commit has
influence on the severity of the introduced vulnerability?

The answer to RQ1 could help us understand properties related
to commits that introduce common CVE. For instance, we could
investigate whether the most commons CVEs are specific to one or
more projects, their programming languages and severity (RQ1.1).
Besides that, it is interesting to investigate characteristics of authors
whose contributions introduced the CVE, such as how experienced
they are (RQ1.2). We could express author experience as the number
of commits she has submitted to a given project prior to introducing
the CVE. Furthermore, investigating commit properties like size
(i.e., number of additions and deletions), date, commit messages,
or number of altered files could bring insights to help developers
detecting vulnerable commits (RQ1.3). Thus, our conclusions could
improve the detection of such commits. For example, a developer
responsible for reviewing and merging someone else’s contribution
could perform these tasks more carefully for commits presenting
certain properties (e.g., large size and few altered files).

Regarding RQ2, we are interested in the most common words
that occur on vulnerable commits’ messages. Therefore, we aim at
investigating whether there is a statistical relation that could help
developers to detect vulnerabilities. For instance, in case there is a
relation between a set of words included in commit messages and
vulnerable changes, developers could focus on seeking vulnerabili-
ties on such commits.

Currently, our last research question RQ3 regards vulnerable
commit properties that influence vulnerability severity. In this work,
we use the Common Vulnerability Scoring System (CVSS) frame-
work [5] to measure the software vulnerability severity. Each CVE
has an assigned CVSS, as illustrated in Table 1. In this context, we
plan to investigate whether the number of altered files within a
commit has impact on the vulnerability severity. Thus, we could
help developers to narrow down the commits they have to prioritize
in order to find vulnerabilities. Other interesting commit properties
are size, date (e.g., Fridays are more susceptible?), programming
language used to implement the changes and kind of altered files
(e.g., database accessing, user interface).

4 RESULTS AND DISCUSSION
Currently, we have results regarding RQ1 and its two first minor
research questions RQ1.1 and RQ1.2. Thus, we answer them based
only on the Big-Vul case study in Section 4.1. Albeit we propose and
discuss RQ1.3,RQ2, andRQ3 in this work, we are currentlyworking
on their answers. Therefore, we aim at tackling these questions in
future work. However, we briefly discuss our preliminary results
for RQ1.3 in Section 4.1. We also discuss our finding in Section 4.2
and some threats to the validity of this work in Section 4.3.

4.1 RQ1: What are the five mostly introduced
CVE regarding the selected dataset?

To answer this research question, we query the Big-Vul dataset to
check which CVEs present the most occurrences. Table 2 illustrates
the top five CVEs in this context. For instance, the CVE-2012-2875
occurred 15 times for the Chromium project. The resulting vulner-
ability presents a severity score of 6.8 in the CVSS scale (max is 10).
The vulnerability type is undefined and it happens due to issues in
the PDF functionality for the Google Chrome web browser. Further-
more, the CVE-2017-6903 presents the highest CVSS, that is, this

VEM ’21, September 2021, Virtual Rodrigo Andrade and Vinícius Santos

CVE represent the most severe issue among the five CVEs. Indeed,
it can cause a complete confidentiality, integrity, and availability
impact and attackers do not need to authenticate in order to exploit
the resulting vulnerability.

The Big-Vul dataset contains vulnerability information from
large and widely supported projects such as Linux, Bitcoin, Git,
and MySQL Server. However, surprisingly, four out of the five most
common CVE are from the Chromium project4, which answers
RQ1.1. This finding brings interesting research opportunities. For
example, we could investigate the reason why the software devel-
oped within the Chromium project are supposedly more insecure
than others. Based on our experience, we consider the hypotheses
below:

• H1: Code review process is less rigid than other large projects;
• H2: The application domain (Web Browser) is susceptible for
vulnerability introduction;

• H3: The Chromium project is used as case study for more
studies;

