Revealing Developers’ Arguments on Validating the Incidence of
Code Smells: A Focus Group Experience

Luis Felipi Junionello
luiz.junionello@aluno.cefet-rj.br
CEFET/R]J, Brazil

Leonardo Sousa
leo.sousa@west.cmu.edu
Carnegie Mellon University

ABSTRACT

Identifying code smells is considered a subjective task. Unfortu-
nately, current automated detection tools cannot deal with such
subjectivity, requiring human validation. Developers tend to fol-
low different, albeit complementary, strategies when validating
the identified smells. Intending to find out developers’ arguments
when validating the incidence of code smells, we conducted a fo-
cus group session with developers familiar with identifying code
smells. We distributed them among two groups, in which they had
to argue about the incidence of a code smell: either accepting or
rejecting its presence. Based on their arguments, we compiled a set
of general heuristics that developers follow when validating smells.
We then used these heuristics for composing validation items. We
understand that the set of validation items proposed may support
developers in reflecting on the incidence of code smells. However,
further studies are needed for reaching a more comprehensive and
optimized set. The experience of this study reveals that conducting
focus group sessions is helpful to emerge the tacit knowledge of
developers when validating code smells.

1 INTRODUCTION

The variety of maintenance requests over different source code
elements frequently challenge software developers [1]. This chal-
lenge typically results from the structural complexity of the source
code, requiring considerable reading and comprehension efforts
from these professionals for performing even simple development
tasks. For mitigating these efforts, one key practice address contin-
uously identifying and combating the incidence of code smells [11].
Code smells are known as indicators of deeper problems within a
source code, commonly introduced due to the negligence of good
programming practices [5]. The incidence of code smells harms
maintenance activities [11] [8] once it hampers the source code
readability and comprehension. Besides, different works associate
the incidence of code smells with the acceleration of the software
degradation in the long term [13].

For supporting smell identification, several detection tools have
been proposed [4][12]. However, even though these tools may save
developers’ effort on identification, they cannot be considered the
final word [10]. Developers should manually validate candidates
to code smells reported by detection tools, avoiding wasting effort
on modifying several code elements due to false positives. Besides,
this waste of effort may lead developers to accidentally introduce
new and even worse issues in the source code [2].

Rafael de Mello
rafael. mello@cefet-rj.br
CEFET/R]J, Brazil

Alexander Lopez
axl@certi.org.br
Fundag¢do CERTI, Brazil

Roberto Oliveira
roberto.oliveira@ueg.br
UEG, Brazil

Alessandro Garcia
afgarcia@inf.puc-rio.br
PUC-Rio, Brazil

Validating the incidence of code smells is a considerably sub-
jective task. The developer’s decision about their incidence may
be highly influenced by contextual factors, including technolog-
ical, organizational, and human ones [3] [2]. Consequently, the
subjectivity of the task frequently leads developers to disagree on
their interpretations about the incidence of code smells [6]. On the
other hand, the diversity of perspectives followed by two or more
professionals analysing the source code together—when possible—
contributes to increasing the performance of smell identification
tasks [3] [9]. However, allocating two or more developers for con-
ducting group reviews may be unfeasible due to several reasons,
including schedule and budget restrictions.

In this way, we argue that providing validation items, i.e., items
for supporting validation activities, is a promising approach for
empowering the developers’ capacity to reflect on the incidence of
code smells from different perspectives, especially when they need
to work individually. These validation items can be grounded on
heuristics, i.e., a set of particular attention points for enabling the
developers’ analysis and, consequently, supporting decision.

To reach a comprehensive and hands-on set of validation items,
we plan to conduct a set of empirical studies to extract heuristics
from the tacit arguments used by developers on validating the
incidence of code smells. In this paper, we report a study using the
focus group methodology [7], in which developers performed smell
validation over code snippets from open-source projects. These
tasks address the possible incidence of five different types of code
smells. We intentionally allocated the study participants in groups
that should play different roles for promoting in-depth discussions.
While a group of developers should provide arguments for accepting
the indicated smells, the other group should argue for rejection.

The results of the focus group session allowed us to identify
several heuristics that go beyond formal detection rules. Based on
these heuristics, we compiled a set of validation items for supporting
developers in reflecting on the incidence of the different types of
code smells investigated. To the best of our knowledge, our study is
the first one using the focus group methodology [7] to investigate
the manual validation of code smells. The positive experience of
this study indicates that running focus group sessions may be a
useful approach for exploring and revealing developers’ arguments
when performing this task.

