Readability and Understandability Scores for Snippet
Assessment: an Exploratory Study

Carlos Eduardo C. Dantas
carloseduardodantas@iftm.edu.br
Federal University of Uberlandia

Brazil

ABSTRACT

Code search engines usually use readability feature to rank code
snippets. There are several metrics to calculate this feature, but
developers may have different perceptions about readability. Cor-
relation between readability and understandability features has
already been proposed, i.e., developers need to read and compre-
hend the code snippet syntax, but also understand the semantics.
This work investigate scores for understandability and readability
features, under the perspective of the possible subjective perception
of code snippet comprehension. We find that code snippets with
higher readability score has better comprehension than lower ones.
The understandability score presents better comprehension in spe-
cific situations, e.g. nested loops or if-else chains. The developers also
mentioned writability aspects as the principal characteristic to eval-
uate code snippets comprehension. These results provide insights
for future works in code comprehension score optimization.

KEYWORDS

readability, understandability, code snippets, likert, code compre-
hension

1 INTRODUCTION

Code snippets (or code examples) are some lines of source code
that can be reused to show how the developer can solve a specific
programming task [9]. Developers often search for good reusable
code snippets on the web [24]. In average, developers spend 70%
of their time reading programs [14]. Some code search engines
usually use readability metrics [21] [19] [3] trying to improve the
code snippets ranking [8] [15]. These metrics have been employed
in recent research, for instance to recommend readable APIs in code
snippets [8] or to evaluate readability changes in projects history
[18].

However, developers could have subjective perceptions of what
means a readable code snippet. The readability metrics are often
evaluated with personal opinions as response variable [16]. Con-
sequently, these metrics could produce false positives/negatives.
A potential opportunity to mitigate these mismatches in percep-
tion would be combining readability with other related features.
Developers need to read and comprehend the code snippet syntax,
but also need to understand the code snippet semantic, e.g., the
statements, beacons or motifs [20]. If a source code is difficult to
read, it is also difficult to understand [2]. Some metrics have also
been proposed to calculate source code understandability [11] [12]
[4]. For instance, the cognitive complexity metric of SonarSource
tool! is related with some aspects of understandability [1].

Uhttp://apisonar.com/

Marcelo A. Maia
marcelo.maia@ufu.br
Federal University of Uberlandia
Brazil

The main goal in this research is to investigate readability and
understandability metric scores on code snippets, to verify their
usability on code snippet comprehension assessment.

We organize the investigation with the following research ques-
tions:

RQ #1) To what extent the readability and understandability
metric scores can be used to code snippet assessment?

RQ #2) Which characteristics are important to developers on
code snippets comprehension evaluation?

To evaluate the metric scores, we asked for five senior developers
experienced in approve pull requests on git repositories (i.e., read,
understand and evaluate source code produced by other developers)
written in Java language, to evaluate the comprehension of two
code snippets extracted from Google and CROKAGE for 30 input
queries. A final open question was proposed for them to answer
about the relevant code snippets characteristics in their evaluation.

The paper is organized as follows. Section 2 shows a motivat-
ing example. Section 3 discusses the related literature. Section 4
presents the study design proposed to collect data, modeling and
data analysis approach. The results are reported and discussed in
Section 5. Section 6 presents the threats that could affect the valid-
ity of this study. Finally, Section 7 summarizes our observations in
lessons learned, and outlines directions for future work.

2 MOTIVATING EXAMPLE

A motivating example of subjective perceptions is shown in Figure
1. This example has the first code snippet suggested by Google, Mi-
crosoft Bing and CROKAGE ? (tool that provides code snippets and
their correspond comprehensive solution for each input query, both
mined from Stack Overflow [5]) for the input query Find maximum
element of ArrayList in Java. The Table 1 shows the readability [21]
and understandability [4] score for each suggested code snippet.
The CROKAGE code snippet has the lowest LOC (lines of code), but
Google code snippet has more comments, and the Collections.max()
method is implemented in a separate line. In CROKAGE, the line
13 has two concepts in the same line, which decreases the read-
ability score in the used metric. The Microsoft Bing code snippet
has highest LOC, and contains for loop statement instead the Col-
lections.max() API call. In readability score, the CROKAGE code
snippet is nearest to Microsoft Bing. But in understandability score,
CROKAGE and Google has the same value, both better than Mi-
crosoft Bing code snippet.

