
Exploring Pull Requests in Code Samples
Matheus Melo

matheus.albuquerque@ufms.br
Faculty of Computing

UFMS, Brazil

Gabriel Menezes
gabriel.menezes@ufms.br
Faculty of Computing

UFMS, Brazil

Bruno Cafeo
cafeo@facom.ufms.br
Faculty of Computing

UFMS, Brazil

ABSTRACT
The interaction between organizations and their clients (actors)
around a common platform can be studied as Software Ecosystem
(SECO). Code samples are software projects made available by orga-
nizations to help their clients in the learning process of the features
from their platforms. In this context, actors’ interactions are impor-
tant to keep a healthy SECO. Pull requests can be a tool to facilitate
these interactions. In this study, we explore the contributions of
code sample clients through pull requests. In addition, we assess the
distribution of review activity between code sample maintainers.
As result, we found that majority of pull requests are reviewed and
accepted. Also, accepted pull requests take less time to be reviewed.
Finally, few maintainers are responsible to review them.

KEYWORDS
code samples, pull requests, software ecosystems

1 INTRODUCTION
Nowadays, software development is commonly supported by frame-
works, libraries, and APIs (here called platforms). The platforms can
provide feature reuse, improve productivity, and decrease costs [14,
24, 25]. These platforms support the development of different niches
of tools such as mobile apps, web apps, responsive interfaces, cross-
platform systems, cloud computing, distributed systems, and others.
These platforms are widely used by developers and organizations.
In the Java ecosystem, for example, there are more than 450,000
platforms available in the Maven repository [6]. In the Python
ecosystem are more than 350,000 platforms [5] made available via
Python Package Index.

In an environment with interactions between organizations that
develop the platforms and developers (here called clients) that use
the platform’s features to create value, this interaction results in
contributions to the evolution of the platform, then this environ-
ment can be studied as a Software Ecosystem (SECO) [4, 15, 18]. In
this context, clients need to learn how to use features provided by
platforms. However, there are some barriers that developers may
face learning these features [26, 31, 32, 35].

To help clients overcome these barriers, some organizations
create code samples. Code samples are small software projects,
with educational purposes and made available by organizations
to support and accelerate clients’ learning of their platform fea-
tures [3, 20, 21, 29]. Code samples are often provided by worldwide
organizations, such as Android [9], Spring [28], Google Maps [10],
Twitter [33], Microsoft [22], to name a few.

There are some characteristics of code samples and their SECO
already explored in the literature. For example, there are works
that evaluate source code characteristics, current and over time, fre-
quency of changes, and the use of code samples by developers [20].

Also, other research explores the degree of experience of code sam-
ple clients [2]. In addition, a study assesses the main problems and
needs raised by developers when using code samples [21]. Since
the interaction and contribution between clients and organizations
play an important key in SECO, it is necessary to understand how
these interactions and contributions occur and how organizations
deal with them. A way that clients can interact and contribute to
code samples is GitHub pull requests.

To do so, in this paper, we explore how organizations deal with
code sample contributions via pull requests on GitHub. And to
achieve this we developed the following research questions. (RQ1)
Do organizations review and accept contributions from code sam-
ples clients? (RQ2) How long does it take organizations to review
contributions from code samples clients? Is there a difference in
time between accepted and rejected? (RQ3) How do organizations
distribute, among code sample maintainers, the review activity of
clients contributions? To answer these questions, we conducted an
exploratory study assessing around 12,000 pull requests of 2,179
code samples from Android, AWS, Azure, and Spring.

We found that the majority of contributions from code sample
pull requests were already reviewed. Also, the majority of these
contributions were accepted into the code sample repository. Re-
garding time to review, for accepted pull requests, in general, it
takes less than 11 days. But for rejected pull requests, for most
organizations, it takes more than 40 days, in general. Finally, we
also found that pull requests review are performed by a few code
sample maintainers.

