
Divinator: A Visual Studio Code Extension to
Source Code Summarization

Rafael S. Durelli
Federal University of Lavras

Lavras-MG, Brazil
rafael.durelli@ufla.br

Vinicius H. S. Durelli
Federal University of São João del Rei

São João del Rei-MG, Brazil
durelli@ufsj.edu.br

Raphael W. Bettio
Federal University of Lavras

Lavras-MG, Brazil
raphaelwb@ufla.br

Diego R. C. Dias
Federal University of São João del Rei

São João del Rei-MG, Brazil
diegodias@ufsj.edu.br

Alfredo Goldman
University of São Paulo
São Paulo-SP, Brazil
gold@ime.usp.br

Abstract
Software developers spend a substantial amount of time read-
ing and understanding code. Research has shown that code
comprehension tasks can be expedited by reading the avail-
able documentation. However, documentation is expensive
to generate and maintain, so the available documentation is
often missing or outdated. Thus, automated generation of
brief natural language descriptions for source code is desir-
able and has the potential to play a key role in source code
comprehension and development. In particular, recent ad-
vances in deep learning have led to sophisticated summary
generation techniques. Nevertheless, to the best of our knowl-
edge, no study has fully integrated a state-of-the-art code
summarization technique into an integrated development
environment (IDE). In hopes of filling this gap, we developed
a VS Code extension that allows developers to take advan-
tage of state-of-the-art code summarization from within the
IDE. This paper describes Divinator, our IDE-integrated tool
for source code summarization.

CCS Concepts: • Software and its engineering → Soft-
ware maintenance tools.

Keywords: learning, source-code summarization, deep-learning

1 Introduction
Understanding source code is taxing, hence several studies
have investigated approaches to aid program understanding.
Although proponents of agile approaches maintain that code
should be the main documentation, previous research [9]
supports the notion that a natural language description of
of a given piece of code can make it easier to understand
and make changes to that code. As pointed out by Som-
merville [13], ideally, software should be an amalgamation
of code and its associated documentation. However, despite
the benefits ascribed to writing these natural language sum-
maries (e.g., helping programmers to quickly gain a better un-
derstanding of the purpose of a given method or subroutine),
programmers tend to put off writing source code summaries
or avoid it altogether to save time and manual effort [12, 17].

Therefore, in practice, the only available documentation is
the source code. To make matters worse, when available,
documentation is usually inconsistent and out of date, so
before relying on the available documentation, programmers
have to make sure it is complete and up-to-date.
Researchers have tried to mitigate the aforementioned

problems by automatically generating comments. Specifi-
cally, the task of trying to comprehend and generate sum-
maries directly from source code has been aptly termed
source code summarization [2]. Automatic source code sum-
marization has been an active research area over the last
decades [1, 6–8, 15, 16] given that by perusing succinct de-
scriptions (i.e., summaries) of source code fragments develop-
ers can reduce the amount of code that needs to be read and
understood. Essentially, code summarization is grounded in
the idea that a brief natural language description of code
(e.g., “Determines if an integer is even”) allows developers to
understand the code’s purpose without having to read the
code, saving them time from having to go over implementa-
tion details. Therefore, by relying on these code summaries,
a developer can quickly filter out code that is pertinent to
the task at hand.

In this paper, we present Divinator: a Visual Studio Code
(VS Code) extension that allows developers to generate natu-
ral language descriptions from source code. More specifically,
our extension utilizes CodeTrans [3], which is an encoder-
decoder pre-trainedmodel for Java, SQL, Python, and CSharp,
to generate natural language summaries from chunks of code,
methods, and classes. The remainder of the paper is orga-
nized as follows. Section 2 presents background information
on source code summarization and outlines the main ele-
ments of Divinator. Section 3 provides a brief overview of
the existing literature on code summarization. In Section 4
we further elaborate on the architecture of the proposed VS
Code extension. Section 5 shows an example of how to use
Divinator. Section 6 presents concluding remarks.

VEM’22, October 03, 2022, Virtual Workshop Durelli, et al.

HTTP

CodeTrans - Java Model

CodeTrans - Python Model

CodeTrans - CSharp Model
MySQL

Figure 1. Divinator’s Architecture

2 Background
As mentioned, during development and maintenance tasks,
developers spend most of their times reading and under-
standing code. Being able to rely on a short description
about the code’s purpose allow developers to save time and
makes development and maintenance tasks less taxing on
developers. However, research has shown that developers
tend to avoid the manual effort of writing summaries them-
selves [12, 17], so automatic source code summarization has
recently been gaining increased attention as a desirable al-
ternative. Researchers have drawn from machine learning
(ML) techniques and more recently deep learning (DL) to
improve the quality of the generated summaries. In fact,
advances in DL have recently come to dominate the state-
of-the-art performance in source code summarization. For
instance, BERT [7], XL-NET [16], ALBERT [6], RoBERTa [8],
GPT-3 [1], and T5 [15] have been extensively used for code
summarization.