Although we plan to investigate these hypotheses in future work,
we invite other researchers to also reason about the vulnerabilities
regarding the Chromium project. For H1, we plan to compare the
Chromium code review process to another less vulnerability-prone
project. We could check the number of contributions being rejected,
the number of asked corrections, and also how experience the
developers that are responsible for code reviewing are. Moreover,
for H2, we aim at investigating whether the vulnerabilities are
browser-related and how does it impact on a higher number of
CVE comparing to another project of a different domain. At last, we
believe that one possible reason for more CVEs in the Chromium
project is due to it being used for many studies regarding software
vulnerability. Thus, its flaws are better documented than other
large projects. Nonetheless, we need to investigate H3 to propose
conclusions in this context.

Regarding RQ1.2, we state that most of the authors who intro-
duced the vulnerabilities are experienced. In this work, we deter-
mine whether a developer is experienced based on data concerning
the number of commits per month prior to introducing the vulnera-
bility identified by the CVE. In future work, we also plan to use the
NEA? metric [15] to ratify our findings. The NEA? metric is defined
as a nominal "Yes" or "No" for when an author is a New Effective
Author, or has no commit for the files where the vulnerability is
introduced prior to the problematic commit.

As showed in Table 3, we measure data regarding the number
of commits per month from authors who have introduced the vul-
nerability identified by each CVE-ID. For instance, regarding the
CVE-2012-2875, authors have committed an average of 88 commits
per month before the introduction of such CVE. Additionally, the
median is 19, which means that the authors are equally distributed
above and below this threshold. One of the authors submitted only
one commit before introducing this CVE while another author sub-
mitted 743 commits. Therefore, the former is inexperienced and the
latter is experienced.

To sum up, the authors who introduced the vulnerabilities are
more likely to be experienced because they have contributed with
at least 13 commits per month on average for the projects where
4https://github.com/chromium

the CVE were detected. Despite existing outliers such as the au-
thor who committed 743 times, we observe that the lowest median
(seven) demonstrates that the majority of authors are not one time
contributors.

The answer to RQ1.3 is an ongoing work. Thus, we plan to in-
vestigate whether the commit size in terms of number of additions
and deletions impact the proneness to increase or decrease the
vulnerability severity. To our knowledge, related work only con-
cern about the proneness of commit size to introduce vulnerability.
However, they do not consider the severity fact. Unexpectedly, our
preliminary assessment indicates that commits of small sizes tend to
increase vulnerability severity considering the CVSS framework [5].
Therefore, we leave the detailed answer to RQ1.3 for future work.

4.2 Discussion
By answering our research questions, we intend to help developers
to detect software vulnerabilities. The goal is to make this task less
costly and time consuming.

First, the vulnerability detection could demand less people and
resource involved because developers can focus on commits and
authors more prone to introduce such issues. Therefore, it could de-
crease the number of developers assigned to review source code and
history. Also, it could decrease the need to use resource-expensive
(e.g., memory consumption) tools that analyze source code, such as
VCCFinder [18] or JOANA [11].

Second, with the knowledge we aim at providing, developers
could be able to focus their effort to detect software vulnerabilities
mainly on more susceptible commits. For example, commits sub-
mitted by experienced developers. Thus, they could perform this
task faster than analyzing all the existing commits equally.

Currently, we only have few results to actually help developers
in this context. However, after answering the defined research
questions and validating or rejecting the three hypotheses, we
believe that our conclusions could decrease the cost and time to
find software vulnerabilities.

4.3 Threats to validity
Using only one dataset might affect our ability to draw the correct
conclusion. Indeed, analyzing other datasets could lead us to dif-
ferent results. However, we mitigate this issue by selecting a large
dataset (Big-Vul) which contains a number of vulnerabilities from
several different software projects. Nonetheless, in future work,
we plan to also analyze other datasets such as the VulinOSS [10]
and [19].