The example shows the readability score could have divergent
opinions, because some developers could prefer the lowest LOC
instead of one concept per line. In this example, the understandabil-
ity score has the trade-off between internal API call or a for-loop

Zhttp://isel.ufu.br:9000/

VEM’21, September 2021, Virtual

Google

B Microsoft Bing

// Finding Maximum Element of Java Arraylist

Carlos Eduardo C. Dantas and Marcelo A. Maia.

Crokage

import java.util.ArrayList;

1= import java.util.ArraylList; 1/ L !' N 3 N :
2 import java.util.Collections; 2% import java.util.Arraylist; 2 import java.util.Collections;
3 import java.util.List; 3 import java.util.Collections; j import java.util.List;
4 |
; public class ArrayListMaxvalue f] 5 class MinElementInArraylist { 5 public -:'_Lass Ma).(List.{l .
62 public static void main(string[] args) { 6 6° public static void main(String[] args) {
7 // creating list. 7 public static void main(String[] args) 7 Fséuhf new ArrayList();
Vi = i ; { =] H
: List<Integer> intValues = new ArrayList<>(); 5 /7 ArrayList of Numbers H Uadd(2).
18 // adding values 10 Arraylist<Integer> myList 10 L.add(3);
11 intvalues.add(6); 1 = new ArraylList<Integer>(); l! 1.add(4);
12 intvalues.add(64); 12 l: 1.add(5); o
13 intvalues.add(45); 13 // adding elements to Java Arraylist 13 System.out.println(Collections.max(1)); // 5
14 intValues.add(60); 14 mylist.add(16); 14 System.out.println(Collections.min(1)); // 1
15 intValues.add(9); 15 mylist.add(26); 15 }
16 intvalues.add(2); 16 myList.add(3); 16 [
17 17 myList.add(52);
18 // calling max() method. 18 myList.add(70);
19 Integer max = Collections.max(intValues); 19 myList.add(12);
20 System.out.println("ArrayList values : " + intValues); 20 .
21 system.out.println("ArrayList max value : " + max); 21 int maxinum = mylist.get(8);
22 } 22 for (int i = 1; i < mylist.size(); i++) {
3} 23 if (maximum < myList.get(i))
24 maximum = myList.get(i);
25
2 System.out.println("Maximum Element in Arraylist = *
2 + maximum) ;
}

Figure 1: Google, Microsoft Bing and Crokage code snippets returned for the input query Find maximum element of ArrayList

in Java

statement, which could be less divergent than readability metric
because generally snippets using internal APIs has less complex-
ity and are reusable in other programs [15]. The readability and
understandability metrics could complement each other on code
comprehension.

Table 1: Readability and understandability (higher is better)
scores for Google, Microsoft Bing and CROKAGE code snip-
pets in Figure 1

Score
Web Search Engine Readability | Understandability
Google 0.67 1.0
Microsoft Bing 0.51 0.8
CROKAGE 0.55 1.0

3 RELATED WORK

Several code search engines has been purposed to rank code snip-
pets using the readability feature as part of the overall score. Hora
[7] investigated how Google, a general-purpose web search engine
rank the code snippets in terms of readability and reusability fea-
tures. Their findings shows that readable and reusable code snippets
are not necessarily top ranked, but other aspects as didactic code
snippets or pages with multiple code snippets are more likely to be
top ranked. Our research is not interested in discover how Google
rank their code snippets, but to provide insights if readable and
understandable code snippets are relevant for developers, and then
other future researches could use these features as a part of overall
score on new code search engines.

In other research, Hora [8] constructed the API Sonar tool, mining
code snippets from 100 Java APIs on github to generate collections
of API code snippets. He is also using readability to top rank read-
able API code snippets. The insights in our research could be useful
to provide a better ranking, considering understandability in certain
situations. Moreno et al. develop the Muse approach to rank code
snippets producing an overall score using readability and reusability
feature. But this research has employed other readability approach
[3], and the other mentioned researches has used the Scalabrino et
al. readability approach [20].

Another features could be used to produce an overall score.
Oliveira et al. [16] introduced a separation between readability and
legibility features, where legibility is related to how easy to identify
elements in a program. For example, code without indentation or
more than one statement in the same line contributes to decrease
legibility. The readability tool used in this research consider some
legibility aspects on their metrics, e.g., one concept per line.