2 THE FOCUS GROUP

Different developers may follow diverse but complimentary heuris-
tics for concluding that some code element is poorly structured

VEM 21, September, 2021, Virtual

or not [6]. However, they typically need to perform this analysis
individually. Consequently, the arguments for accepting/rejecting a
code smell tend to be limited to certain points of view. In this way,
our research aims at characterizing a relevant set of validation items
for supporting developers on validating the incidence of code smells.

2.1 Research Question

Based on our research goal, we defined the following research
question: Which arguments do developers use to validate the incidence
of code smells? By answering this research question, we want to
characterize possible arguments used by these professionals when
validating the incidence of code smells. From these arguments, we
want to derive relevant heuristics for composing validation items
to guide developers in future validation tasks. For this purpose, we
designed a focus group session for promoting in-depth discussion
about the incidence of code smells in five code snippets considered
controversial about the incidence of code smells due to the low
level of agreement observed among developers [6]. Focus group
is a qualitative research method based on gathering data through
the conduction of group interviews, called sessions [7]. Each focus
group session is planned for addressing in-depth discussions about a
particular topic during a controlled time slot. Among others, focus
group studies have been conducted in software engineering for
revealing arguments and feedback from practitioners [7] [14].

2.2 The Participants

We invited 12 Master and Doctorate students experienced with
software development to participate in the study. Most of these
professionals are also specialists in code smells. Before conducting
the focus group session, we applied a characterization form. In this
form, we asked about the subjects’ experience from three distinct
perspectives: self-assessment, years of experience, and number of
projects. The self-assessment indicates that most participants have
high or very high experience in software development (9/12) and
Java programming (7/12). Besides, no participant declared having no
development experience. Of the 12 participants, eight also declared
having experience with code smells identification. From these, we
identified that six also have experience with research in code smells.
Table 1 summarizes the average experience of the participants.

Table 1: Average experience of the participants in the mea-
sured skills.

Metric Software Dev. Java Smell Ident.
years 5.92 4.75 1.00
of projects 9.42 7.17 3.08

The different perspectives used for characterizing the partici-
pants’ experience led us to conclude that the sample investigated is
experienced in building software for different Java projects. Besides,
most of the participants are also skilled in the identification of code
smells. In the characterization form, we also asked the participants
to briefly summarize their experience in software development.
Based on the answers provided, we observed that most of the devel-
opers have experience building systems in different programming
languages for several domains.

Junionello, de Mello, Oliveira, Sousa, Lopez and Garcia

Based on these characteristics, we composed two balanced groups
with six developers each. According to the group assigned, the par-
ticipant should play a particular role. With this approach, we intend
to encourage the developers of each group to work together, reach-
ing solid arguments to support their positions in an attempt to
convince the other group. The first group defined was composed of
accepters, i.e., developers that should favorably argue to the inci-
dence of code smells in all code snippets analysed during the focus
group. The second group is composed of rejecters, i.e., developers
that should play the role of arguing for the rejection of all the code
smells reported. The focus group session was conducted by four re-
searchers. Besides the moderator, two researchers played the role of
scribes, each one taking notes addressing the attitudes, behaviours,
and reactions of a particular group. The fourth researcher played
the role of observer, reporting attitudes, behaviours, and reactions
expressed by all participants, including the other researchers.

2.3 The Code Snippets

The code snippets used in this study were selected among those
ones identified in the study from [6] as having higher levels of
disagreement among developers regarding the incidence of code
smells from different types: Long Parameter List, Feature Envy, Mid-
dle Man, Primitive Obsession, and Refused Bequest!. Considering
the nature of the projects involved in the study (large open-source
projects), we checked that none of the study participants have pre-
vious knowledge of the analysed modules. It would lead developers
to feel more comfortable on exploring different perspectives for
providing their arguments, especially on those favorable to the
incidence of poorly structured code. These code snippets were ob-
tained from three popular open-source projects developed in the
Java programming language: GanttProject- version 2.0.10, Apache
Xerces- version 2.11.0, and Eclipse- version 3.6.1.

