
ConCAD: A Tool for Interactive Detection of Code Anomalies
Danyllo Albuquerque

Federal University of Campina
Grande (UFCG)

Campina Grande, Paraíba, Brazil
danyllo@copin.ufcg.edu.br

Everton Guimaraes
The Pennsylvania State University

Malvern, Pennsylvania, United States
ezt157@psu.edu

Mirko Perkusich
Federal University of Campina

Grande (UFCG)
Campina Grande, Paraiba, Brazil

mirko@virtus.ufcg.edu.br

Hyggo Almeida
Federal University of Campina

Grande (UFCG)
Campina Grande, Paraiba, Brazil

hyggo@virtus.ufcg.edu.br

Angelo Perkusich
Federal University of Campina

Grande (UFCG)
Campina Grande, Paraiba, Brazil
perkusich@virtus.ufcg.edu.br

ABSTRACT
Code anomalies are indicators of software design can potentially
decrease software maintainability and they are associated with
an explicit set of refactoring actions. However, Detection of code
anomalies is traditionally supported by Non-Interactive Detection
(NID) techniques. These techniques encourage developers to reveal
anomalies in later revisions or versions of a program, implying
in counter-productive or even prohibitive refactoring actions. In
this context we created ConCAD as an eclipse plug-in that enable
Interactive Detection (ID) of code anomalies. This tool provide
developers’ support to reveal anomalies when code fragments are
still being edited, encouraging early and continuous detection of
code anomalies.

KEYWORDS
Code Anomalies, Tool, Software Quality; Refactoring

1 CONTEXTUALIZATION
Code anomalies have been proposed as a way for developers to
recognize the need to restructure their software [3]. Because code
anomalies can go unnoticed while developers are working, tech-
niques for anomaly detection have been developed to alert program-
mers and to help them understand the cause of those anomalies.
These techniques are comprised of two components [5][1]: 1) Detec-
tion Mechanism which allows developers to define algorithms and
choose some metrics - and adjust thresholds - to compose the de-
tection strategy [4]; and 2) User interface which displays the results
of anomaly detection.

There are two main ways of presenting the detection results: (i)
list-based and (ii) interactive-based. The first represents a list of
code anomalies throughout the project, while the second uses the
source code to alert potential instances of code anomalies. Based on
the developer’s interaction with the aforementioned components,
the techniques can be classified in two ways.

Interactive Detection (ID) technique supports the developer’s
interaction with code anomalies by revealing instances in code frag-
ments without an explicit developer’s request. The ID techniques
continuously work in the background to detect anomaly instances
while software developers work on coding tasks. A developer using
ID techniques can identify anomaly instances earlier, allowing de-
velopers to analyze and modify the source code while interacting

with the affected code elements [1][5].Non-Interactive Detection
(NID) technique does not support the developer’s interaction with
affected code elements unless the detection mechanism receives
the developer’s request, after which it will detect potential code
anomalies by analyzing the entire project. Developers using NID
techniques may identify anomaly occurrences only after the code
churns are merged with other software components. Finally, once
developers directly interact with the detection mechanism and a
global list of anomaly instances, they cannot concurrently perform
other programming activities [1][5].

Most studies on the detection of code anomalies strictly focused
on evaluating of NID [6][9][2]. These studies pointed out that NID
techniques induce a low number of correctly detected code anom-
alies, directly impacting their effectiveness. Other studies suggested
that NID techniques induce ineffective refactoring actions [7, 8].
We assume that ID techniques may promote the early identifica-
tion of code anomalies by allowing developers to perform effective
refactoring actions. Although the ID technique seems promising for
detecting code anomalies and identifying refactoring opportunities,
there is a lack of empirical knowledge regarding its effectiveness in
these activities. This observation raises the need for tooling support
that enables ID characteristics.

To address this research problem, this study presents a tool called
ConCAD (Continuous Code Anomaly Detection) that supports
identifying and prioritizing 10 different types of code anomalies.
The main benefit of using ConCAD is that developers can configure
and extend the tool by providing different strategies to identify
and prioritize code anomalies. Aims to preliminary validate the
ConCAD tool, we conducted a controlled experiment involving 16
subjects among graduate students and developers. These subjects
performed tasks related to detecting code anomalies, supported by
both ID and NID techniques. The controlled experiment allowed
us to investigate the ID technique’s influence in performing the
abovementioned tasks.