Some researches studied the correlation between readability and
understandability features. Boehm et al. [2] pointed the source code
readability is related to its respective complexity and understand-
ability, i.e., if the source code is difficult to read, it is also difficult
to understand. But even easy-to-read source code can be difficult to
understand, as presented by Scalabrino et al. [20]. Therefore, read-
ability and understandability are employed as different features:
while readability measures the effort to understand a code snip-
pet in syntactic aspect, understandability measures complexity in
dynamic aspect [19], i.e., both metrics complement each other in
measure code comprehension.

The understandability feature has divergent results about met-
rics. Scalabrino et al. [20] made a study with 121 distinct metrics and
found that none of them is relevant to measure understandability.
However, Marvin et al. [1] found correlations between cognitive
complexity metric [4] with subjective ratings of understandability,
which is a relatively positive insight about the effectiveness of this
metric. The cognitive complexity proposal is similar to the cyclo-
matic complexity of McCabe [13]. However, cognitive complexity
aims to mitigate the limitations of cyclomatic complexity, such as
source code nesting problem [22], and address modern language
structures such as try/catch or lambdas.

4 STUDY DESIGN

The Figure 2 shows the overall approach to answer the two research
questions. The major steps are: (1) Select Input Queries, (2) Extract
Code Snippets, (3) Collect Metrics Values and (4) Developers Eval-
uation. The details of each step is in the following subsections. A
replication package, including the readability and understandability
tools, as the questions, code snippets characteristics, evaluations
and the instructions for reproduction is available [6].

Readability and Understandability Scores for Snippet Assessment: an Exploratory Study

Select 3_0 Extract top-n
JEVERCVEES code snippet

CROKAGE = Google
- CROKAGE

Developers Collect
Evalua?ion Metrics
- Values

) n

READABILITY
L . Understandability

Figure 2: Overall architecture proposed in this research

4.1 Select Input Queries

CROKAGE have already collected 10,370 Java programming in-
put queries performed from developers of more than 80 countries
around the world. These queries contains users searches for code
snippets implementing specific programming tasks in Java lan-
guage. We selected 30 popular input queries performed by different
users (i.e., distinct IP address) to conduct the experiment. To find the
popular queries, we processed each query removing all punctuation
symbols, stop words® and small queries (i.e., size lower than three).
And then, we ordered the queries by the number of occurrences.

4.2 Extract Code Snippets

This step consists in extract two code snippets to each input query.
These code snippets were extracted manually from Google (using
private browsing on Google Chrome to avoid caches, user pref-
erences) and CROKAGE. We collected the first code snippet that
match each input query (e.g. assign the input query "how to sort
an array in java?" has code snippets related to sort arrays and not
Jjava.util.Set or any other data structure), and contains reusable
source code (e.g., we discarded code snippets containing references
to unknown methods or variables) 4. For each query, we added the
tokens "in java", to receive Java code snippets in the top ranking
Google recommendations.

The Figure 3 shows the sites where code snippets were extracted,
and their ranking in the web search. Using Google as web search,
most of the snippets were in first result (top-1) and extracted in
geeksforgeeks.org, javatpoint.com and stackoverflow.com sites. Using
CROKAGE, all code snippets were extracted from stackoverflow.com,
and 46.7% were the first result.

4.3 Collect Metrics Values

This step consists in extract the readability and understandability
scores of each code snippet.

To measure readability, we use the prediction model proposed by
Scalabrino et al. [21], which was used in other recent researches [8]
[7] [18]. This model® includes a set of metrics including comments,
identifiers consistency, textual coherence and number of meanings.
The model produces scores between 0 (low readability) and 1 (high
readability).
3https://bit.ly/INt4eMh

“https://tinyurl.com/jtjh75bx
Shttps://dibt.unimol.it/report/readability/

VEM’21, September 2021, Virtual

To measure understandability, we use the cognitive complexity
code-based metric proposed by Campbell [4] and available in Sonar-
Source tool. This metric were evaluated and employed in some past
reaseaches [1] [23]. To measure understandability, we propose an
adoption metric as follows:

1- e if #cc < 15
understandability(cs;) = { #mee

0.0 otherwise
#cc is the complexity cognitive score extracted from SonarSource
tool for the code snippet cs;. The #mcc is the maximum recommend
complexity cognitive value © , #mcc = 15. If a code snippet reaches
#cc >= 15, the score output will be 0. This metric produces scores
between 0 (low understandability) and 1 (high understandability).

4.4 Developers Evaluation

We invited five senior developers to analyse the comprehension of
60 code snippets. These developers are (5+ years) experienced as
team leaders on Java projects, and they often evaluate pull requests
submitted from other developers on their teams. Pull requests are
usually rejected because could have issues in code comprehension
or understanding [17].