The rest of this paper is organized as follows. Section 2 presents
the concepts necessary to understand this work. Section 3 presents
the study design. Section 4 presents the results. Section 5 presents
the implications of results. Section 6 presents the related works.
Finally, Section 7 concludes the paper.

2 BACKGROUND
Software Ecosystems. SECO can be defined by interactions be-
tween actors, such as organizations, clients, and software systems
around a common technological platform [1, 13, 18]. Organizations
maintain the platform and are responsible for manage the SECO
needs as clients demand. Clients use platform features to create
value [13]. The interaction between these actors generate contribu-
tions that led to the evolution of the platform and SECO as well.

For clients generate value, they need to learn how to use platform
features. However, there are some barriers to learning the platforms,
for example, the possible lack of motivation in reading traditional
documentation [32]. Difficulty in understanding and using platform-
specific functionalities [31]. The need for quick learning [35]. And
few complete examples [26]. As an alternative to help clients in
the learning process of platform features, organizations are making
available code samples.



CBSoft 2022 - VEM Workshop, October 3, 2022, Virtual Event, Brazil Melo, Menezes and Cafeo

Code Samples. As a relatively recent concept coming from the
industry, organizations define code samples in different ways. For
example, Oracle states that “code sample is provided for educa-
tional purposes or to assist your development or administration ef-
forts [29].” Similarly, Spring reports that “code samples are designed
to get you productive as quickly as possible [30].” And Mozilla says
“code samples need to be simple enough to be understandable,
but complex enough to do something interesting, and preferably
useful [3].” Literature defines code sample as a complete software
project with education purpose, made available by organizations,
to assist their clients in understanding, using, and staying up to
date with their product features [20, 21].

In the industry, there are guides for the construction and main-
tenance of code and in the literature, there are works that explore
the characteristics found in code samples and their SECO as well:
(1) Code samples should be simple and small to facilitate reuse
and understanding [3, 20, 21]; (2) Code samples should provide a
working environment as conventional projects [20, 21]; (3) Code
samples should evolve and keep up to date, otherwise, they become
outdated and less attractive to their clients [12, 16, 20].
Actors Interactions and Pull Requests in SECO. A key part of
SECO is engaged actors and the interactions with each other [18].
Furthermore, these interactions between actors are just as impor-
tant as interactions with the platform, for the survival of SECO [18].
One way for clients to interact with organizations is through pull
requests. Pull requests allow developers (maintainers or clients) to
make isolated changes over artifacts and then request their changes
to be merged into the code sample repository [8, 27]. Figure 1
presents a pull request from gs-rest-service code sample, provided
by Spring1. In this example, the GitHub user veronx proposes to
remove an unnecessary library dependency from the code sam-
ple repository. The Buzzardo user, as a code sample maintainer,
reviewed and commented about the change still needed. The veronx
changes the pull requests to meet Buzzardo’s requirements. In the
end, the maintainer accepted the pull request, and their code was
merged to the code sample repository. The interaction between
clients and the organization (through its maintainer) implicates the
improvement of the code sample.

3 STUDY DESIGN
Study Scenario: It has already been noted that the most common
problem faced by code sample clients is when they try to modify
code samples [21]. It was also observed that the most recurring
demand from clients is related to improving code samples, whether
improving source code, documentation, or supporting tool [21].
This may indicate the clients’ desire to contribute to improving the
code sample. To maintain a successful SECO, organizations need
to meet the ecosystem needs and use business or motivation to
encourage actors to contribute to the ecosystem evolution [18, 19].
Pull requests allow clients to interact and contribute with code
samples, requesting changes to their repository [8, 27].