2 MOTIVATING EXAMPLE
We start our motivating example with a software developer called
Tom. He is working on the Apache Tomcat®project, and he expe-
rienced difficulty in adding functionality to the JNDIRealm1 class.

1https://tomcat.apache.org/tomcat-8.5-doc/api/org/apache/catalina/realm/JNDIRealm.html



VEM ’22, October 03, 2022, Virtual Workshop Albuquerque et al.

This class contains eight methods like the compareCredentials, il-
lustrated in Figure 1. In this case, the code anomaly he noticed is
called Data Clumps. It is observed when the same group of data
objects (i.e., context and credentials - See red rectangle in Figure 1)
is used in several different places. Data clumps can make the soft-
ware more difficult to maintain because if the representation of one
of the data objects changes or the protocol for manipulating those
objects changes, then every location in which the group of objects
appears must be examined to see if it needs to be modified.

Figure 1: Code fragment of the JNDIRealm class.

Assuming that Tomwas using a NID technique, the Data Clumps
would be detected at a late stage when many modules already
depend on it (creating more coupling). Thus, refactoring actions
can be performedwithmore effort or might even be impossible to be
performed by Tom. In turn, if Tom uses the ID technique, he could
inspect the class and opportunely conclude that the context and
credentials parameters should be encapsulated into a single object
by performing extract class refactoring because these parameters
had appeared together in the parameter list of several different
methods depending on the JNDIRealm class. Thus, the ID technique
allows detection of code anomalies earlier, which may lead to less
effort to perform refactoring than traditional techniques.

3 CONCAD TOOL
This section introduces the ConCAD tool in detail. Initially, an
overview of the tool is presented, highlighting its main components
and characteristics. Then, details regarding the architecture as well
as the implementation of the tool are described. Finally, the main
features of this tool are provided.

3.1 Main Features
ConCAD takes the Java source code as input and produces a display
of the results associated with detecting code anomalies. Basically,
there are two main profiles for using the tool: developer and user.
The first is directly related to the tool’s construction (or expansion),
while the second is directly related to the use of its features. Once
the ConCAD tool is instantiated in the integrated development
environment, the user can interact with the tool to do one or more
of the following activities:

• Mapping Information. The user can include external infor-
mation in ConCAD throughmappings to the source code. For
example, the system’s architectural design can be mapped
to the code that aims to indicate which classes are directly
related to each architectural component.

• Anomaly Detection. The source code of the developer’s
current project is analyzed through several relevant met-
rics in the context of Object Oriented Programming (OOP),
and code anomalies are automatically detected through a
combination of detection strategies.

• Anomaly Prioritization: Code anomalies are evaluated
according to their criticality and severity based on different
prioritization criteria. These criteria can be easily customized
by users according to their preferences or even according to
project characteristics.

• Choose Detection Approach. ConCAD is designed to per-
form code anomaly detection according to interactive and
non-interactive techniques. The developer can choose one of
the strategies according to their suitability for his program-
ming activity.

• Visualization of results. Since the ConCAD tool was de-
signed to support different detection techniques, ways of vi-
sualizing the results must adhere to such approaches. While
in the ID technique, more local results are required, in the
case of the NID technique, there is a need to display more
global results.

The ConCAD tool supports the calculation of 30 different types
of OOP metrics. These metrics are used to compose detection strate-
gies for different types of anomalies. A detection strategy consists of
a quantifiable and logical expression where code fragments that do
not conform to the rule are detected. It is essential to mention that
ConCAD provides support for configuring the anomaly detection
strategy based on user preferences that may be previously stored in
the database. Based on OOP metrics and pre-configured detection
strategies, the ConCAD tool provides initial support for detecting
10 different types of code anomalies: Brain Class, Brain Method,
Feature Envy, Data Class, Dispersed Coupling, God Class, Intensive
Coupling, Refused Bequest, Tradition Breaker, and Shotgun Surgery.
It is important to note that based on the various metrics already
implemented in the tool, new and different detection strategies can
be easily configured to expand the anomalies supported by the tool.