For each of the 30 queries, the code snippets of each solution
(Google and CROKAGE) were presented side by side, and asked
for the developers to provide a likert value from 1 to 5 for the
comprehension of each suggested code snippet. The code snippets
for 30 questions are distributed on the following criteria:

(1) 10 questions with higher readability in one code snippet and
similar understandability in both code snippets.

(2) 10 questions with higher understandability in one code snip-
pet and similar readability in both code snippets.

(3) 10 questions with higher readability and understandability
in one code snippet compared to the other.

The objective is to obtain the developers comprehension evalua-
tion on each feature isolated, and both combined, to evaluate if the
code snippets with better readability and understandability score
are significant better evaluated than the lower ones. And finally,
the developers answered in a open question the characteristics they
included to evaluate each code snippet comprehension.

5 RESULTS AND FINDINGS

In this section, the results will be shown according to each research
question. This research used Krippendorft’s « reliability coefficient
[10] to verify the agreement between the five developers. We ob-
tained a = 0.334, which is a low agreement. Only six of 30 code
snippets with higher score had perfect agreement between the de-
velopers, as the same with one of 30 code snippets with lower score.
The low agreement implies a subjective source code comprehension
analysis.

RQ #1) To what extent the readability and understandabil-
ity metric scores can be used to code snippet assessment

The Table 2 shows the likert evaluation results. We run Wilcoxon
signed-rank test using a confidence level of 99% (p-value<0.01),
and the comprehension of code snippets with higher readability
score are statistically better than snippets with lower readability
score. The Figures 4a and 4c shows a better rate for code snippets

®https://tinyurl.com/zfkaZew2

VEM’21, September 2021, Virtual

® geeksiorgeeks.org
® javatpointcom

B stackoverflow.com
B tutorialspoint com
O makeinjava.com
& roolbar.com

@ baeldung.com

O tutorials.jenkov.com
O joumaldev.com

O educativeio

O howtodoinjava.com
O mkyong.com

10%

(a) Sites recommended by Google

- Top1
O Top2

(b) Ranking Code Snippets extracted Google (c) Sites Recommended by CROKAGE

Carlos Eduardo C. Dantas and Marcelo A. Maia.

| stackoverfiow.com

100 %

167 %

133% 33%

(d) Ranking Code Snippets extracted CROKAGE

Figure 3: Sites and ranking of code snippets returned by Google and CROKAGE

Table 2: P-value and effect-size values for each feature

Feature p-value | effect-size
Readability < 0.01 0.857
Understandability 0.91 -
Readability + Understandability | < 0.01 0.838

with higher readability score. This result indicates the readability
score match the developers perception on code comprehension. The
Figure 4b shows statistically the same rate for higher and lower
understandability score (as shown in Table 2), i.e., in this analysis,
the understandability score is not relevant for the five developers
on code snippets comprehension.

We investigate the understandability likert evaluation, and more
significant likert differences were found in specific situations. For
example, some code snippets with higher understandability code
uses internal Java API methods to implement the task, and the code
snippet with lower understandability score is using nested loops or
if-else chains. However, the developers did not pointed difficult to
comprehend few addictions of loop, condition or try/catch block on
code snippets with lower understandability score. We extracted the
highest understandability score differences between code snippets,
and in this scenario, the effect size increases to 0.812 with p-value
= 0.06, i.e., the understandability feature has better effect size in
code snippets with high differences on understandability score. For
example, on the input query How to remove an element from an
array in Java?, the average likert for a code snippet with higher
understandability score, using the java.util.Stream.filter() solution
and LOC = 51 is 4.2, and the code snippet with for nested loop
solution and LOC = 25 is 3.2. In another example, in the query How to
split a string in Java?, the code snippet with lower understandability
score has four extra lines with an additional for statement to print
each splitted string. But the developers evaluate this code snippet
as the best comprehend solution, i.e., the additional for statement
had positive influence on their evaluation.

RQ #1 Answer: The readability score is associated with code
snippets comprehension, but the low agreement between de-
velopers suggests subjective perception. The understandability
score is related to code comprehension in specific situations,
e.g., nested loops or if/else chains. These specific situations has
higher difference on code snippets understandability score.

RQ #2) Which characteristics are important to developers
on code snippets comprehension evaluation?