On the one hand, organizations can benefit from receiving con-
tributions from their customers, this can improve their interactions
and engagement, which is good for a healthy SECO. On the other
hand, contribution acceptance, without proper review, may lead to
1https://github.com/spring-guides/gs-rest-service/pull/104

Figure 1: GitHub page of a pull request from code sample
gs-rest-service provided by Spring.

a decay of code sample quality. This can be catastrophic due to code
sample educational purposes. In this paper, we aim to explore how
organizations deal with requests to change code samples repository
through pull requests on GitHub. In addition, we aim to explore
how are distributed the activities from pull requests management
between the code sample maintainers.
Code Sample Selection. We selected code samples from four
platforms: Android, AWS, Azure, and Spring Boot. The following
reasons motivated us to select these platforms: (1) they are rele-
vant and have a wide range of clients; (2) they support the creation
of different application niches, such as mobile applications, web
applications, and cloud computing; (3) their code samples are pub-
licly available on GitHub. We select code samples from official list
provided by their organization on GitHub. The code sample selec-
tion was performed, as well as the extraction of all other metrics,
through Python scripts. We used PyGithub library2. PyGitHub en-
capsulates the functionality of the GitHub API 3 and provides it
with Python functions. As a result, we obtained a total of 2,179 code
samples, 44 from Android, 1,047 from AWS, 1,007 from Azure, and
81 from Spring Boot. All data and scripts are available publicly. 4

Pull Request Selection. Our study focuses on contributions from
code sample clients and evaluated by the organization, so we should
not select pull requests created by code sample maintainers or code
samples that have been closed by their creators. For that, in the first
step, we select pull requests of the selected code samples. Second,
we remove pull requests created by maintainers of the code sample
(details about the maintainers are presented below). Finally, we
removed pull requests that were closed by their own creators.
Maintainers Selection.We consider a code sample maintainer any
GitHub user who accepted at least one pull request to a repository
of studied code samples.
(RQ1) Do organizations review and accept contributions from
code samples clients? To answer this question, we compute four
metrics: number of reviewed pull requests, number of unreviewed

2https://pypi.org/project/PyGithub/
3https://docs.github.com/pt/rest
4https://anonymous.4open.science/r/VEM2022-360D

https://github.com/spring-guides/gs-rest-service/pull/104
https://pypi.org/project/PyGithub/
https://docs.github.com/pt/rest
https://anonymous.4open.science/r/VEM2022-360D


Exploring Pull Requests in Code Samples CBSoft 2022 - VEM Workshop, October 3, 2022, Virtual Event, Brazil

pull requests, number of accepted pull requests and number of
rejected pull requests. we consider a pull request to be reviewed
when its state changes to closed and unreviewed when its state is
open. We consider that a pull request has been accepted when its
state changes to closed and it has been merged [23, 27]. And we
consider that a pull request has been rejected when its state changes
to closed but it has not been merged [23, 27]. Rationale: If there is a
high proportion of unreviewed pull requests, it may indicate that
organizations are not worried about reviewing them or have not
been maintainers enough to attend to the needs of the community.
This may discourage clients from contributing to the evolution of
the code sample. In addition, if we find a low proportion of accepted
pull requests, it may indicate that organizations are not open to
receiving contributions, possibly from clients, in their code samples.
(RQ2) How long does it take organizations to review contri-
butions from code samples clients? Is there a difference in
time between accepted and rejected? To answer this question,
we selected three metrics: time to review, time to accept and time
to reject. Time to review is computed by the difference between
the date pull requests became closed and its creation date. Time to
review consider both, accepted and rejected pull requests. Time to
accept is calculated by the difference between the date pull requests
became closed and its creation date, but only considers accepted
pull requests. Similarly, time to reject is calculated by the difference
between the date pull requests became closed and its creation date,
but considers only rejected pull requests. Rationale: If the time to
close is too high, this may deter clients to contribute, as they don’t
see their contributions being inserted or even reviewed by code
sample maintainers. By another view, if the time to close and the
time to accept shows a high value, it could be an indication that
maintainers took more time to review the pull requests may be due
to a detailed review in order to reduce the insert of low-quality code
or even errors in the code sample, and this is extremely important
given the educational purpose of code samples.
(RQ3) How do organizations distribute, among code sample
maintainers, the review activity of clients contributions?
Given the set of code sample maintainers, we compute the number
of pull requests reviewed performed for each maintainer. Next, we
compute the Gini coefficient [7] along with the Lorenz curve [17].
Rationale: By calculating the Gini coefficient and Lorenz curve,
we can initially understand how your pull request reviews are
distributed in code samples. If revisions are the responsibility of
a few maintainers, this can slow down the time it takes to review
pull requests, and could be a bottleneck.