The number of code anomalies can pose a great difficulty when
analyzing large systems. Therefore, ConCAD provides a means
to prioritize each instance of the 10 distinct types of anomalies.
From its inception, this tool was designed to be flexible enough
to strike a balance between (i) prioritization criteria that require
little user intervention but work better after multiple versions of
the system and (ii) criteria that rely on (a fair amount of) external
information provided in advance by the user, but produce good
results for recent system versions. This allows users to prioritize
inspection and correction of the most critical fragments according
to their preferences.

3.2 Architectural Details
The ConCAD tool was designed according to six main components
described in Figure 2.

Eclipse Platform. Being an Eclipse plug-in, ConCAD has a
direct dependency on the Eclipse Platform core, more precisely
on the following three components: workspace, workbench and the
incremental project build. The workspace is used to gain access to
the resources of Eclipse projects and their interdependencies. The



ConCAD: A Tool for Interactive Detection of Code Anomalies VEM ’22, October 03, 2022, Virtual Workshop

define

Plataforma Eclipse
R

u
n

ti
m

e 
ev

en
t 

M
an

ag
er

ConCAD CORE

Estratégias 
de detecção

Dados de 
mapeamento

Priorização

Critério Ranking

Visualização e 
controle

Abordadem 
de detecção

Obtém componentes

atualiza resultados 

Calcula

Utiliza

Gerenciador de 
eventos

Componente de 
software

Suporte da 
plataforma

Retorno de 
chamada

Subscrição de 
eventos 

Legenda

Visualization and 
Control

Tecnique
Detection

Detection 
Strategy

Mapping 
Information

Criterion Ranking

Prioritization

update results

define

obtain components from

uses

calculate

Event 
manager

Software 
component

Plataform 
support

Callback Event 
subscription

Eclipse Platform

Figure 2: ConCAD Architecture.

workbench is used to define the markers that the tool will use to
annotate the source code files with the anomalies detected in the
project and to define the visualization forms that ConCAD needs
to present its more localized analysis results. Finally, incremental
project build mechanism is used to get the code elements (e.g.,
statements, methods, classes, and packages) that have changed since
the last build and also the change factor that describes the actual
changes on a certain element.

ConCAD tool uses the Eclipse JDT project 2 (Java Development
Tools) aims to provide the necessary means for developing plug-ins
to extend the functionality of the Eclipse. Thus, ConCAD needs
information about the code elements involved in its various met-
rics, detection strategies, and means of visualization and explo-
ration. Most of this information is provided by the Java Model
which represents a Java project, providing a lighter model associ-
ated with code elements. However, more detailed information such
as cross-references (e.g., method calls and variable accesses) and
low-level program elements (e.g., parameters, local variables, and
return types) are only available through AST-based objects. It is
important to mention that most of the ConCAD analyses depend
on this information based on the Java Model and AST models.

ConCAD Core. This component is responsible for managing
the loading and analysis of source code files in Java through its
direct interaction with the Eclipse platform. Thus, this component
is concerned with obtaining and treating information based on
Java Model and AST to provide the tool’s functionality. In general
terms, it manages the tool’s workflow by detecting code anomalies
and interacting with the prioritization component to generate the
classification of detected anomalies.

Detection Strategies. This component implements various
strategies for detecting each type of code anomaly. This component
uses threshold values for OOP metrics previously configured or
obtained from users through visualization and control mechanisms
in detection strategies. Furthermore, new and different detection
2https://www.eclipse.org/jdt/overview.php

strategies can be easily added by developers through this compo-
nent.

Mapping Data. This component supports the framework for
mapping external information to the source code. The user can
also configure new types of mappings to be used by prioritization
strategies. One way to take advantage of external information when
anomalies are analyzed and prioritized is by mapping elements of
the design model (e.g., modules, responsibilities, and scenarios) to
the implemented code elements (e.g., packages, classes, methods).
In this way, ConCAD can be instantiated by a developer to take
into account different types of architectural requirements and doc-
umentation, such as component and connector views, scenarios
based on quality attributes, among others. In all cases, the tool user
will map an element of the design model to one or more classes (or
packages) to indicate its traceability.