2.4 Instrumentation

Before starting the focus group session, the source code of the
projects containing the snippets to be analyzed was shared among
the participants. However, the code snippets/smells to be analysed
were only presented during the focus group session. Each group
should use one or more laptops to perform the tasks. The study
was planned to be executed in two sequential phases. In the first
phase, the moderator should distribute subjects in the room and
present the dynamics of the activity. Then, the moderator should
distribute pens and post-its for each group writing their arguments
addressing each code snippet analysed.

The second phase is composed of tasks for validating the inci-
dence of a particular code smell in each code snippet selected for
the study, in the following order: long parameter list, feature envy,
middle man, primitive obsession, and refused bequest. In each task,
the following steps should be repeated:

(1) Moderator presents the code snippet, its location and the
corresponding code smell.

(2) Moderator asks participants to discuss in their group if they
accept/reject the smell, writing their arguments in post-its
and fixing them in the board, as exemplified in Figure 1.

!https://anonymous.4open.science/r/FG-2426/README.md

Revealing Developers’ Arguments on Validating the Incidence of Code Smells: A Focus Group Experience

(3) Moderator invites the accepters to present their arguments
for accepting the incidence of the code smell.

(4) Moderator invites rejecters to argue on Accepters’ opinion
based on their annotations, starting the discussion.

(5) Moderator check whether the groups reach a consensus.

Task |It “stinks” because... |Task |It smells good
because. -

mE
|:|El

1
m 2
O 3 m
o m s+ W mEm
Rl 5 B

u A W N P

Figure 1: Representation of the board used in the focus
group session with post-its fixed.

2.5 Execution

The focus group session was conducted in a classroom prepared
for the study, without interruptions. We physically allocated the
accepters and rejecters with their corresponding scribe in different
corners of the room for mitigating the incidence of external noise
during the internal discussions. Figure 2 presents an overview of the
room during the meeting. During the study, all the planned tasks
were performed. From the 12 subjects recruited, nine participated
in the study. Despite this difference, the nine participants played
the role previously planned for them, resulting in five rejecters and
four accepters.

Acceptors

Scribe

Figure 2: Overview of the room during the Focus Group Ses-
sion.

The first phase of the study took 15 minutes. The time spent
with the second phase (tasks) was approximately one hour and 30
minutes. This time was somehow balanced among the five tasks.
In the end, the whole focus group meeting effectively took one
hour and 45 minutes, extrapolating 15 minutes from the scheduled
time. The groups were free to self-organizing during the internal
discussions. The group of the rejecters opted by composing two

VEM °21, September, 2021, Virtual

subgroups, each one sharing a notebook containing the source code
of each code snippet evaluated. The accepters opted by working
together using a single notebook. As expected, the scribes and the
observer took detailed notes addressing all the activities performed
in the meeting using their own notebooks.

All the developers collaborated in all tasks. Leaderships naturally
emerged for each group since the first task. The moderator acted on
encouraging all the members to participate, avoiding concentrating
the discussions too much in the leaders’ arguments. During the
four first tasks, the discussions were intense. In all of them, the
moderator needed to alert the participants about the time planned.
In the fifth task (Refused Bequest), we observed that most of the par-
ticipants from both groups were exhausted, which had influenced
their power of argumentation and the lack of discussions.

3 RESULTS

After the focus group session, the content of the notes taken by
the scribes/observer was analyzed by two other researchers that
identified the main arguments and behaviours observed in the
groups. Based on this content, the first researcher performed open
coding over the arguments identified. Then, he compiled a set of
heuristics validated by the second one. The scribes/observer’ notes
and the complete list of heuristics are also available at the link about
the study. Then, we used the heuristics for composing validation
items for supporting the manual validation of the five types of code
smells investigated. In the following subsections, we summarize the
discussions performed by the groups in each validation task. We
emphasize the arguments that emerged from each group. We also
present the resulting validation items for each type of code smell.
These items do not intend to indicate which decisions developers
should take but stimulating them to reflect on relevant aspects of
the source code.