4 RESULTS
(RQ1) Do organizations review and accept contributions from
code samples clients? Table 1 presents the number of reviewed
and unreviewed pull requests from code samples. We found 483 pull
requests for code samples fromAndroid, 123 (25.5%) unreviewed and
360 (74.5%) reviewed. For AWS samples, we found 6,194 pull requests,
1,166 (18.9%) unreviewed and 5,028 (81.1%) reviewed. For Azure
samples, we found 4,933 pull requests, 1,579 (32.1%) unreviewed
and 3,354 (67.9%) reviewed. For Spring samples, we found 1,150 pull
requests, 150 (13.1%) unreviewed and 1,000 (86.9%) reviewed. These
results seem to show that most pull requests have already been

Table 1: Unreviewed vs Reviewed Pull Requests
Project Unreviewed Reviewed Total
Android 123 (25.5%) 360 (74.5%) 483
AWS 1,166 (18.9%) 5,028 (81.1) 6,194
Azure 1,579 (32.1%) 3,354 (67.9%) 4,933
Spring 150 (13.1%) 1,000 (86.9%) 1,150

Table 2: Accepted vs Rejected Pull Requests
Project Accepted Rejected Reviewed
Android 292 (81.1%) 68 (18.9%) 360
AWS 4,422 (87.9%) 606 (12.1%) 5,028
Azure 2,901 (86.4%) 453 (13.6%) 3,354
Spring 705 (70.5%) 295 (29.5%) 1,000

reviewed by organizations. In any case, there is a non-negligible
percentage of pull requests unreviewed, and organizations must
show efforts to review them.

Table 2 presents the number of accepted and rejected pull requests
from code samples. For Android samples, we found 292 (81.1%) ac-
cepted pull requests and merged to code samples repository and
68 (18.9%) rejected pull requests. In AWS samples, we found 4,422
(87.9%) accepted pull requests and 606 (12.1%) rejected pull requests.
For Azure samples, we found 2,901 (86.4%) accepted pull requests
and 453 (13.6%) rejected pull requests. In Spring samples, we found
705 (70.5%) accepted pull requests and 295 (29.5%) rejected pull re-
quests. These results seem to show that most reviewed pull requests
are accepted. At least 70% of them, but reaching cases with 87% of ac-
cepted pull requests. Conventional projects have approximately 76%
acceptability rate [23]. This value is exceeded in the code samples of
3 of the 4 analyzed platforms. This may indicate that organizations
are receptive to clients’ contributions to their code sample.

Organizations, in general, are care with reviewing contributions
in code samples. In addition, a higher number of contributions
were accepted and merged into code sample code. However, there
is a reasonable percentage of unreviewed contributions.

(RQ2) How long does it take organizations to review contri-
butions from code samples clients? Is there a difference in
time between accepted and rejected? Figure 2 presents the time
taken to pull requests be reviewed. We can see that, in the median,
Android samples take 7.5 days to be reviewed. While pull requests
from AWS samples take 3.6 days, in the median. Pull requests from
Azure samples take 12.73 days and Spring samples take 32.58 days
on the median. This seems to indicate that there is no standard
across organizations, while pull requests for code samples from
AWS typically take approximately 3 days, Spring pull requests take
more than 30 days to be reviewed. However, on all platforms, there
are pull requests that take longer than others, and there are even
cases that take more than 500 days to review. This may be due to
the complexity of the modifications, given that the number of lines
added or modified and the number of commits is an attributes to
determine the time to review [34].