Prioritization Criteria. This component calculates a rating
for a set of anomalies detected by the tool. How the calculation is
carried out, as well as the application of the criteria, are extensible.
That is, new prioritization criteria can be added by developers
without changing the architecture, thanks to a set of interfaces. A
user can instantiate ConCAD to prioritize anomalies by different
criteria (e.g., the relevance of the anomaly type, system version
history, and different software metrics). In addition, the user can
use external information to improve prioritization.

Visualization and Control. This component represents a set
of user interfaces (e.g. views, dialog boxes, and action handlers)
that aim to provide the tool’s functionality to its users. In this
way, the user can interact with the user interface to map external
information to the source code, define their detection strategies,
define their prioritization criteria, and analyze the results associated
with detecting code anomalies.

3.3 ConCAD Operation
This section demonstrates how ConCAD Eclipse works. In what
follows, we explain (i) how anomalies are detected and exposed,
(ii) how detection strategies are configured, and (iii) the ways of
prioritizing detected anomalies.

Figure 3: ConCAD overview.

Iteractive Detection. After a project is loaded into the Eclipse
environment, the user can instruct ConCAD to identify and analyze
possible code anomalies in a given snippet. This is done by clicking
on the button “ConCAD Detector -> Enable ConCAD” in a context
menu in the project (Figure 3.A). After clicking on this option, the
user switches their context to perform some programming activity



VEM ’22, October 03, 2022, Virtual Workshop Albuquerque et al.

on a particular code file. On this occasion, the user needs to focus
his programming activities on code fragments that are a constituent
part of the file active in the Integrated Development Environment
(Figure 3.B).

The user performs some programming activity on the code frag-
ment. At this point, the anomaly detection mechanism acts - re-
gardless of an explicit request from this user - calculating metrics
associated with the fragment and related source code files. This
mechanism performs a detailed analysis of the metric values and,
if there is a violation in the previously defined detection strategies,
the developer is alerted about anomalies through markers in the
considered code fragment (Figure 3.C). Finally, the developer can
also have a more global view of the results associated with code
anomalies present in the project. All these occurrences are listed
and classified in ConCAD View (Figure 3.D).

It is important to note that ConCAD tool markers are dynamic:
as new code is written or modified, new markers may appear, or
existing onesmay disappear. Although anomalies are detected using
strategies, the problem is described in terms of design concepts
rather than numbers. In this sense, ConCAD lists the actual entities
and relationships that contribute to a specific code anomaly, helping
the developer to identify and remove the anomalies correctly.

Non-Iteractive Detection. Similarly, by clicking on the button
“ConCAD Detector -> Find Code anomalies” in a context menu in
the project (Figure 3.A), the tool will analyze the metrics associated
with all the code elements of the project in question. As soon as
the detection engine identifies the anomalies present in the project,
these occurrences will be listed and classified in the ConCAD View
(Figure 3.D).

The user switches his context to perform some programming
activity on a particular code file. On this occasion, the user needs
to focus his programming activities on code fragments that are
a constituent part of the code file that is active in the Integrated
Development Environment (Figure 3.B). Upon completion of the
programming activity, the user needs to explicitly request the tool
so that the detection engine performs its analysis in search of code
anomalies. More importantly, in this operating mode the user is
deprived of localized anomaly detection results (e.g., markers in
the code). As a consequence, new occurrences of anomalies can be
inserted and be detected only late when many modules depend on
or are affected by these anomalous sections.

Detection Configuration. The ConCAD tool allows the se-
lection of different thresholds for the metrics used on anomaly
detection. In Figure 4 we can identify the detection strategy for the
anomaly classified as God Class. This anomaly has a strategy based
on three distinct metrics (i.e., ATFD, WMC, and TCC) together with
their threshold values.

While the developer who instantiates the tool can pre-configure
the thresholds by default, the tool’s user can change the thresholds
to adapt detection strategies to the characteristics of the analyzed
system. It is worth noting that each of the 10 distinct anomalies has
similarly adaptable and configurable detection strategies.