Another important threat regards the fact that Big-Vul presents
only vulnerabilities identified in C or C++ software projects. There-
fore, its vulnerability records could be specific to these program-
ming languages. In this context, we cannot generalize our results
for alternative datasets that consider projects written in other lan-
guages like Java. In this way, we could minimize this threat when
we analyzing a larger number of datasets in future work.

5 CONCLUSIONS & FUTUREWORK
In this study, we investigate properties related to vulnerabilities,
commits, and their authors. To achieve that goal, we studied the
Big-Vul dataset, which contains thousands of vulnerabilities entries

https://github.com/chromium

Investigating vulnerability datasets VEM ’21, September 2021, Virtual

Table 2: Most common CVEs for the Big-Vul dataset

CVE-ID Nº of occur. Projects CVSS Vulnerability type Description
CVE-2012-2875 15 chromium 6.8 Undefined Multiple unspecified vulnerabilities in the PDF functionality in Google Chrome before 22.0.1229.79 allow

remote attackers to have an unknown impact via a crafted document.
CVE-2015-1265 14 chromium 7.5 Denial of Service Multiple unspecified vulnerabilities in Google Chrome before 43.0.2357.65 allow attackers to cause a

denial of service or possibly have other impact via unknown vectors.
CVE-2013-0892 7 chromium 7.5 Denial of Service Multiple unspecified vulnerabilities in the IPC layer in Google Chrome before 25.0.1364.97 on Windows

and Linux, and before 25.0.1364.99 on Mac OS X, allow remote attackers to cause a denial of service
or possibly have other impact via unknown vectors.

CVE-2017-6903 7 OpenJK 9.3 Undefined In ioquake3 before 2017-03-14, the auto-downloading feature has insufficient content restrictions.
ioq3 In OpenJK, iortcw, a malicious auto-downloaded file can trigger loading of crafted auto-downloaded
iortcw files as native code DLLs. Also, it can contain configuration defaults that override the user, and

executable bytecode in it can set configuration variables to values that will result in unwanted
native code DLLs being loaded, resulting in sandbox escape.

CVE-2011-3110 6 chromium 7.5 Denial of Service The PDF functionality in Google Chrome before 19.0.1084.52 allows remote attackers to cause a
Overflow denial of service or possibly have unspecified other impact via vectors that trigger out-of-bounds

write operations.

Table 3: Authors experience data

CVE-ID Average Median Min Max
CVE-2012-2875 88 19 1 743
CVE-2015-1265 15 9 1 153
CVE-2013-0892 13 9 1 68
CVE-2017-6903 13 7 1 119
CVE-2011-3110 95 25 1 651

for a number of projects. In particular, we defined three major re-
search questions plus three minor ones. We use them to guide us on
understanding properties related to vulnerability introduction. Cur-
rently, we answered our first major research question by discussing
the five mostly introduced CVE within Big-Vul. We verified that
four out of these five CVEs occurred in the Chromium project. This
finding brought us insights to define three hypotheses concerning
the reasons why it happens for the Chromium project.

Besides that, we also identified that experienced developers were
responsible for introducing the five most common vulnerabilities,
which is counter-intuitive since we thought more obvious that
inexperienced developers would be responsible for this problem.
Our preliminary finding also shows that small commits in terms of
addition and deletions are more prone to introduce high severity
vulnerabilities, which is also counter-intuitive. However, we need
to do further work to better understand the reasons for this to
happen.

As future work, we plan to select other case studies to ratify our
findings. Thus, first we plan to investigate the Manually-Curated
dataset [19] and the VulinOSS dataset [10]. Furthermore, we intend
to assess these datasets plus the Big-Vul to better answer our third
minor research questions (RQ1.3). Besides that, the answers to our
second (RQ2) and third (RQ3) major research questions are cru-
cial to achieve our goal on helping developers to detect software
vulnerabilities. Another path of future work is to either validate
or reject the three hypotheses (H1, H2, and H3) we defined while
answering RQ1. Last but not least, we also plan to define more
research question with the same purpose of our current goal.