Figure 3 (left) presents the time taken to review pull requests
accepted into code sample repositories. We noted that in Android



CBSoft 2022 - VEM Workshop, October 3, 2022, Virtual Event, Brazil Melo, Menezes and Cafeo

Figure 2: Time spent to review code sample pull requests.

samples, in the median, pull requests took 6.61 days to be accepted.
In AWS, was 2.67 days, on the median. While in Azure samples were
7.75 days and Spring samples were 7.54 days, in the median. Figure 3
(right) shows the time taken to review pull requests rejected. For
Android samples, we noted that, in the median, was spent 24 days
reviewing rejected pull requests. In AWS samples, pull requests took
29 days, in the median. While Azure and Spring present 75.5 and
108.38 days respectively, in the median. We found that, in general,
accepted pull requests take less time to review than rejected pull
requests. This behavior is also found in conventional projects [11].

Figure 3: (Left) Time to review accepted pull requests. (Right)
Time to review rejected pull requests.

There is no pattern between organizations regarding time to re-
view. However, there are contributions that take more than 500
days to be reviewed. In addition, as in conventional projects,
accepted contributions take less time than those rejected to be
reviewed.

(RQ3) How do organizations distribute, among code sample
maintainers, the review activity of clients contributions?
Figure 4 presents the Lorenz curve for the relation between code
sample maintainers and the number of pull requests reviewed. In
addition to the Lorenz curve, we also compute the Gini coefficient.
The values were 0.8 for Android, 0.91 for AWS, 0.91 for Azure, and
0.82 for Spring. These results show that the pull request review
activity is mostly performed by a small group of maintainers. This
behavior can be explained because the pull request review task
requires experienced maintainers and organizations are concerned
about selecting only competent maintainers for this task. However,
as we saw in the results of RQ2, there is a certain delay in some cases

of review. This can be caused by a bottleneck in the distribution of
review tasks and organizations should pay attention to this.

Figure 4: Lorenz curve between code sample maintainers and
pull request reviews.

The distribution of review activity from code sample pull requests
focuses on a small group of maintainers. This may be due to the
need for experienced maintainers for such a task, but organiza-
tions should note that this can be a bottleneck.

5 IMPLICATIONS
The community matters. Our results showed that, in general, or-
ganizations care about interacting with their clients’ community, by
reviewing their contributions from pull requests. This goes further,
as we realize that organizations are receptive to clients’ contribu-
tions from pull requests, given the acceptance rate. These inter-
actions between actors are just as important as interactions with
the platform and play an important role in SECO’s survival [18].
Therefore, it is important that organizations use efforts to foster
and increase these interactions and contributions.
To each organization, its rules.We observed that there are some
differences between how organizations handle contributions from
pull requests in their code samples. Some are more receptive than
others to these contributions. Also, some take less time to review
these contributions than others.
Expand to conquer. We’ve seen that the task of reviewing con-
tributions from pull requests is focused on a small group of main-
tainers. And that could be causing a delay in the review. Therefore,
we believe that it would be important for organizations to better
distribute this activity between their maintainers. That way, pull
requests would possibly take less time to review, and it can be an
incentive for more clients to contribute and contribute more often.

6 RELATEDWORKS
Code Samples in SECO. Menezes et al. et al. assessed the charac-
teristics of source code, evolution, and the use of code samples [20].



Exploring Pull Requests in Code Samples CBSoft 2022 - VEM Workshop, October 3, 2022, Virtual Event, Brazil

Menezes et al. observed the main problems faced and the main
demands demanded by code sample clients [21]. Braga et al. ana-
lyzed the target audience of code samples, and how experienced
their clients are. [2]. Unlike these studies, our study assesses how
organizations handle clients’ contributions to code samples.

Pull Requests. Soares et al. explored around 97,000 pull requests
from 30 GitHub projects to find characteristics that have affected
pull requests lifetime [23]. Soares et al. conducted a study with
22,523 pull requests to understand the factors that influence the
assignment of reviewers to pull requests [27]. Gousios et al. as-
sessed around 166,000 pull requests to understand the character-
istics of lifetime, acceptation, and rejection of pull requests in 291
projects [11]. Similarly, with these studies, we also assess time, re-
view, acceptance, and rejection. But code samples are different from
conventional projects due to their educational purpose [21]. This
makes necessary an exclusive study of their pull requests.