Detection Prioritizing. Once code anomalies are detected, they
must be classified according to their importance. A developer can
instantiate ConCAD to prioritize code anomalies by different crite-
ria. The first strategy concerns the relevance of the code anomaly
type (Figure 5.A). The user can assign values (between 1 and 5) to

Figure 4: Detection Strategy Definition.

establish a level of importance for each type of anomaly supported
by ConCAD. In Figure 5.B, we can see that the user can easily assign
importance values to each of the types. These values are sorted
later, indicating this user’s preference.

Figure 5: Prioritizing for Anomaly Type.

Another prioritization criterion is associated with the modifica-
tion scenario. For example, some work has shown that by refac-
toring code anomalies related to architectural issues, architecture
degradation could be stopped [? ], [? ]. In this case, the developer
can create a criterion first to classify those anomalies that com-
promise the system architecture in a given modification scenario.
For example, this analysis can be performed by defining a criterion
based on the relationship between code anomalies and system mod-
ification scenarios. So the external information built into ConCAD
becomes essential to determine the criticality of each instance of
code anomalies.

4 CONCAD PRELIMINARY VALIDATION
We performed a controlled experiment aims to analyze and compare
the effectiveness of code anomaly detection using ID and NID tech-
niques supported by ConCAD. We recruited 8 graduate students
and 8 professional developers. These subjects performed the exper-
imental tasks by manipulating Java code files extracted from the
”Java Core Library”. Theywere subjected to ”two-treatment factorial
crossover design” [? ] for the tasks of detecting code anomalies.

To have confidence in the experiment results, it was necessary
to have an “oracle” representing the list of code anomalies that



ConCAD: A Tool for Interactive Detection of Code Anomalies VEM ’22, October 03, 2022, Virtual Workshop

actually represent maintainability problems. The environment for
executing the experimental tasks, including the files and tooling
support, was already provided to the subjects. Moreover, each ex-
perimental task was individually conducted with the first author
as an “observer” and another author as an “auxiliary”. The subjects
performed code analysis in order to detect eight different instances
of code anomalies supported by ConCAD. For doing so, they ana-
lyzed two code files: One with ID support and the other with NID
support. Table 1 describes the results for all subjects considering:
Detected Code anomalies (DCS), True Positives (TP), False Positives
(FP), and False Negatives (FN).

Table 1: Results of detection of code anomalies.

NID ID
TP FP FN TP FP FN

Developer 1 5 1 17 Developer 1 8 1 14
Developer 2 7 2 15 Developer 2 16 2 6
Developer 3 10 1 12 Developer 3 16 3 6
Developer 4 6 2 16 Developer 4 10 2 12
Developer 5 10 2 12 Developer 5 13 1 9
Developer 6 11 3 11 Developer 6 14 3 8
Developer 7 7 1 15 Developer 7 9 2 13
Developer 8 8 2 14 Developer 8 13 1 9
Student 1 5 1 17 Student 1 11 2 11
Student 2 5 1 17 Student 2 9 2 13
Student 3 8 2 14 Student 3 12 3 10
Student 4 6 1 16 Student 4 10 1 12
Student 5 6 3 16 Student 5 9 2 13
Student 6 5 2 17 Student 6 9 3 13
Student 7 6 2 16 Student 7 9 1 13
Student 8 5 3 17 Student 8 10 1 12

ID increases DCS and TP. Regarding DCS, we are interested
in knowing how many anomaly instances the developer could
detect, independently if the code anomaly instance represents a
maintainability problem (i.e., TP) or not (i.e., FP). Regarding results
associated with TP, we can notice a similar increment. We identified
subjects using the NID to detect 110 TP, whereas by using the ID,
they detected 178 TP. Therefore, the use of ID increased by about
60% of the total of TP when detecting code anomalies.

ID decreases FN. Related to FN, we are interested in knowing
how many anomaly instances that represent maintainability prob-
lems (i.e., TP) developers have failed to detect. The experimental
results revealed that subjects identified 242 FN when using the NID,
while subjects using the ID managed to reduce the FN number by
28%, totaling 174 FN. The use of the ID led subjects to identify the
most anomaly instances that represented maintainability problems.
Although we noticed an increase in FP, there are still opportunities
for improvement in the detection mechanism.