3.1 Long Parameter List

3.1.1 Accepters. The group of accepters begun its internal dis-
cussions by assuming that one of the factors for arguing that the
method analysed has a long parameter list is that this method has
six parameters. Then, they had a brief discussion about the possi-
bility of the method being a constructor, which would be another
favorable argument for accepting the code smell. One participant
highlighted that the method signature needs more than one line
to be shown on the screen, which would indicate that the list of
parameters is too long. This participant also argued that the list
of parameters is composed of too many complex data types. After
analysing the source code, another participant argued that the na-
ture of the method’s parameters leads the corresponding class to
have too many dependencies with others. Besides, this participant
inferred that the parameters are not all necessary.

3.1.2 Rejecters. After an initial reflection about the formal defini-
tion of long parameter list, one participant justified the absence of
this code smell in the method analysed by arguing that the parame-
ters address different data types. Besides, this participant also argued
that the referred code element could not be classified as having a
long parameter list once it was a constructor. Otherwise, it would
be a code smell. After more analyses, the group concluded that a
list of five parameters cannot be considered long.

VEM 21, September, 2021, Virtual

3.1.3 Discussion. The group of rejecters started by presenting the
following arguments: (i) the method’s parameters have different
data types; (ii) the method is a constructor; and (iii) having five
parameters sounds acceptable. Immediately, the accepters exposed
their strong disagreement by counter-arguing that (i) there are too
many parameters, (ii) a line break is needed to list all parameters,
and (iii) some of the parameters might not be needed. Then, one
member of the accepters’ group pointed out that rejecters mis-
counted the number of arguments (six instead of five). Besides,
he argued that the rejecters’ fail on counting was probably due
to a long list of parameters that even required line break. We ob-
served that this event somehow "broke’ the group of rejecters on
their arguments, but they keep on discussing with the accepters.
After some minutes, the group of rejecters had conceded to the
accepters’ arguments, agreeing with them that being a constructor
is an additional issue to recognize a long parameter list.

3.1.4 Validation Items. Based on the arguments identified and
heuristics coded, we composed the following validation items:

e Does the method signature have too many parameters?

o Is the method signature easy to comprehend?

e Does the method parameters indicate strong dependence
from external classes?

o Are there too many parameters composed of complex types?

o Are all parameters actually needed?

e Do the parameters have different data types?

3.2 Feature Envy

3.2.1 Accepters. Initially, one member of the group exposed his
doubts about the code smell definition, promptly resolved by his
colleagues. After analysing the class, the members concluded that
it does not use its own resources while it consumes too many external
resources. These arguments were then considered sufficient by the
accepters to convince the rejecters.

3.2.2 Rejecters. The group analyzed the class while discussing the
definition of the feature envy. Once they observed an uncommon
behaviour in the method, they tried to put themselves in the authors
of the source code shoes to understand why they would build the
class in that way. Then, they concluded thatthe code authors had
applied the composite design pattern, arguing that the concept of
feature envy could not be applied in this case. Another argument
raised from the group to discard the feature envy was that the
method uses methods belonging to its parent class.

3.2.3 Discussion. Different from the first task, in the second one
the discussion between groups started dynamically since the first
argument was uttered. The rejecters opened the discussions by
arguing that it was an inherited method, belonging to the parent
class. Immediately, the accepters showed their disagreement by
arguing that the referred method doesn’t pass any parameter to
the method from the parent class, only using methods from its
parent. Therefore, the accepters understand that this method should
be implemented in the superclass instead. Besides, accepters also
argued that one of the methods inherited from the parent class
was being used over 20 times by the method analysed. Then, the
rejecters counter-argued that this behavior is acceptable. By the end
of the discussion, both groups were more agreeable to each other’s

Junionello, de Mello, Oliveira, Sousa, Lopez and Garcia

arguments. However, we observed that they were confident in their
arguments. Finally, the groups opted by keeping their positions.

3.24 Validation Items. Based on the arguments identified and
heuristics coded, we composed the following validation items:

e Does the method call external methods too frequently?
e Does the class structure address some design pattern?
e Does the class use methods inherit from its parents?

3.3 Middle Man

3.3.1 Accepters. After analysing the class, the first issue brought
up by the accepters was that the class in question has a single
private method, probably never used. The particular characteristic
of a single-method class leads a less-experienced participant to feel
confused about the scope of Middle Man. After solving that, the
group identified two other relevant issues favorable to the code
smell: once the single method is merely part of a request chain, it
consequently does not seems useful for other classes.