7 CONCLUSION
In this paper, we conduct an empirical study to understand how
organizations handle contributions from pull requests of their code
samples. In addition, we also explore how organizations distribute
the review activity of these pull requests. We assess around 12,000
pull requests from 2,179 code samples, investigating the percentage
of reviewed, unreviewed, accepted and rejected pull requests. We also
assess the time it takes for accepted and rejected pull requests to be
reviewed, and how the review task is distributed among code sample
maintainers. We found that the majority of pull requests were
already reviewed and are accepted to the code sample repository. We
noted that the accepted pull requests take less time to be reviewed
than rejected ones. Finally, we found that the review activity is
performed by a small group of maintainers.

In future work, we aim to compare our results with pull requests
from projects that are not code samples, to understand their dif-
ferences. Also, we want to explore, from the accepted and rejected
pull requests, which one comes from code samples clients and from
organization maintainers themselves. This can better clarify if or-
ganizations are accepting contributions from external developers
or only from internal ones. In addition, the source of pull requests
(client or maintainer) can impact the time to be reviewed, so it’s
interesting also extract time for its source.

ACKNOWLEDGEMENTS
This research is supported by CAPES and CNPq. This study was
financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES
[1] Jan Bosch. 2009. From software product lines to software ecosystems.. In SPLC,

Vol. 9. 111–119.
[2] Willian Marotzki Braga, Gabriel Menezes, Awdren Fontao, Andre Hora, and

Bruno Cafeo. 2020. Quero lhe usar! Uma Análise do Público Alvo de Code
Samples. In Anais do VIII Workshop de Visualização, Evolução e Manutenção de
Software. 33–40.

[3] Mozilla Corporation. 2022. Code example guidelines.
https://developer.mozilla.org/en-US/docs/MDN/Guidelines/Code_guidelines.

[4] Awdren Fontão, Bruno Ábia, Igor Wiese, Bernardo Estácio, Marcelo Quinta,
Rodrigo Pereira dos Santos, and Arilo Claudio Dias-Neto. 2018. Supporting

governance of mobile application developers from mining and analyzing tech-
nical questions in stack overflow. Journal of Software Engineering Research and
Development 6, 1 (2018), 1–34.

[5] Python Software Foundation. 2021. PyPI - The Python Package Index. https:
//pypi.org/

[6] The Apache Software Foundation. 2021. Apache Maven Project. https://maven.
apache.org/

[7] Corrado Gini. 1912. Variabilita e mutabilita. Reprinted in Memorie di metodologica
statistica (Ed. Pizetti E (1912).

[8] Inc. GitHub. 2022. About pull requests. https://docs.github.com/en/pull-
requests/collaborating-with-pull-requests/proposing-changes-to-your-work-
with-pull-requests/about-pull-requests

[9] Google. [n.d.]. Android Samples. https://developer.android.com/samples
[10] Google. [n.d.]. Google Maps Samples. https://developers.google.com/maps/

documentation/javascript/examples/
[11] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory

study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. 345–355.

[12] Andre Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stephane Ducasse. 2018. How do Developers React to API Evolution? A
Large-Scale Empirical Study. Software Quality Journal 26, 1 (2018), 161–191.

[13] Slinger Jansen, Michael A Cusumano, and Sjaak Brinkkemper. 2013. Software
ecosystems: analyzing and managing business networks in the software industry.
Edward Elgar Publishing.

[14] Dino Konstantopoulos, John Marien, Mike Pinkerton, and Eric Braude. 2009. Best
principles in the design of shared software. In International Computer Software
and Applications Conference. 287–292.