ID increases precision. The average precision with the ID was
0.86, while with the NID was 0.78. The difference in precision, how-
ever, was not significant considering a variation of about 11%. We
also observed the subjects’ working experience directly affected
the precision results. Although the use of the ID increases the num-
ber of TP, it also tends to increase FP, directly impacting precision
values since these effectiveness measurement components are used
to calculate the precision.

ID increases recall. Based on the outcomes associated with FN
and TP, it is expected that the use of the ID technique significantly
contributes to improving the recall to detect code anomalies. On
average, we observed that the subjects using the ID achieved a recall
of 0.51, whereas using NID achieved 0.31, representing a difference
of about 60% in favor of the ID technique. When analyzing different
samples, the developers improve recall values by 50%, while the
students improve recall values by about 70%.

It is worth mentioning the results indicated no negative impact
on the use of ID technique. The subjects are likely to benefit from
detecting anomalies earlier when they regularly receive feedback.
Moreover, the constant availability and higher amount of informa-
tion through ID led subjects to accept a higher number of code
anomaly suggested by the technique. More experienced developers
using ID obtained fewer FPs than the students (with less work-
ing experience) using the same technique. Similarly, developers
identified a higher number of TP compared to students.

5 FINAL CONSIDERATIONS
In this paper, we propose a novel anomaly detector called Con-
CAD that provides an interactive ambient designed to first give
programmers a quick, high-level overview of the anomalies in their
code, and then, if they wish, to help in understanding the sources
of those code anomalies. This tool allows the user to focus on those
anomalies that are critical for the system, thus making their analy-
sis cost-effective. The design of ConCAD supports a prioritization
schema based on multiple criteria, which can be easily provided
and extended by developers. We argue that ConCAD is lightweight
because it can already work with a small set of criteria and provide
a useful ranking to the users. As future work, we will extend our
tool to support refactoring. Our intention is to suggest refactoring
strategies for each kind of anomalies. This will help novice devel-
opers to analyze refactoring strategies for complex anomalies. Also,
we plan to create visualizations to awareness developers of the
components of the application most affected by anomalies.

REFERENCES
[1] Danyllo Albuquerque, Alessandro Garcia, Roberto Oliveira, and Willian Oizumi.

2014. Deteccao interativa de anomalias de codigo: Um estudo experimental. In
Proceedings of Workshop on Software Modularity. sn.

[2] Francesca Arcelli Fontana, Mika VMäntylä, Marco Zanoni, and AlessandroMarino.
2016. Comparing and experimenting machine learning techniques for code smell
detection. Empirical Software Engineering 21, 3 (2016), 1143–1191.

[3] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[4] Mika V Mantyla. 2005. An experiment on subjective evolvability evaluation of
object-oriented software: explaining factors and interrater agreement. In Pro-
ceedings of the International Symposium on Empirical Software Engineering. IEEE,
10–pp.

[5] Emerson Murphy-Hill, Titus Barik, and Andrew P Black. 2013. Interactive ambient
visualizations for soft advice. Information Visualization 12, 2 (2013), 107–132.

[6] Luciano Sampaio and Alessandro Garcia. 2016. Exploring context-sensitive data
flow analysis for early vulnerability detection. Journal of Systems and Software
113 (2016), 337–361.

[7] Markus Schnappinger, Mohd Hafeez Osman, Alexander Pretschner, Markus Pizka,
and Arnaud Fietzke. 2018. Software quality assessment in practice: a hypothesis-
driven framework. In Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. 1–6.

[8] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why we refactor?
confessions of GitHub contributors. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 858–870.

[9] Chris Simons, Jeremy Singer, and David R White. 2015. Search-based refactoring:
Metrics are not enough. In Proceedings of the International Symposium on Search-
Based Software Engineering. Springer, 47–61.


	Abstract
	1 Contextualization
	2 Motivating Example
	3 Concad Tool
	3.1 Main Features
	3.2 Architectural Details
	3.3 ConCAD Operation

	4 ConCAD Preliminary Validation
	5 Final Considerations
	References