The Table 3 shows the mentioned characteristics on code snip-
pets evaluation. Four of five developers (80%) mentioned writability

Table 3: Characteristics mentioned by the developers on
code snippets evaluation

Characteristic % mentions
Writability 80%
Variable and method aspects 60%
Comments 60%
Complexity 60%
Lines of Code (LOC) 20%
Performance 20%

aspects, (e.g., simplicity and clarity on write code, expressiveness
on self documented source code avoiding comment lines). Three
of five developers (60%) mentioned about aspects of variables and
methods (e.g., camel case pattern, easy naming comprehension,
variable declarations aspects as default values). Also three of five
developers (60%) mentioned comments, but all of them mentions
that comments are only useful for source code with higher com-
plexity. In their opinion, comments increases the number of lines,
and may not be useful for code comprehension, giving a larger
extension than the necessary. Other three of five developers (60%)
mentioned complexity. Some nested for loops and if else chains were
used in some code snippets instead of simple Java internal API calls.
The reusability aspect was mentioned, i.e., more complex code snip-
pets is more difficult to reuse in other software development project.
One developer mentioned LOC, because in his opinion, fewer lines
written in Java is generally easier to comprehend. Finally, one de-
veloper mentioned performance, i.e., if the solution is appropriate
to run in production environment.

RQ #2 Answer: Some characteristics mentioned by developers
are related to readability feature (variable and method aspects,
comments, LOC) and understandability feature (complexity).
However, most of the developers mentioned aspects of writabil-
ity, which opens for new approaches investigating metrics for
this characteristic.

6 THREATS TO VALIDITY

The main threat in this research is related to study generalization
(programming language, number of participants, number of queries
and code snippets).

Programming Language: the results are restricted to Java pro-
gramming language, specially because limitations of the queries
and the readability tool. The cognitive complexity tool supports
more programming languages, e.g., Python, Javascript.

Readability and Understandability Scores for Snippet Assessment: an Exploratory Study

VEM’21, September 2021, Virtual

%

Average Likert Scale
3
|

Average Likert Scale
3
|

Average Likert Scale
3

High Readability and Low Readability and

T T
High Readability Low Readability

(a) Code Snippets comprehension for 10 queries with
differences in Readability score

High Understandability

Low Under‘s1andability

(b) Code Snippets comprehension for 10 queries with
differences in Understandability score

Understandability Understandability

(c) Code Snippets comprehension for 10 queries with
differences in Readability and Understandability score

Figure 4: Box plots of Code Snippets comprehension

Number of participants: the five senior developers work in
different companies (i.e., different core business and applications).
We try to mitigate the few number of developers selecting team
leaders with experience in evaluate and approve pull requests writ-
ten by other developers. But novice developers could have different
perceptions about readable and understandable code snippets.

Number of queries and code snippets: this research extracted
60 code snippets for 30 queries. A higher number of queries is an
important factor to future research (e.g. produce an unified score
using a combination of features).

False positives/negatives: the readability and understandabil-
ity metrics could have some false positives. Complexity cognitive
metric uses static heuristics. To minimize the effect, we manually
analysed the score of each code snippet.

7 CONCLUSIONS AND FUTURE WORK

In this exploratory study, a quality analysis is conducted across code
snippet comprehension using readability and understandability
metric score. Our findings suggest the readability score could be
used on code snippet assessment, e.g., code search engines. The
understandability score have more subjective perceptions, specially
in lower score differences between code snippets.

These results provide insights for several improvements. Future
research could propose an empirical study to optimize a new unified
score between understandability and readability features. Another
code comprehension features could be evaluated, such as legibility
and writability. Finally, a study with developers profiles could be ad-
dressed. Novice developers would have different perceptions about
code comprehension than the team leaders used in this research.

REFERENCES

[1] Marvin Mufioz Barén, Marvin Wyrich, and Stefan Wagner. 2020. An Empirical
Validation of Cognitive Complexity as a Measure of Source Code Understand-
ability. CoRR abs/2007.12520 (2020). arXiv:2007.12520

[2] B. W. Boehm, J. R. Brown, and M. Lipow. 1976. Quantitative Evaluation of
Software Quality. In Proceedings of the 2nd International Conference on Software
Engineering (San Francisco, California, USA) (ICSE ’76). IEEE Computer Society
Press, Washington, DC, USA, 592-605.

[3] Raymond P.L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering 36, 4 (2010), 546-558.

[4] G. Ann Campbell. 2018. Cognitive Complexity — An Overview and Evaluation.
In 2018 IEEE/ACM International Conference on Technical Debt (TechDebt). 57-58.