To perform source code summarization our VS Code exten-
sion employs CodeTrans [3], which is based on the encoder-
decoder transformer architecture. Specifically, Elnaggar et al.
adapted the encoder-decoder model proposed by Vaswani
et al. [14] and the T5 framework implemented by Raffel et
al. [15]. The resulting source code summarization model is
able to process Python, SQL, and CSharp code snippets. The
dataset used to train the model was generated by Iyer et
al. [5]. Such dataset was extracted from StackOverflow1 and
comprises code snippets from accepted answers with exactly
one code snippet, and the target summarization is based on
the title of the question.

3 Related Work
Software developers spend a great deal of time reading and
understanding code that is poorly-documented, written by
other developers, or developed using differing styles. During
the past decade, researchers have investigated techniques
for automatically documenting code to improve comprehen-
sibility. Early work in the area of source code summarization
used Natural Language Processing (NLP) techniques and
heuristics, for example, exploring the frequency with which
words were cited in code or the traditional Term Frequency
Inverse Document Frequency method. Haiduc et al. [4] were

1https://stackoverflow.com/

1

2

Figure 2. Marketplace - Divinator

the first researchers in the use of NLP techniques for source
code summarization. Rodeghero et al. [11] evolved the work
developed by Haiduc et al. [4], being incorporated into the
eye movement analysis of programmers, where they first
analyzed the signatures of the methods and then analyzed
their implementation.

Moreno et al. [10] used stereotyping to assist in the tech-
nique of creating comments for class implementations in
the Java programming language, where the type of class or
the type of class methods, constructors, static methods were
analyzed , among others, to aid in summarization.
Iyer et al. [5] pioneered the use of neural networks for

source code summarization, in which a Recurrent Neural
Network (RNN) and a Long short-termmemory (LSTM) were
used. Since then, most works for source code summarization
have used different deep neural network architectures due
to the state-of-the-art results obtained [18].
According to Zhu and Pan [18], the most applied neural

network architectures in the source code summarization task
are the RNNs, the Convolutional neural network (CNN) and
the Graph Neural Network (GNN). The authors highlight
the RNN architecture for the good performance obtained by
the systems that adopt it. In addition to these architectures,
another highlight is the use of the Sequence-to-sequence
(Seq2seq) architecture, which is widely used in automatic
text translation techniques and was soon adapted by several
authors for the task of source code summarization.

4 Architecture
Many aspects of the IDE can be customized and improved
through the Extension application programming interface
(API). VSCode was built with extensibility in mind to the
point that many core features are built as extensions using
the Extension API. Divinator was built using the Extension

Divinator: A Visual Studio Code Extension to
Source Code Summarization VEM’22, October 03, 2022, Virtual Workshop

1

Figure 3. How to use Divinator - First Option

1

Figure 4. How to use Divinator - Second Option

API, so it integrates seamlessly into VSCode and is stream-
lined to help developers to get a state of the art source code
summarization feature within the IDE.
Our extension is based on a microservices architecture:

source code summarization runs as an isolated process im-
plemented through a FastAPI2 endpoint, which is hosted on
2https://fastapi.tiangolo.com/

AmazonWeb Services EC23. An overview of the architecture
of our extension is shown in Figure 1. As shown in Figure 1,
source code summarization is prompted by the user upon
selecting a snippet of code for summarization. The JavaScript
part of our extension then sends a JSON file containing the
selected snippet of code and related metadata. Given that our
3https://aws.amazon.com/ec2/

https://fastapi.tiangolo.com/
https://aws.amazon.com/ec2/

VEM’22, October 03, 2022, Virtual Workshop Durelli, et al.

[
{

"summary_text": "bubble sort in Python"

}
]

Figure 5. Source-code Summarization

extension is able to process and summarize Java, Python, and
CSharp code, metadata includes information about filename
extension. An example of JSON file generated by our exten-
sion is shown in Figure 1. Based on the filename extension a
server-side FastAPI implementation selects the pre-trained
model (i.e., CodeTrans) that should be run in order to sum-
marize the chosen piece of code. Source code summaries are
returned as JSON files (Figure 2).

Divinator also includes a local history option that allows
developers to track all snippets of source code that have
already been summarized as well as the corresponding sum-
maries.

Listing 1. Input Json
1 {
2 " f i l e _ e x t e n s i o n " : " . py " ,
3 " s r c_body_to_symmar i ze " : " d e f b ubb l e S o r t (a r r) :
4 n = l en (a r r)
5 f o r i i n range (n−1) :
6 f o r j i n range (0 , n− i −1) :
7 i f a r r [j] > a r r [j + 1] :
8 a r r [j] , a r r [j + 1] = a r r [j + 1] ,

a r r [j] "
9 }

Listing 2. Output Json
1 [
2 {
3 " summary_text " : " bubb l e s o r t i n Python "
4 }
5]

5 Divinator: Installation and Usage
To install our extension, users need to access the Extensions
view from within VS Code by clicking on the Extensions icon
in the Activity Bar on the side of VS Code. Upon typing “div-
inator” in the search box to filter the Marketplace offerings
to extensions titled “divinator”, users should see our plugin
in the list as shown in Figure 2. Clicking on the Install button
will prompt VS Code to download and install the extension
from the Marketplace.