REFERENCES
[1] J. Allen, S. Barnum, R. Ellison, G. McGraw, and N. Mead. 2008. Software Security

Engineering. Addison-Wesley Professional.
[2] GH Archive. 2021. GH Archive. https://www.gharchive.org/

[3] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. 2014. Identifying the Characteristics of Vulnerable Code Changes: An Em-
pirical Study. In International Symposium on Foundations of Software Engineering.
257–268.

[4] CVE. 2021. Common Vulnerabilities and Exposures. https://cve.mitre.org
[5] CVSS. 2021. The Common Vulnerability Scoring System. https://nvd.nist.gov/vuln-

metrics/cvss
[6] Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, and Damian D.

2014. The promises and perils of mining github. In Proceedings of the 11th working
conference on mining software repositories. 92–101.

[7] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories. 508–512.

[8] GitHub. 2021. GitHub Rest API. https://docs.github.com/pt/rest
[9] GitHub. 2021. GitHub Search. https://github.com/search
[10] Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. 2018. VulinOSS:

A Dataset of Security Vulnerabilities in Open-source Systems. In Proceedings of
the 15th International Conference on Mining Software Repositories. 18–21.

[11] Jürgen Graf, Martin Hecker, and Martin Mohr. 2013. Using JOANA for Informa-
tion Flow Control in Java Programs - A Practical Guide. In Work. Conf. Program.
Languages. 123–138.

[12] Ivan Victor Krsul. 1998. Software Vulnerability Analysis. Ph.D. Dissertation.
Purdue University.

[13] Bingchang Liu, Guozhu Meng, Wei Zou, Qi Gong, Feng Li, Min Lin, Dandan Sun,
Wei Huo, and Chao Zhang. 2020. A Large-Scale Empirical Study on Vulnerability
Distribution within Projects and the Lessons Learned. In Proceedings of the 42nd
International Conference on Software Engineering. 1547–1559.

[14] G. McGraw. 2006. Software Security: Building Security In. Addison-Wesley Profes-
sional.

[15] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez
Tejeda, Matthew Mokary, and Brian Spates. 2013. When a Patch Goes Bad:
Exploring the Properties of Vulnerability-Contributing Commits. In Proceedings of
the International Symposium on Empirical Software Engineering and Measurement.
65–74.

[16] Andrew Meneely, Alberto C. Rodriguez Tejeda, Brian Spates, Shannon Trudeau,
Danielle Neuberger, Katherine Whitlock, Christopher Ketant, and Kayla Davis.
2014. An Empirical Investigation of Socio-technical Code Review Metrics and
Security Vulnerabilities. In Proceedings of the 6th International Workshop on Social
Software Engineering. 37–44.

[17] NVD. 2021. National Vulnerability Database. https://nvd.nist.gov/
[18] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,

Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. VCCFinder: Finding Potential
Vulnerabilities in Open-Source Projects to Assist Code Audits Henning. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 426–437.

[19] Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cedric
Dangremont. 2019. A manually-curated dataset of fixes to vulnerabilities of open-
source software. In Proceedings of the 16th International Conference on Mining
Software Repositories. 383–387.

[20] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu. 2012. A Large
Scale Exploratory Analysis of Software Vulnerability Life Cycles. In Proceedings
of the 34th International Conference on Software Engineering. 771–781.

[21] GH Torrent. 2021. GH Torrent. https://ghtorrent.org/

https://www.gharchive.org/
https://cve.mitre.org
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://docs.github.com/pt/rest
https://github.com/search
https://nvd.nist.gov/
https://ghtorrent.org/

	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software vulnerabilities
	2.2 Datasets for software vulnerabilities
	2.3 Repository analysis for software vulnerabilities

	3 Research method
	3.1 Case study: Big-Vul
	3.2 Research questions

	4 Results and discussion
	4.1 RQ1: What are the five mostly introduced CVE regarding the selected dataset?
	4.2 Discussion
	4.3 Threats to validity

	5 Conclusions & Future work
	References