[5] Rodrigo Fernandes Gomes da Silva, Chanchal K. Roy, Mohammad Masudur
Rahman, Kevin A. Schneider, Klérisson V. R. Paixdo, Carlos Eduardo de Car-
valho Dantas, and Marcelo de Almeida Maia. 2020. CROKAGE: effective solution
recommendation for programming tasks by leveraging crowd knowledge. Empir.
Softw. Eng. 25, 6 (2020), 4707-4758.

[6] Carlos Eduardo C. Dantas and Marcelo A. Maia. 2021. Readability and Un-
derstandability Scores for SnippetAssessment: an Exploratory Study. https:

[10
[11]

[12

(13]

[14

[16

(17

[18

=
2

[20

[21

[22]

[24

//doi.org/10.5281/zenodo.5224346

Andre Hora. 2021. Googling for Software Development: What Developers Search
For and What They Find.

André C. Hora. 2021. APISonar: Mining API usage examples. Software: Practice
and Experience 51 (2021), 319 - 352.

Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting Working Code
Examples. In Proceedings of the 36th International Conference on Software Engi-
neering (Hyderabad, India) (ICSE 2014). Association for Computing Machinery,
New York, NY, USA, 664-675.

K. Krippendorff. 2011. Computing Krippendorff’s Alpha-Reliability.

Jin-cherng Lin and Kuo-chiang Wu. 2006. A Model for Measuring Software
Understandability. In The Sixth IEEE International Conference on Computer and
Information Technology (CIT 06). 192-192.

Jin-Cherng Lin and Kuo-Chiang Wu. 2008. Evaluation of software understand-
ability based on fuzzy matrix. In 2008 IEEE International Conference on Fuzzy
Systems (IEEE World Congress on Computational Intelligence). 887-892.

TJ. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software Engi-
neering SE-2, 4 (1976), 308-320.

Roberto Minelli, Andrea Mocci and, and Michele Lanza. 2015. I Know What You
Did Last Summer: An Investigation of How Developers Spend Their Time (ICPC
’15). IEEE Press, 25-35.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How Can I Use This Method?. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (Florence, Italy) (ICSE
’15). IEEE Press, 880-890.

Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando Castor. 2020.
Evaluating Code Readability and Legibility: An Examination of Human-centric
Studies. In 2020 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME). 348-359.

Nick Papadakis, Ayan Patel, Tanay Gottigundala, Alexandra Garro, Xavier Gra-
ham, and Bruno da Silva. 2020. Why Did Your PR Get Rejected? Defining Guide-
lines for Avoiding PR Rejection in Open Source Projects. In Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering Workshops
(Seoul, Republic of Korea) (ICSEW’20). Association for Computing Machinery,
New York, NY, USA, 165-168.

Valentina Piantadosi, Fabiana Fierro, Simone Scalabrino, Alexander Serebrenik,
and Rocco Oliveto. 2020. How does code readability change during software
evolution? Empirical Software Engineering 25 (11 2020), 1-39.

Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A simpler model
of software readability. Proceedings - International Conference on Software Engi-
neering, 73-82.

Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-
Vasquez, Denys Poshyvanyk, and Rocco Oliveto. 2017. Automatically assessing
code understandability: How far are we?. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 417-427.

Simone Scalabrino, Mario Linares-Vasquez, Rocco Oliveto, and Denys Poshy-
vanyk. 2018. A comprehensive model for code readability. Journal of Software:
Evolution and Process 30 (06 2018).

Mir Muhammd Suleman Sarwar, Sara Shahzad, and Ibrar Ahmad. 2013. Cyclo-
matic complexity: The nesting problem. In Eighth International Conference on
Digital Information Management (ICDIM 2013). 274-279.

M. Wyrich, A. Preikschat, D. Graziotin, and S. Wagner. 2021. The Mind Is a
Powerful Place: How Showing Code Comprehensibility Metrics Influences Code
Understanding. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA, 512-523.
Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What Do Developers Search for on the Web? 22, 6 (Dec.
2017), 3149-3185.

https://arxiv.org/abs/2007.12520
https://doi.org/10.5281/zenodo.5224346
https://doi.org/10.5281/zenodo.5224346

	Abstract
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Study Design
	4.1 Select Input Queries
	4.2 Extract Code Snippets
	4.3 Collect Metrics Values
	4.4 Developers Evaluation

	5 Results and Findings
	6 Threats to Validity
	7 Conclusions and Future Work
	References