3.3.2 Rejecters. The group showed some difficulty in raising argu-
ments for rejecting the code smell, but they eventually realized that
the analysed class has the clear role of serializing data. Then, they
also concluded that a small class composed of a single smell could
not be considered a middle man.

3.3.3 Discussion. The rejecters opened the discussions by arguing
that the class is easy to read once it has a single method playing a
specific role, which is serializing data. In their counter-argument,
the accepters started showing to the rejecters that there’s already
an interface designed for serializing data. Then, they emphasized
that the aforementioned role makes the class’ objects becoming part
of a request chain, merely passing a single string as parameter. The
arguments given by the accepters led rejecters to rethink about the
definition of the code smell and taking a second look at the source
code. After that, they recognized the pertinence of the accepters’
arguments. However, they concluded that the class is required due
the programming language. For them, alternative implementations
would harm the system’s performance and readability.

3.3.4 Validation Items. Based on the arguments identified and
heuristics coded, we composed the following validation items:

e Does the class perform any relevant logical task?

e Does the class clearly delegate its responsibilities to other
classes?

o Is this class part of a request chain?

3.4 Primitive Obsession

3.4.1 Accepters. For this Smell the group quickly brought up the
argument that it had too many primitive types and they could be
replaced by a single enum that consolidated all of them.

3.4.2 Rejecters. The first argument that came from the discussion
was that the method had the specific role of being a parser and
the primitive types were needed for that. Other strong argument
that was brought up was that the presence of said primitive types
improved the method’s comprehensibility.

3.4.3 Discussion. The rejector’s group opened the discussion by
arguing that primitive types are needed due to the role of parser

Revealing Developers’ Arguments on Validating the Incidence of Code Smells: A Focus Group Experience

identified in the method analysed. The acceptor group counter-
argument that even if this parsing is necessary, it could be con-
solidated into a single enum type to be externally stored. Then, a
rejector claimed that the proposed modification would result in
other anomalies, which led the groups to discuss cohesion and cou-
pling concerns. After reading the definition of primitive obsession,
the accepters asked whether the rejecters had analysed the class as
a whole. By the end, both groups stand by their initial positions.

3.4.4 Validation Items. Based on the arguments identified and
heuristics coded, we composed the following validation items:

o Isitclear the intention of using primitive types in the method?

e Does the adoption of primitive variables contribute to the
comprehension of the method?

e May two or more variables be consolidated into a single
complex type?

3.5 Refused Bequest

3.5.1 Accepters. The accepters rapidly concluded that the class
use few resources from its parent class, which would be a sufficient
argument for accepting the smells.

3.5.2 Rejecters. At the beginning, some members exposed their
opinion that refused bequest is a "boring" code smell type to analyse.
Then, they also stated that they’re exhausted. Besides that, they
reached a consensus that the behaviour observed is acceptable in
that case analysed due to the principle of polymorphism.

3.5.3 Discussion. Since the beginning of this task, we observed
that members from both groups showed signals of exhaustion. How-
ever, they made efforts to provide valuable arguments. The rejecters
combined the argument about polymorphism along with an anal-
ogy to defend their position. Besides, they also showed the source
code documentation, claiming that the source code was intention-
ally implemented in that way. All these arguments convinced the
accepters to reject the code smell, despite their understanding that
few resources from the parent class are used.

3.5.4 Validation Items. Based on the arguments identified and
heuristics coded, we composed the following validation items:

e Does the class inherit methods that are never used?
e Does the inheritance conceptually make sense?

4 THREATS TO VALIDITY

One relevant threat to validity addresses the influence of the code
snippets’ over the validation items composed. To mitigate it, we
intentionally selected code perceived as hard on reaching a consen-
sus in previous work. Besides, we understand that the pre-defined
roles played by developers combined with their unfamiliarity with
the source code enabled them to combine their knowledge with
their creativity for providing convincing but also comprehensive
sets of arguments supporting their positions.

Another important threat address the researchers’ bias on com-
posing the validation items. To mitigate this threat, we avoided
involving the scribes in the first moment of the data analysis. In
this way, the moderator of the focus group and an external re-
searcher worked on the composition of the heuristics. Then, all
authors collaborated for composing the validation items.