There are two ways to use our extension: (i) by selecting
the piece of source code to be summarized and right-clicking
on the Divinator – Summarize Source-Code (Figure 3); alterna-
tively, (ii) after selecting the chunk of code to be summarized,
the user has to access the Command Palette (Cmd/Ctrl + Shift
+ P) and choose the Divinator – Summarize Source-Code op-
tion (Figure 4).
After selecting the Divinator - Summarize Source-Code

option, our extension uses a POST request to send data to
the server: a JSON file (as shown in Listing 1). Based on the
information on the JSON file, the server-side code of our
extension determines which pre-trained model should be
used to summarize the given source code. As mentioned,
this decision is mostly based on the filename extension sent
to the server-side code. Upon processing the piece of code,
the resulting summary (Listing 2) is sent back to the client
VS Code as shown in Figure 5.

Divinator: A Visual Studio Code Extension to
Source Code Summarization VEM’22, October 03, 2022, Virtual Workshop

6 Concluding Remarks
Source code summarization has been studied for decades,
however, only recently the area has started drawing great at-
tention owing to howmore recent techniques have improved
the quality of the generated summaries by taking inspiration
from methods in machine learning and recent advances in
deep learning. Although many pre-trained models that have
been fine-tuned for a myriad of software engineering-related
tasks have become available, we believe that not much ef-
fort has been devoted to integrate these models into IDEs.
As a first step towards bridging this gap, we designed and
implemented Divinator. Through Divinator developers can
take advantage of state of the art source code summarization
feature from within the VSCode IDE, thus developers can
easily leverage this feature during development and main-
tenance efforts. Our extension is able to generate natural
language summaries for Java, Python, and CSharp. Divinator
implements a microservice-based architecture that allows
for scalability and mitigates the cost of model execution (on
the client site) by having the code summarization model run
on the server-side. As future work we intend to probe into
how developers tend to use Divinator during development
efforts, we believe such follow-up study can provide unique
insights into how we can further improve Divinator.

References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners. CoRR abs/2005.14165 (2020).

[2] Utkarsh Desai, Giriprasad Sridhara, and Srikanth Tamilselvam. 2021.
Advances in Code Summarization. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). 330–331.

[3] Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher,
Christoph Angerer, Silvia Severini, Florian Matthes, and Burkhard
Rost. 2021. CodeTrans: Towards Cracking the Language of Silicone’s
Code Through Self-Supervised Deep Learning and High Performance
Computing. CoRR abs/2104.02443 (2021).

[4] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010.
On the use of automated text summarization techniques for sum-
marizing source code. In 2010 17th Working Conference on Reverse
Engineering. IEEE, 35–44.

[5] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer.
2016. Summarizing source code using a neural attention model. In Pro-
ceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2073–2083.

[6] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT
for Self-supervised Learning of Language Representations. CoRR
abs/1909.11942 (2019). arXiv:1909.11942 http://arxiv.org/abs/1909.
11942

[7] J Devlin M Chang K Lee and K Toutanova. 2018. Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy,Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
CoRR abs/1907.11692 (2019).

[9] Paul W. McBurney and Collin McMillan. 2014. Automatic Documenta-
tion Generation via Source Code Summarization of Method Context.
In Proceedings of the 22nd International Conference on Program Com-
prehension. ACM, 279–290.

[10] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus,
Lori Pollock, and K Vijay-Shanker. 2013. Automatic generation of
natural language summaries for java classes. In 2013 21st International
Conference on Program Comprehension (ICPC). IEEE, 23–32.

[11] Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch,
and Sidney D’Mello. 2014. Improving automated source code summa-
rization via an eye-tracking study of programmers. In Proceedings of
the 36th international conference on Software engineering. 390–401.

[12] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. 2011. An Empirical
Study on Evolution of API Documentation. In Proceedings of the 14th
International Conference on Fundamental Approaches to Software Engi-
neering: Part of the Joint European Conferences on Theory and Practice
of Software. Springer-Verlag, 416–431.

[13] Ian Sommerville. 2015. Software engineering 10th Edition. ISBN-10
137035152 (2015), 18.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All you Need. In Advances in Neural Information Processing
Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates,
Inc., 15–25.

[15] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-
Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2020. mT5:
A massively multilingual pre-trained text-to-text transformer. CoRR
abs/2010.11934 (2020).

[16] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan
Salakhutdinov, and Quoc V. Le. 2019. XLNet: Generalized Autoregres-
sive Pretraining for Language Understanding. CoRR abs/1906.08237
(2019). arXiv:1906.08237 http://arxiv.org/abs/1906.08237

[17] Hao Zhong and Zhendong Su. 2013. Detecting API Documentation
Errors. SIGPLAN Notices 48, 10 (2013), 803–816.

[18] Yuxiang Zhu and Minxue Pan. 2019. Automatic Code Summarization:
A Systematic Literature Review. CoRR abs/1909.04352 (2019).

https://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Architecture
	5 Divinator: Installation and Usage
	6 Concluding Remarks
	References