[15] Thomas Kude, Thomas Huber, and Jens Dibbern. 2018. Successfully governing
software ecosystems: Competence profiles of partnershipmanagers. IEEE software
36, 3 (2018), 39–44.

[16] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical Software
Engineering 23, 1 (2018), 384–417.

[17] Max O Lorenz. 1905. Methods of measuring the concentration of wealth. Publi-
cations of the American statistical association 9, 70 (1905), 209–219.

[18] Konstantinos Manikas. 2016. Revisiting software ecosystems research: A longitu-
dinal literature study. Journal of Systems and Software 117 (2016), 84–103.

[19] Konstantinos Manikas and Klaus Marius Hansen. 2013. Software ecosystems–
A systematic literature review. Journal of Systems and Software 86, 5 (2013),
1294–1306.

[20] Gabriel Menezes, Bruno Cafeo, and Andre Hora. 2019. Framework code samples:
How are they maintained and used by developers?. In 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM).

[21] Gabriel Menezes, Bruno Cafeo, and Andre Hora. 2022. How are framework code
samples maintained and used by developers? The case of Android and Spring
Boot. Journal of Systems and Software 185 (2022), 111146.

[22] Microsoft. [n.d.]. Microsoft Samples. https://code.msdn.microsoft.com
[23] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and

Alexandre Plastino. 2021. What factors influence the lifetime of pull requests?
Software: Practice and Experience 51, 6 (2021), 1173–1193. https://doi.org/10.1002/
spe.2946 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2946

[24] Simon Moser and Oscar Nierstrasz. 1996. The effect of object-oriented frame-
works on developer productivity. Computer 29, 9 (1996).

[25] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2012. Measuring software
library stability through historical version analysis. In International Conference
on Software Maintenance. 378–387.

[26] Martin P Robillard. 2009. What makes APIs hard to learn? Answers from devel-
opers. IEEE software 26, 6 (2009), 27–34.

[27] Daricélio M Soares, Manoel L de Lima Júnior, Alexandre Plastino, and Leonardo
Murta. 2018. What factors influence the reviewer assignment to pull requests?
Information and Software Technology 98 (2018), 32–43.

[28] Spring. [n.d.]. Spring Samples. https://spring.io/guides/
[29] Spring. 2021. Oracle. https://www.oracle.com/technetwork/indexes/samplecode
[30] Spring. 2022. Spring | Guides. https://spring.io/guides
[31] Jeffrey Stylos and Brad A Myers. 2006. Mica: A web-search tool for finding api

components and examples. In Visual Languages and Human-Centric Computing
(VL/HCC’06). IEEE, 195–202.

[32] Yuan Tian, Ferdian Thung, Abhishek Sharma, and David Lo. 2017. APIBot: ques-
tion answering bot for API documentation. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 153–158.

[33] Twitter. [n.d.]. Twitter Samples. http://twitterdev.github.io
[34] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan

Vasilescu. 2015. Wait for it: Determinants of pull request evaluation latency on
github. In 2015 IEEE/ACM 12th working conference on mining software repositories.
IEEE, 367–371.

[35] Zixiao Zhu, Chenyan Hua, Yanzhen Zou, Bing Xie, and Junfeng Zhao. 2017.
Automatically generating task-oriented api learning guide. In Proceedings of the
9th Asia-Pacific Symposium on Internetware. 1–10.

https://pypi.org/
https://pypi.org/
https://maven.apache.org/
https://maven.apache.org/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://developer.android.com/samples
https://developers.google.com/maps/documentation/javascript/examples/
https://developers.google.com/maps/documentation/javascript/examples/
https://code.msdn.microsoft.com
https://doi.org/10.1002/spe.2946
https://doi.org/10.1002/spe.2946
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2946
https://spring.io/guides/
https://www.oracle.com/technetwork/indexes/samplecode
https://spring.io/guides
http://twitterdev.github.io

	Abstract
	1 Introduction
	2 Background
	3 Study Design
	4 Results
	5 Implications
	6 Related Works
	7 Conclusion
	References