VEM ’21, September, 2021, Virtual

5 CONCLUSION AND FUTURE WORK

It is undeniable that developers should give the final word about
the incidence of code smells. In this paper, we report our expe-
rience conducting a focus group session for exploring in-depth
the arguments of developers for validating the incidence of code
smells. Based on the heuristics obtained from these arguments, we
composed sets of validation items for the types of code smell in-
vestigated. By these items, we do not intend to determine when a
code is/is not smelly but instead enabling a more comprehensive
reflection of developers before taking their final decisions.

This initial study indicates that running focus group sessions is
an effective strategy for reaching our goal. However, we need to
conduct future studies for validating and evolving the proposed set.
In this sense, we are currently working on combining the findings
from the presented focus group with those obtained from a con-
trolled study in which developers individually argued about the
incidence of code smells from a larger set of code snippets.

6 ACKNOWLEDGEMENTS
This work is supported by PIBIC-Cefet/R] and CNPq 152179/2020-8.

REFERENCES

[1] Keith Bennett and Vaclav Rajlich. 2000. Software Maintenance and Evolution: A

Roadmap. (2000).

Rafael de Mello, Anderson Uchoa, Roberto Oliveira, Willian Oizumi, Jairo Souza,

Kleyson Mendes, Daniel Oliveira, Baldoino Fonseca, and Alessandro Garcia. 2019.

Do Research and Practice of Code Smell Identification Walk Together? A Social

Representations Analysis. https://doi.org/10.1109/ESEM.2019.8870141

[3] Rafael Maiani de Mello, Roberto Oliveira, and Alessandro Garcia. 2017. On the in-
fluence of human factors for identifying code smells: A multi-trial empirical study.
In 2017 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 68-77.

[4] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. 2016. A review-based comparative study of bad smell detection tools.
In Proceedings of the 20th International Conference on Evaluation and Assessment
in Software Engineering. 1-12.

[5] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[6] Mario Hozano, Alessandro Garcia, Baldoino Fonseca, and Evandro Costa. 2018.
Are you smelling it? Investigating how similar developers detect code smells.
Information and Software Technology 93 (2018), 130-146.

[7] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. 2008. The focus group method

as an empirical tool in software engineering. In Guide to advanced empirical

software engineering. Springer, 93-116.

Rodrigo Lima, Jairo Souza, Baldoino Fonseca, Leopoldo Teixeira, Rohit Gheyi,

Marcio Ribeiro, Alessandro Garcia, and Rafael de Mello. 2020. Understanding

and Detecting Harmful Code. In Proceedings of the 34th Brazilian Symposium on

Software Engineering. 223-232.

Roberto Oliveira, Rafael de Mello, Eduardo Fernandes, Alessandro Garcia, and

Carlos Lucena. 2020. Collaborative or individual identification of code smells?

On the effectiveness of novice and professional developers. Information and

Software Technology 120 (2020), 106242.

Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Claudio Sant’Anna.

2017. On the evaluation of code smells and detection tools. Journal of Software

Engineering Research and Development 5, 1 (2017), 1-28.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco

Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on

maintainability of code smells: a large scale empirical investigation. Empirical

Software Engineering 23, 3 (2018), 1188-1221.

Fabiano Pecorelli, Fabio Palomba, Dario Di Nucci, and Andrea De Lucia. 2019.

Comparing heuristic and machine learning approaches for metric-based code

smell detection. In 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC). IEEE, 93-104.
[13] Jilles Van Gurp and Jan Bosch. 2002. Design erosion: problems and causes. Journal
of systems and software 61, 2 (2002), 105-119.

[14] Uwe Van Heesch, Theo Theunissen, Olaf Zimmermann, and Uwe Zdun. 2017.
Software specification and documentation in continuous software development:
a focus group report. In Proceedings of the 22nd European Conference on Pattern
Languages of Programs. 1-13.

[2

[8

[9

[10

[11

[12

https://doi.org/10.1109/ESEM.2019.8870141

	Abstract
	1 Introduction
	2 The Focus Group
	2.1 Research Question
	2.2 The Participants
	2.3 The Code Snippets
	2.4 Instrumentation
	2.5 Execution

	3 Results
	3.1 Long Parameter List
	3.2 Feature Envy
	3.3 Middle Man
	3.4 Primitive Obsession
	3.5 Refused Bequest

	4 Threats to Validity
	5 Conclusion and Future Work
	6 Acknowledgements
	References

